文档库 最新最全的文档下载
当前位置:文档库 › 铅精矿—铅、锌、铁含量的测定—EDTA滴定法

铅精矿—铅、锌、铁含量的测定—EDTA滴定法

铅精矿—铅、锌、铁含量的测定—EDTA滴定法
铅精矿—铅、锌、铁含量的测定—EDTA滴定法

FCLYSKYYQJK0006 铅精矿 铅、锌、铁含量的测定 EDTA 滴定法

F-CL-YS-KYY-QJK-0006

铅精矿—铅、锌、铁含量的测定—EDTA 滴定法

1 范围

本方法适用于铅精矿中35%~80%的铅、1%~10%的锌、铁含量的测定。

2 原理

试样用硝酸、高氯酸、硫酸分解。使铅成硫酸铅淀沉,过滤,使其与其元素分离,然后将硫酸铅转化为乙酸铅,在pH5.5~6.0的乙酸-乙酸钠缓冲溶液中,以二甲酚橙为指示剂,用EDTA 标准滴定溶液滴定。由所消耗的EDTA 标准滴定溶液的体积,计算铅的含量。

滤液中加入氨水使铁(Ⅲ)生成氢氧化铁沉淀,过滤、洗涤后,用盐酸溶解沉淀,在pH1.5~2.0介质中,以磺基水杨酸为指示剂,用EDTA 标准滴定溶液滴定。由所消耗的EDTA 标准滴定溶液的体积,计算铁的含量。

将经氨水分离铁的滤液浓缩处理后,在pH5.5~6.0的乙酸-乙酸钠缓冲溶液中,以二甲酚橙为指示剂,用EDTA 标准滴定溶液滴定。由所消耗的EDTA 标准滴定溶液的体积,计算锌的含量。

3 试剂

3.1 过硫酸铵

3.2 抗坏血酸

3.3 氯化铵

3.4 盐酸,ρ约1.19g/mL

3.5 硝酸,ρ约1.42g/mL

3.6 硫酸,ρ约1.84g/mL

3.7 盐酸,1+1

3.8 盐酸,0.1mol/L

3.9 硫酸,1+49

3.10 高氯酸,ρ约1.68g/mL

3.11 氨水,ρ约0.90g/mL

3.12 氨水,1+1

3.13 乙醇

3.14 乙酸-乙酸铵缓冲溶液,

称取298g 乙酸铵溶于水中,加入6.9mL 冰乙酸,用水稀释至1000mL

3.15 氯化铵溶液,2g/L

3.16 过硫酸铵溶液,200g/L

3.17 磺基水杨酸溶液,100g/L

3.18 氟化钾溶液,200g/L

3.19 硫代硫酸钠溶液,100g/L

3.20二甲酚橙溶液,1g/L

3.21 甲基橙溶液,0.5g/L

3.22 EDTA 标准滴定溶液,0.02mol/L

3.22.1配制

称取8gEDTA 于300mL 烧杯中,加入200mL 水加热溶解,冷至室温,移入1000mL 容量瓶中,以水稀释至刻度,混匀。

3.22.2标定

称取0.2000g 金属铅(质量分数大于99.99%)置于300mL 烧杯中,加入20mL 硝酸,加中国分析网

热溶解,取下稍冷,加入10mL 硫酸(1+1),加热至冒烟取下。以下按5.5.1操作步骤进行。取三次标定结果的平均值。三次滴定的极差值不应大于0.05mL 。

按下式计算单位体积EDTA 标准滴定溶液相当于铅的质量:

T Pb =0

V V m ? 式中:T Pb ——单位体积 EDTA 标准滴定溶液相当于铅的质量,g/mL ;

m ——标定时加入金属铅的质量,g ;

V ——滴定铅消耗EDTA 标准滴定溶液的体积,mL ;

