文档库 最新最全的文档下载
当前位置:文档库 › (物理)物理稳恒电流练习题含答案及解析

(物理)物理稳恒电流练习题含答案及解析

(物理)物理稳恒电流练习题含答案及解析
(物理)物理稳恒电流练习题含答案及解析

(物理)物理稳恒电流练习题含答案及解析

一、稳恒电流专项训练

1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】

(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于

x

V

A x

R R R R >,所以电流表应内接.电路图如图所示.

(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:

130.4515000.3010R -=Ω=Ω?,2

30.91

1516.70.6010R -=Ω=Ω?,33

1.50

15001.0010R -=

Ω=Ω?,

431.791491.71.2010R -=

Ω=Ω?,5

3

2.71

15051.8010R -=Ω=Ω?, 故电阻的测量值为1

2345

15035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于

0150010150

R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).

(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);

(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.

本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总

之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.

2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】

设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为

2ρ,电阻恒温系数为2α.根据题意有

1101)l t ρρα=+(①

2202)l t ρρα=+(②

式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222L

R S

ρ=④ 式中S 为碳棒与铜棒的横截面积.

碳棒和铜棒连接成的导体的总电阻和总长度分别为

12R R R =+⑤,012L L L =+⑥

式中0 1.0m L = 联立以上各式得:10112022

1210

20L L L L R t S S S

ραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:202

10202101

L L ραραρα=

-⑨

代入数据解得:313810m L -=?.

⑩ 【点睛】

考点:考查了电阻定律的综合应用

本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件

3.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:

(1)电源释放的电功率;

(2)电动机消耗的电功率.将电能转化为机械能的功率;

【答案】(1)20W (2)12W 8W.

【解析】

【分析】

(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.

【详解】

(1)电动机正常工作时,总电流为:I=1U

R

I=3.0

1.5

A=2 A,

电源释放的电功率为:P=EI =10×2 W=20 W;

(2)电动机两端的电压为: U= E﹣Ir﹣U1

则U=(10﹣2×0.5﹣3.0)V=6 V;

电动机消耗的电功率为: P电=UI=6×2 W=12 W;

电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;

电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热

P机=(12﹣4)W=8 W;

【点睛】

对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.

4.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.

(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.

(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;

b.请推导该电源对外电路能够输出的最大电功率及条件.

(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.

【答案】(1)U–I图象如图所示:

图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流

(2)a如图所示:

b.

2 4 E r

(3)见解析

【解析】

(1)U–I图像如图所示,

其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示

b.电源输出的电功率:

2

22

2 (

)

2

E E

P I R R

r

R r

R r

R

===

+

++

当外电路电阻R=r时,电源输出的电功率最大,为

2

max

=

4

E

P

r

(3)电动势定义式:

W

E

q

=非静电力

根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即

22

W I rt I Rt Irq IRq

=+=+

E Ir IR U U

=+=+

本题答案是:(1)U–I图像如图所示,

其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流

(2)a.如图所示

当外电路电阻R =r 时,电源输出的电功率最大,为2

max =4E P r

(3)E U U =+外内

点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.

5.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为

12m 的小球1以速度052

gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;

(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;

(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.

【答案】(1) 52gr v = (2) 2424B L P R

ω=

(3) 2mgd qBL ≤ω≤27mgd qBL

【解析】 【分析】 【详解】

(1)两球碰撞过程动量守恒,则0111

()222

mv m m v =+

解得v =

(2)杆转动的电动势211

22

BLv BL L BL εωω==?

= 电阻R 的功率2

242

4B L P R R

εω==

(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.

在T 点,由牛顿第二定律得2

11v mg qE m r

-=

从S 到T ,由动能定理得2211112222

qE r mg r mv mv ?-?=- 解得12mg

E q

=

杆转动的电动势2

1112

BL εω= 两板间电场强度1

1E d

ε=

联立解得12

mgd

qBL ω=

如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.

在S 点,由牛顿第二定律得2

2v qE mg m r

-=

杆转动的电动势2

2212

BL εω= 两板间电场强度2

2E d

ε=

联立解得22

7mgd

qBL ω=

综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属

杆转动的角速度的范围为:

22

7mgd mgd

qBL qBL ω≤≤.