V 0——滴定空白溶液铅消耗EDTA 标准滴定溶液的体积,mL 。

4 试样

试样粒度应小于82μm ,并在105~110℃烘干1h 后,置于干燥器中,冷却至室温。对易吸水的试样,应取空气干燥试样,同时称样进行吸附水的测定,换算成干基计算结果。 5 操作步骤

5.1 称样

称取0.50g 试样,精确至0.0001g 。

5.2 空白试验

随同试样做空白试验。

5.3 试液制备

将试样置于250mL 烧杯中,加入硝酸和高氯酸溶液各10mL,盖上表皿加热溶解。冷却后,加入10mL 硫酸,继续加热至冒浓烟2min 取下,冷却。用水冲洗表皿及杯壁,并稀释至50mL,煮沸数分钟,冷却。

5.4铅沉淀分离

向试液中加入10mL 乙醇,静置,用慢速定量滤纸过滤。沉淀用硫酸溶液(1+49)洗涤3~4次,再用水洗涤1~2次。滤纸和沉淀用作测定铅之用,滤液用作测定铁、锌之用。

5.5 测定

5.5.1铅的测定

滤纸和沉淀一起放入原烧杯中,加入30mL 乙酸-乙酸铵缓冲溶液,煮沸,使硫酸铅完全溶解,冷却后,用水稀释至100mL 左右。加入0.1g 抗坏血酸、2~3滴二甲酚橙指示剂(1g/L),用EDTA 标准滴定溶液滴定至溶液由粉红色变微亮黄色为终点。

5.5.2 铁的测定

向5.4的滤液中加入4~5g 氯化铵,5mL 过硫酸铵溶液(200g/L),用氯水中和溶液至氢氧化铁沉淀完全, 并过量3mL,加热煮沸1~2min,取下。用快速定量滤纸过滤,用热的氯化铵-氢氧化铵洗液洗涤烧杯与沉淀各4次,再用水各洗1次,沉淀用作测铁之用,滤液用作测锌之用。

用热的盐酸(1+1)溶解沉淀于原烧杯中,然后用水与盐酸(1+1)交替洗涤滤纸至无铁离子(用硫氰酸盐溶液检验,至无血红色出现)。置烧杯于低温电炉蒸至溶液1~2mL, 取下,加水至120mL 左右,用氨水(1+1)中和至有氢氧化铁沉淀出现,加10mL 盐酸(0.1mol/L),加热至近沸,取下,加入1mL 磺基水杨酸溶液(100g/L),用EDAT 标准滴定溶液滴定至溶液棕红色消失为终点。

5.5.3 锌的测定

将5.5.2用于测锌的滤液煮沸并浓缩至体积约100mL,彻底破坏过量的过硫酸铵,冷却,加入0.1g 抗坏血酸、1滴甲基橙溶液(0.5g/L),用氨水(1+1)和盐酸(1+1)调节溶液恰变红色,加入20mL 乙酸-乙酸铵缓冲溶液、5mL 氟化钾溶液(200g/L)、10mL 硫代硫酸钠溶液(100g/L),混匀,加2滴二甲酚橙指示剂(1g/L),用EDTA 标准滴定溶液滴定至溶液由紫红色变为黄色为终点。

6 计算 中国分析网

6.1 按下式计算铅的含量,以质量分数表示:

w Pb =()1000

21×?×m V V T Pb 式中:w Pb ——铅的质量分数,%;

T Pb ——单位体积 EDTA 标准滴定溶液相当于铅的质量,g/mL ;

V 1——滴定铅试液消耗EDTA 标准滴定溶液的体积,mL ;

V 2——滴定铅空白试验溶液消耗EDTA 标准滴定溶液的体积,mL ;

m 0——称取试料的质量,g 。

6.2 按下式计算铁的含量,以质量分数表示:

w Fe =()

1002698.00

43××?×m V V T Pb

式中:w Fe ——铁的质量分数,%;

T Pb ——单位体积 EDTA 标准滴定溶液相当于铅的质量,g/mL ;

V 3——滴定铁试液消耗EDTA 标准滴定溶液的体积,mL ;

V 4——滴定铁空白试验溶液消耗EDTA 标准滴定溶液的体积,mL ;

m 0——称取试料的质量,g ;

0.2698——铅换算成铁的系数。

6.3 按下式计算锌的含量,以质量分数表示:

w Zn =()

1001882.00

65××?×m V V T Pb

式中:w Zn ——锌的质量分数,%;

T Pb ——单位体积 EDTA 标准滴定溶液相当于铅的质量,g/mL ;

V 5——滴定锌试液消耗EDTA 标准滴定溶液的体积,mL ;

V 6——滴定锌空白试验溶液消耗EDTA 标准滴定溶液的体积,mL ;

m 0——称取试料的质量,g ;

0.1882——铅换算成锌的系数。

7 参考文献

[1] 钟超宏,梁奕昌,郑梦云,朱广一,唐维学. 铅精矿中铅锌铁的联合测定[J], 分析试验室, 18(6):88~89

中国分析

实验四邻菲罗啉分光光度法测定铁的含量(精)

实验四邻菲罗啉分光光度法测定水样中的铁 一、实验目的: 1、掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2、学会标准曲线的绘制方法及其使用。 二、原理: 亚铁离子(Fe2+)在pH=3~9时与邻菲罗啉生成稳定的橙红色络合物,应用此反应可用比色法测定铁。橙红色络合物的吸光度与浓度的关系符合朗伯-比耳定律。若用还原剂(如盐酸羟胺)把高铁离子还原为亚铁离子,则此法还可测定水中的高价铁和总铁的含量。 三、仪器: 721型分光光度计、1cm比色皿、具赛比色管(50ml)、移液管、吸量管、容量瓶等。 四、试剂: 1、铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵 [(NH4)2Fe(SO4)2·6H2O]于100毫升烧怀中(或0.8640g分析纯的 NH4Fe(SO42·12H2O,其摩尔质量为482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好) 2、铁标准使用液(20μg/mL):准确移取铁贮备液20.00ml于100ml 容量瓶中,用水稀释至刻度,摇匀。此溶液中Fe2+的质量浓度为20.0μg/mL。(学生配制)

3、0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制) 4、10%盐酸羟胺水溶液: 5、醋酸-醋酸钠缓冲溶液(pH=4.6):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml比色管中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml醋酸-醋酸铵缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀,(3)放置15分钟后,在510nm波长处,用1cm比色皿,以空白作为参比,测定各溶液的吸光度。 (4)以吸光度为纵坐标,铁含量(μg,50ml)为横坐标,绘制出标准曲线。 2、试样中铁含量的测定 吸取待测水样溶液10.00ml于50ml比色管中,按绘制标准曲线的操作,测得水样的吸光度A,由标准曲线查得相应的铁含量,计算出试样的铁的质量浓度。做平行样。 实验四邻菲罗啉分光光度法测定水样中的铁原始记录表

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

采用配位滴定和氧化还原滴定两种方法分别测定混合溶液中Fe2+,Fe3+的含量(混合铁溶液自配)111(1)(1)