6.山师附中一研究性学习小组制作了一辆以蓄电池为驱动能源的环保电动汽车,其电池每次充电仅需三至五个小时,蓄电量可让小汽车一次性跑500m ,汽车时速最高可达10m/s ,汽车总质量为9kg .驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在水平路面上以v =2m/s 的速度匀速行驶时,驱动电机的输入电流I =1.5A ,电压U =3.0V ,内电阻R M =0.40Ω.在此行驶状态下(取g =10 m/s 2),求: (1)驱动电机输入的电功率P 入; (2)驱动电机的热功率P 热; (3)驱动电机输出的机械功率P 机; (4)蓄电池的电动势E .

【答案】(1)4.5W (2)0.9W (3)3.6W (4)3.3V 【解析】

试题分析:根据P =UI 求出驱动电机的输入功率;由P =I 2r 可求得热功率;由输入功率与热功率的差值可求出机械功率;由闭合电路欧姆定律可求得电源的电动势. (1)驱动电机输入的电功率:P 入=IU =1.5×3.0W =4.5W (2)驱动电机的热功率:P 热=I 2R =(1.5)2×0.40W =0.9W (3)驱动电机输出的机械功率:P 机=P 入?P 热=3.6W (4)蓄电池的电动势:E =U +IR =(3.0+1.5×0.2)V=3.3V

点睛:本题主要考查了功率的公式P =UI ,以及机械功率的公式P =Fv 的应用;要注意体会能量的转化与守恒关系.

7.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:

(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)

(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】

试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧 R 3断开前R 1上电压U 1=R 1I=4V U 1= U 2 + U 3 所以 U 2=1V

U 2:U 3 = R 2:R 3 =1:3 R 2=1Ω

(2)R 3断开前 总电流I 1=3A E = U 1 + I 1r

R 3

断开后 总电流I 2=2.5A

E = U 2 + I 2r

联解方程E= 10 V r=2Ω 考点:闭合电路的欧姆定律 【名师点睛】

8.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.

(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?

(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?

(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)

【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222

mgsCB L m cB L +

【解析】 【详解】

(1)金属棒ab 在磁场中恰好保持静止,由BIL=mg

E I R r

=

+ 得 EBL

R r mg

=

-

(2)由 220

B L v

mg R =

得 0

22

mgR v B L =

由动量定理,得mgt BILt mv -= 其中0

BLs

q It R ==

得4422

22

0B L s m gR t mgR B L +=

(3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t

????=====???? mg-BIL=ma 得22

mg

a m CB L =

+=常数

所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as

根据能量转化与守恒得 2

2211()2

2

E mgs mv mv ?=--

解得:22

22

mgsCB L E m cB L

?=+ 【点睛】

本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.

9.电动自行车是目前一种较为时尚的代步工具,某厂生产的一种电动自行车,设计质量(包括人)为m =90kg ,动力电源选用能量存储量为“36V 、15Ah”(即输出电压恒为36V ,工作电流与工作时间的乘积为15Ah )的蓄电池(不计内阻),所用电源的额定输出功率P

=180W ,由于电动机发热造成的损耗(其他损耗不计),自行车的效率为η=80%,如果

自行车在平直公路上行驶时所受阻力跟行驶速率和自行车对地面的压力的乘积成正比,即F f =kmgv ,其中g 取10m/s 2,k =5.0×10﹣3s?m ﹣1.求:

(1)该自行车保持额定功率行驶的最长时间和自行车电动机的内阻; (2)自行车在平直的公路上能达到的最大速度;

(3)有人设想改用太阳能电池给该车供电,其他条件不变,已知太阳辐射的总功率P 0=4×1026W ,太阳到地球的距离r =1.5×1011m ,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.则此设想所需的太阳能电池板的最小面积。

【答案】(1)2h , 1.44Ω。(2

)。(3)101m 2 【解析】 【详解】

(1)根据公式:P=IU,I=5A,再根据电池容量可得:t

Q

I

==2

h。

P热=P电﹣80%P=I2r

解得内阻为:r=1.44Ω。

(2)经分析可知,当自行车以最大功率行驶且达匀速时速度最大,因此有:

F牵=kmgv m

而F牵

m

P

v

η

=电,

联立代入数据可得:v m=42m/s。

(3)当阳光垂直电池板入射时,所需电池板面积最小,设其为S,由题意得:

()

2

130%

15%

4

P

S

r

π

-

??=P电

解得所需的太阳能电池板的最小面积为:

S

2

3

70%15%

r P

P

π

=

?

代入数据解得:S≈101m2。

10.如图甲所示,一正方形线框边长为L=0.3m,匝数为n=10匝,放置在匀强磁场中,ab边与磁场边界MN重叠,线框内阻为r=2Ω,与R=10Ω的外电阻形成一闭合回路。若以垂直纸面向里为磁场的正方向,匀强磁场的磁感应强度B随时间t按如图乙所示规律周期性变化(图中只画出两个周期)求从t=0时刻开始经过3分钟电阻产生的热量。

【答案】324J

【解析】

【详解】

在0~0.1s内:2

1

0.4

100.37.2

0.05

E n V V

t

==??=

?

;1

1

0.6

E

I A

R r

==

+

在0.1~0.3s内: 2

2

0.4

100.3 3.6

0.1

E n V V

t

==??=

?

;2

2

0.3

E

I A

R r

==

+

在0~0.3内发热量为22

11220.54

Q I Rt I Rt J =+=

3min总热量为

180

0.54324

0.3

Q J J =?=

11.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终

未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10 m/s2.求:

(1)线框受到的拉力F的大小;

(2)匀强磁场的磁感应强度B的大小;

(3)线框在斜面上运动的过程中产生的焦耳热Q.

【答案】(1)F="1.5" N(2)(3)

【解析】

试题分析:(1)由v-t图象可知,在0~0.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以:

………………①

………………②

联解①②代入数据得:

F="1.5" N ………………③

(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动,由法拉第电磁感应定律和欧姆定律有:E=BLv1…④

由欧姆定律得:…⑤

对于线框匀速运动的过程,由力的平衡条件有:…⑥

联解④⑤⑥代入数据得:…⑦

(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度,即为:⑧

线框在减速为零时,有:

所以线框不会下滑,设线框穿过磁场的时间为t,则:…⑨

…⑩

联解④⑤⑥代人数据得: (11)

考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;共点力平衡的条件及其应用;闭合电路的欧姆定律.

12.如图所示,两平行金属导轨间的距离L=0.4 m,金属导轨所在的平面与水平面夹角

θ=37°,在导轨所在空间内,分布着磁感应强度B=0.5 T、方向垂直于导轨平面的匀强磁场。金属导轨的一端接有电动势E=6.0 V、内阻r=0.5Ω的直流电源。现把一个质量m=0.05 kg的导体棒ab垂直放在金属导轨上,导体棒静止。导体棒与金属导轨接触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取10 m/s2。已知sin37°=0.6,cos37°=0.8,求:

(1)通过导体棒的电流大小;

(2)导体棒受到的安培力大小;

(3)导体棒受到的摩擦力大小。

【答案】(1)1.5 A(2)0.3 N(3)0.06 N

【解析】

试题分析:⑴导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:

=1.5A

⑵导体棒受到的安培力:F安=BIL=0.30N

⑶导体棒所受重力沿斜面向下的分力F1=" mg" sin37o=0.24N

由于F1小于安培力,故导体棒受沿斜面向下的摩擦力f,根据共点力平衡条件:mg

sin37o+f=F安

解得:f =0.06N

考点:本题考查电磁感应中的欧姆定律、物体的平衡等问题,意在考查学生的综合分析能力。

13.如图所示,水平面内固定的三条光滑平行金属导轨a、b、c,相距均为d=2m,导轨ac 间横跨一质量为m=1kg的金属棒MN,棒与导轨始终良好接触.棒的总电阻r=2Ω,导轨的电阻忽略不计.在导轨bc间接一电阻为R=2Ω的灯泡,导轨ac间接一理想电压表.整个装置放在磁感应强度B=2T匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN施加一水平向右的拉力F,使棒从静止开始运动,已知施加的水平外力功率恒定,经过t=2s时间棒的速度达到υ=3m/s且以后稳定.试求:

(1)金属棒速度稳定时施加的水平恒力F 为多大? (2)水平外力F 的功率为多少?

(3)在此t=2s 时间内金属棒产生的热量是多少? 【答案】(1)16N (2)48W (3)30.5J 【解析】

试题分析:(1)金属棒速度达到稳定,有:0=-安F F 而BId F =安,2

/r R υ

Bd I +=

联立得:F=16N (2)υF P ==48W

(3)设小灯泡和金属棒产生的热量分别为1Q 、2Q ,根据焦耳定律得知: 22

/21==r R Q Q 由功能关系得:Pt=1Q +2Q +22

1

υm

代入数据得:2Q =30.5J

考点:法拉第电磁感应定律;焦耳定律;功能关系

14.“220V 、88W ”的电风扇,线圈电阻为20Ω,当接上220V 电压后,求: (1)电风扇发热功率; (2)电风扇转化为机械能的功率

(3)如接上220V 电源后,扇叶被卡住,不能转动,求电动机消耗的功率和发热的功率。 【答案】(1)3.2W ;(2)84.8W ;(3)2420W ,2420W ; 【解析】

试题分析:(1)由P UI =可得电流为:88220

0.4I A P U ===; 线圈电阻发热功率:2 3.2Q P I r W ==; (2)机械功率:84.8Q P P P W =-=机;

(3)当叶片不转动时,作纯电阻,根据欧姆定律,有:11I U

r

A =

=; 21111202420P UI I r W ===??=.

考点:电功、电功率,焦耳定律

【名师点睛】对于电功率的计算,一定要分析清楚是不是纯电阻电路,对于非纯电阻电路,总功率和发热功率的计算公式是不一样的。

15.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量

m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:

(1)金属棒下滑的最大速度v m;

(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.

【答案】(1)30m/s(2)50J

【解析】

解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①

ab棒产生的感应电动势为 E=BLv m…②

通过ab的感应电流为 I=…③

回路的总电阻为 R=r+R1+…④

联解代入数据得:v m=30m/s…⑤

(2)由能量守恒定律有:mg?2s0sinθ=Q+…⑥

联解代入数据得:Q=50J…⑦

答:(1)金属棒下滑的最大速度v m是30m/s.

(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.

【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.

高考物理稳恒电流技巧(很有用)及练习题

高考物理稳恒电流技巧(很有用)及练习题 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

高考必备物理稳恒电流技巧全解及练习题

高考必备物理稳恒电流技巧全解及练习题 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

浙江工业大学大学物理稳恒磁场习题答案.

2014/08/20张总灯具灯珠初步设想 按照要求: 亮度比例关系:蓝光:白光:红光=1:1:8 光源总功率不超过20W。 一、蓝光光源: 1、光源形式:SMD 2835、芯片安萤11*28mil封装、 2、电路连接:2并20串、 3、光电参数: 单颗光源:IF:60mA、VF:3.0-3.2V、WLD:440-450nm、PO:0.2W、IV:3.5-4lm、 电路总输入:IF:120mA、VF:60-64V、WLD:440-450nm、PO:7.5W、IV:140-160lm、 4、成本:68元/K, πμT; 当cm r 5.45.3≤≤时, 2 1、光源形式:SMD 2835、库存光源第1KK或第2KK光源中正白色温、 2、电路连接:1并20串、 3、光电参数: 单颗光源:IF:20mA、VF:3.0-3.2V、CCT:6000K、PO:0.06W、IV:7-8lm、电路总输入:IF:20mA、VF:60-65V、PO:1.2W、IV:140-160lm、 成本:72元/K,

三、红光光源: 1、光源形式:SMD 2835、芯片连胜红光30*30mil封装、 2、电路连接:1并30串、 3、光电参数: 单颗光源:IF:150mA、VF:2.0-2.2V、WLD:640-660nm、PO:0.3W、IV:40- 45lm、 电路总输入:IF:150mA、VF:60-66V、WLD:640-660nm、PO:9.5W、IV:1200-1350lm、 4、成本:约420元/K, --=-?-=∑πσ r r r r r d d r d I B /4101.8(31.01079(24109(105104(24(234 222 423721222220-?=?--????=--=----πππμT; 当cm r 5.4≥时, 0∑=i I , B=0 图略 7-12 解:(1

大学物理习题解答5第五章稳恒电流

第五章 稳恒电流 本章提要 1.电流强度 · 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。如果在t ?时间内通过导体某一截面的电量为q ?,则通过该截面的电流I 为 q I t ?= ? · 如果电流随时间变化,电流I 的定义式为 t q t q I t d d lim 0= ??=→? 2.电流密度 · 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。根据电流密度的定义,导体中某一点面元d S 的电流密度为 d d I j S ⊥ = · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即 d j S S =???I 3.欧姆定律 · 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式

R U U I 2 1-= 其中R 为导体的电阻,21U U -为导体两端的电势差 · 欧姆定律的微分形式为 E j σ= 其中ρσ1=为电导率 4.电阻 · 当导体中存在恒定电流时,导体对电流有一定的电阻。导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为 S l R ρ = 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率 5.电动势 · 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。 q A 非= ε · 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为 l E l k ??=d ε

稳恒电流测试题

本章测评 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.铅蓄电池的电动势为2 V,这表示() A.电路中每通过1 C电荷量,电源把2 J的化学能转变为电能 B.蓄电池两极间的电压为2 V C.蓄电池在1 s内将2 J的化学能转变成电能 D.蓄电池将化学能转变为电能的本领比一节干电池(电动势为1.5 V)的大 解析:电动势描述的是非静电力做功把其他形式的能转化为电能本领大小的物理量,它在数据上等于从电源负极移动单位正电荷到电源正极非静电力所做的功的大小.电动势越大,说明把其他形式的能转化为电能的本领就越大. 答案: 2.下列说法正确的是() A.欧姆表的每一挡的测量范围是从0到∞ B.用不同挡次的欧姆表测量同一电阻的阻值,误差大小是一样的 C.用欧姆表测电阻,指针越接近刻度盘中央,误差越大 D.用欧姆表测电阻,选不同量程时,指针越靠近右边,误差越小 解析:用欧姆表测电阻,指针越接近刻度盘中央时,误差越小,所以B、C、D错. 答案: 3.如图4-4所示的电路中,电源的电动势E和内电阻r恒定不变,电灯L恰能正常发光,如果变阻器的滑片向b端滑动,则() 图4-4 A.电灯L更亮,安培表的示数减小 B.电灯L更亮,安培表的示数增大 C.电灯L变暗,安培表的示数减小 D.电灯L变暗,安培表的示数增大 解析:如果变阻器的滑片向b端滑动,则外电阻增大,电路总电阻增大,所以总电流减小,内电压减小,从而路端电压增大,灯泡更亮. 答案:A 4.手电筒里的两节干电池,已经用过较长时间,灯泡只发出很微弱的光,把它们取出来用电压表测电压,电压表示数很接近3 V,再把它们作为一台式电子钟的电源,电子钟能正常工作,下列说法中正确的是() A.这两节干电池的电动势减小了很多 B.这两节干电池的内阻增加了很多 C.这个台式电子钟的额定电压一定比手电筒小灯泡额定电压小 D.这个台式电子钟正常工作时的电流一定比小灯泡正常工作时的电流小 解答:电池用旧了,其电动势略有减小,但内阻增加很多.旧电池作为电子钟电源,能正常工作,说明电子钟的额定电流较小.

大学物理第8章 稳恒磁场 课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01=B C B 在O 点产生的磁感应强度大小为 θπμR I B 402=R I R I 123400μππμ=?=,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03θθπμ-=r I B )180cos 150(cos 60cos 40 0??-= R I πμ )2 31(20-=R I πμ,方向垂直纸面向里 故 )6 231(203210π πμ+- =++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点 产生的磁场为零。且 θ πθ -==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )(θππμ-= 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 θπμR I B 4202=,方向垂直纸面向里 所以, 1) 2(21 21=-=θ θπI I B B 环中心O 的磁感应强度为 0210=+=B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI = ,dI 在P 点产生的磁感应

高考物理稳恒电流练习题及答案

高考物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

大学物理习题稳恒磁场

稳恒磁场 一、选择题 1. 一圆电流在其环绕的平面内各点的磁感应强度 B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。 2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中 321O ,O ,O 处的磁感应强度为 B B B 123,,,则 【 】 (A) B B B 123==; (B) 0B 0B B 321≠== ; (C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠= 3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】 (A) 若?=?L 0l d B ,则必定L 上 B 处处为零 (B) 若?=?L 0l d B , 则必定L 不包围电流 (C) 若?=?L 0l d B , 则L 所包围电流的代数和为零 (D) 回路L 上各点的 B 仅与所包围的电流有关。 4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受 的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2 (C) 4 (D) 1/4 5. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】 (2) 选择题

(A) 2/IB Na 32, (B) 4/IB Na 32, (C) 60sin IB Na 32, (D) 0 6. 一带电粒子以速度 v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半 径变为2R ,磁场B 应变为: 【 】 B 2 2) D (B 2 1 ) C (B 2)B (B 2) A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两 条轨 迹 可 以 判 断 【 】 (A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。 8. 从电子枪同时射出两电子,初速分别为v 和2v ,方向如图所示, 经均匀磁场偏转后, 先回到出发点的是: 【 】 (A) 同时到达 (B) 初速为v 的电子 (C) 初速为2v 的电子 9. 有一电荷q 在均匀磁场中运动,下列哪种说法是正确的? (A )只要速度大小相同,所受的洛仑兹力就相同; (B )如果电荷q 改变为q -,速度v 反向,则受力的大小方向均不变; (C )已知v 、B 、F 中任意两个量的方向,就能判断第三个量的方向; (D )质量为m 的运动电荷,受到洛仑兹力作用后,其动能和动量均不变。 10. 设如图所示的两导线中的电流1I 、2I 均为5A ,根据安培环路定律判断下列表达式中错 误的是( ) (A )?=?a A l d H 5 ; (B )?=?c l d H 0 ; a b c ?? (7)选择题(8) 选择题

【物理】物理稳恒电流练习题及答案

【物理】物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

大连理工大学大学物理作业10(稳恒磁场四)与答案详解

作业 10 稳恒磁场四 1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度 H 的关系是 [ ] 。 A. B 0 H B. B r H C. B 0H D. B 0 H 答案:【 D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 B r H 抗磁质: r 1,所以, B H 2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是 [] 。 A. H 仅与传导电流有关。 B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。 C.若闭合曲线上各点 H 均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。 答案:【 C 】 解:安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分只与传导电流 L 有关,并不是说:磁场强度 H 本身只与传导电流有关。 A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度 H 的闭合回路的线积分为零。并 不能说:磁场强度 H 本身在曲线上各点必为零。 B 错。 高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度 B 的通量为零,或者说, . S 以闭合曲线 L 为边界的任意曲面的 B 通量相等。对于磁场强度 H ,没有这样的高斯定理。 不能说,穿过闭合曲面,场感应强度 H 的通量为零。 D 错。 安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路 L 包围的电流的代数和。 C 正确。 抗磁质和铁磁质的 B H 曲线,则 Oa 表示 3. 图 11-1 种三条曲线分别为顺磁质、 ; Ob 表示 ; Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 4. 某铁磁质的磁滞回线如图 11-2 所示,则 图中 Ob (或 Ob ' )表示 ; Oc (或 Oc ' )表示 。 答案:剩磁;矫顽力。

稳恒电流习题

一、电流欧姆定律练习题 一、选择题 5.对于有恒定电流通过的导体,下列说法正确的是[ ] A.导体内部的电场强度为零 B.导体是个等势体 C.导体两端有恒定的电压存在 D.通过导体某个截面的电量在任何相等的时间内都相等 6.有四个金属导体,它们的伏安特性曲线如图1所示,电阻最大的导体是[ D] A.a B.b C.c D.d 二、填空题 8.导体中的电流是5μA,那么在3.2S内有______ C的电荷定向移动通过导体的横截面,相当于______个电子通过该截面。 9.电路中有一段导体,给它加20mV的电压时,通过它的电流为5mA,可知这段导体的电阻为______Ω,如给它加30mV的电压时,它的电阻为______Ω;如不给它加电压时,它的电阻为______Ω。 10.如图2所示,甲、乙分别是两个电阻的I-U图线,甲电阻阻值为______Ω,乙电阻阻值为______Ω,电压为10V时,甲中电流为______A,乙中电流为______A。 11.图3所示为两个电阻的U-I图线,两电阻阻值之比R1∶R2=______,给它们两端加相同的电压,则通过的电流之比I1∶I2______。 12.某电路两端电压不变,当电阻增至3Ω时,电流降为原来的 13.设金属导体的横截面积为S,单位体积内的自由电子数为n,自由电子定向移动速度为v,那么在时间t内通过某一横截面积的自由电子数为______;若电子的电量为e,那么在时间t内,通过某一横截面积的电量为______;若导体中的电流I,则电子定向移动的速率为______。 14.某电解槽内,在通电的2s内共有3C的正电荷和3C的负电荷通过槽内某一横截面,则通过电解槽的电流为______A。 三、计算题 15.在氢原子模型中,电子绕核运动可等效为一个环形电流。设氢原子中电子在半径为r的轨道上运动,其质量、电量分别用m和e来表示,则等效电流I等于多少? 16.在彩色电视机的显像管中,从电子枪射出的电子在加速电压U作用下被加速,且形成电流为I的平均电流,若打在荧光屏上的高速电子全部被荧光屏吸收。设电子质量为m,电量为e,进入加速电场之前的初速不计,则t秒内打在荧光屏上的电子数为多少? 电流欧姆定律练习题答案 一、选择题 1、D 2、C 3、D 4、AD 5、CD 6、D 7、B 二、填空题 8、1.6×10-5,1×10149、4,4,4 10、2.5,5,4,211、4∶1,1∶4 12、2.413、nsvt,ensvt,I/ens 14、3 三、计算题

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ = ,单位是:安培每平方米(A/m 2)。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + =。 4、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ?? =____μ0I__; 对环路b :d B l ?? =___0____; 对环路c :d B l ?? =__2μ0I__。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2πr 2B B. πr 2B C. 0 D.无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

(物理)物理稳恒电流练习题20含解析

(物理)物理稳恒电流练习题20含解析 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,

物理竞赛课件-奥赛训练稳恒电流A

稳恒电流 A 编号:971017 1、令每段导体的电阻为R ,求R AB。 2、对不平衡的桥式电路,求等效电阻R AB。 3、给无穷网络的一端加上U AB = 10V的电压,求R2消耗的功率。已知奇数号电阻均为5Ω,偶数号电阻均为10Ω。 4、试求平面无穷网络的等效电阻R AB,已知每一小段导体的电阻均为R 。 5、右图电路中,R1 = 40Ω,R2 = R3 = 60Ω,ε1 = 5V ,ε2 = 2V ,电源内阻忽略不计,试求电源ε2的输出功率。 6、右图电路中,ε1 = 20V ,ε2 = 24V ,ε3 = 10V ,R1 = 10Ω,R2 = 3Ω,R3 = 2Ω,R4 = 28Ω,R5 = 17Ω,C1 = C2 = 20μF ,C3 = 10μF ,试求A、B两点的电势、以及三个电容器的的带电量。

稳恒电流A答案与提示 1、等势缩点法。设图中最高节点为C 、最低节点为D ,则U C = U D… 答案:7R/15 。 2、法一:“Δ→Y”变换; 法二:基尔霍夫定律,基尔霍夫方 程两个…解得I1 = 9I/15 ,I2 = 6I/15 , 进而得U AB = 21IR/15 。 答案:1.4R 。 3、先解R AB = R右= 10Ω 答案:2.5W 。 4、电流注入、抽出…叠加法 求U AB表达式。 答案:左图R/2 ;右图R 。 5、设R3的电流为I(方向向 左),用戴维南定理解得I = 0 。 答案:零。 6、设电路正中间节点为P点,接地点为O点,求A、B电势后令U P大于U A而小于U B,则三电容器靠近P点的极板的电性分别是+、?、+ ,据电荷守恒,应有Q1 + Q2 = Q3… 答案:U A = 7V ,U B = 26V ;Q1 = 124μC(A板负电),Q2 = 256μC(B板正电),Q3 = 132μC (O板负电)。

大学物理习题解答5第五章稳恒电流(2)

第四章 静电场 本章提要 1.电荷的基本性质 两种电荷,量子性,电荷首恒,相对论不变性。 2.库仑定律 两个静止的点电荷之间的作用力 1212 22 04kq q q q r r = =F r r πε 其中 922910(N m /C )k =?? 122-1-201 8.8510(C N m )4k -= =??επ 3.电场强度 q = F E 0q 为静止电荷。由 1010 22 04kq q q q r r = =F r r πε 得 11 2204kq q r r = =E r r πε 4.场强的计算 (1)场强叠加原理 电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。 i =∑E E

(2)高斯定理 电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为 e cos E S ?ψ=?=??v S θ 取积分可得电场中有限大的曲面的电通量 ψd e s S = ???E 高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即 i 0 1 d s q = ∑?? E S 内 ε 5.典型静电场 (1)均匀带电球面 0=E (球面内) 2 04q r πε= E r (球面外) (2)均匀带电球体 3 04q R πε= E r (球体内) 2 04q r πε=E r (球体外) (3)均匀带电无限长直线场强方向垂直于带电直线,大小为 02E r λ πε= (4)均匀带电无限大平面场强方向垂直于带电平面,大小为 2E σε= 6.电偶极矩 电偶极子在电场中受到的力矩 =?M P E

高中物理稳恒电流常见题型及答题技巧及练习题

高中物理稳恒电流常见题型及答题技巧及练习题 一、稳恒电流专项训练 1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求: (1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】 (1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为: =2A

(2)根据热功率公式 ,可得固定电阻的发热功率:=12W (3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V 电动机消耗的功率: =18W 一部分是线圈内阻的发热功率:=4W 另一部分转换为机械功率输出,则 =14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;(3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。 3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量 3310kg m =?.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流 I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电; (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2); (3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考. 已知太阳辐射的总功率26 0410W P =?,太阳到地球的距离 ,太阳光传播 到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%. 【答案】(1)3 1.510W P =?电 (2)/0.045f mg = (3)2101m S = 【解析】 试题分析:⑴31.510W P IU 电==? ⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg = ⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积 204πS r = 若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则 00 P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-' 由于15%P P =电,所以电池板的最小面积 ()00 130%P S P S =-

高中物理竞赛讲义:恒定电流.

专题十二 恒定电流 【扩展知识】 1.电流 (1)电流的分类 传导电流:电子(离子)在导体中形成的电流。 运流电流:电子(离子)于宏观带电体在空间的机械运动形成的电流。 (2)欧姆定律的微观解释 (3)液体中的电流 (4)气体中的电流 2.非线性元件 (1)晶体二极管的单向导电特性 (2)晶体三极管的放大作用 3.一段含源电路的欧姆定律 在一段含源电路中,顺着电流的流向来看电源是顺接的(参与放电),则经过电源后,电路该点电势升高ε;电源若反接的(被充电的),则经过电源后,该点电势将降低ε。不论电源怎样连接,在电源内阻r 和其他电阻R 上都存在电势降低,降低量为I (R+r )如图则有: b a U Ir Ir IR U =-+---2211εε 4.欧姆表 能直接测量电阻阻值的仪表叫欧姆表,其内部结构如图所示,待测电阻的值由:)(0R r R I R g x ++-=ε 决定,可由表盘上直接读出。在正式测电阻前先要使红、黑表笔短接,即:

中R r R R I g g ε ε =++=0。 如果被测电阻阻值恰好等于R 中,易知回路中电流减半,指针指表盘中央。而表盘最左边刻度对应于∞=2x R ,最右边刻度对应于03=x R ,对任一电阻有R x ,有:x g R R n I I +== 中ε, 则中R n R x )1(-=。 由上式可看出,欧姆表的刻度是不均匀的。 【典型例题】 1、两电解池串联着,一电解池在镀银,一电解池在电解水,在某一段时间内,析出的银是0.5394g ,析出的氧气应该是多少克? 2、用多用电表欧姆档测量晶体二极管的正向电阻时,用100?R 档和用k R 1?档,测量结果不同,这是为什么?用哪档测得的电阻值大?

相关文档
相关文档 最新文档