测定混合溶液中Fe2+,Fe3+的含量 黄沁清陆珣 【目前有关该元素常量测定方法的概述】 常量铁分析的主要方法有邻菲啰啉分光光度法、磺基水杨酸分光光度法、硫氰酸钾比色法、铁离子测定仪法、重量法、EDTA络合滴定法、硫酸铈滴定法、硫代硫酸钠滴定法和重铬酸钾滴定法等。其中最经典的方法是重铬酸钾法。本实验采用配位滴定(EDTA络合滴定法)和氧化还原滴 定(重铬酸钾滴定法)两种方法分别测定混合溶液中Fe2+,Fe3+的含量 【实验原理】 配位滴定法 溶液中Fe3+可与EDTA形成稳定的1:1络合物,lgK稳为25.1,其溶液颜色为黄色[1]。 磺基水杨酸为无色结晶,可与溶于水。在pH=1.5~2.5时与Fe3+形成紫红色的络合物FeSSA+,可用作滴定Fe3+的指示剂,终点由红色变为亮黄色。且在此条件下,Fe2+则不显示颜色[1]。 EDTA与Fe3+络合能力强于磺基水杨酸,故滴定终点时,Fe3+会优先于EDTA反应形成亮黄色络合物,使原来的紫红色消失[2]。 溶液中有Fe2+,可先测出Fe3+的含量,再用强氧化剂(NH3)2S2O8将Fe2+氧化为Fe3+,继续用标准EDTA溶液滴定,则可测出Fe2+的含量[2]。 氧化滴定法 SnCl2将Fe3+还原成Fe2+,并过量1~2滴,用甲基橙为指示剂。还原反应为 2FeCl4-+SnCl42-+2Cl--===2FeCl42-+SnCl62- 使用甲基橙指示SnCl2 还原Fe3+ 的原理是:Sn2+ 将Fe3+ 还原完后,过量的Sn2+ 可将甲基橙还原成氢化甲基橙而褪色,不仅指示了还原的终点,Sn2+还能继续使氢化甲基橙还原成N,N-二甲基对苯二胺和对氨基苯磺酸,过量的Sn2+则可以消除。且甲基橙的还原产物不消耗K2Cr2O7。 盐酸溶液浓度应控制在4mol/L,若大于6mol/L,Sn2+ 会先将甲基橙还原为无色,无法指示Fe3+的还原反应。盐酸浓度低于2mol/L,则甲基橙褪色缓慢。 溶液温度用控制在60~90℃,温度低于60℃,SnCl2 先还原甲基橙,终点无法指示,且还原Fe3+ 速度慢,还原不彻底。 滴定反应为: 6Fe2+ +Cr2O72-+14H+===6Fe3++2Cr3++7H2O 滴定突跃范围为0.93~1.34V,使用二苯胺磺酸钠为指示剂时,由于它的条件典韦是0.85V,因而要加入H3PO4 ,使滴定生成[Fe(HPO4)]2- ,降低Fe3+ 浓度,从而降低Fe3+/ Fe2+ 电对的电位,使反应的突跃范围变成0.71~1.34V,指示剂可以在这个范围内变色;同时消除了[FeCl4]-的黄色对终点观察的干扰。Sb(Ⅲ)、Sb(Ⅴ)干扰实验,不应存在。 室温下,Cr2O72- 不氧化Cl- ,所以用H2SO4做酸性介质。 K2Cr2O7 化学性质稳定,组成与化学式一致,相对分子质量较大,易提纯,可直接配制。

铁矿─ 全铁含量的测量 ─ 三氯化钛还原滴定法

铁矿─ 全铁含量的测量─ 三氯化钛还原滴定法 1 范围 本推荐方法用氯化亚锡和三氯化钛还原重铬酸钾滴定法测定铁矿中全铁含量 本方法适用于天然铁矿铁精矿烧结矿及球团矿中质量分数为20% 75 的全铁含量 的测定 2 原理 试样用酸分解熔融残渣或碱熔融分解氯化亚锡将大量铁还原后加三氯化钛还原少 量剩余铁用稀重铬酸钾溶液氧化(方法一方法二)或用高氯酸氧化(方法三)过量的还原剂 以二苯胺磺酸钠作指示剂重铬酸钾标准溶液滴定 3 试剂 3.1 碳酸钠(Na2CO3) 无水粉末 3.2 过氧化钠(Na2O2) 干粉 3.3 盐酸为1.19g/mL 3.4 盐酸1+9 1+50 3.5 硫酸1+1 3.6 氯化亚锡60g/L 称取6g 氯化亚锡(SnCl2)溶解于20mL 热盐酸( 为1.19g/mL)中加水稀释至100mL 混匀加一锡粒贮于棕色瓶中 3.7 三氯化钛溶液1+14 取2mL 三氯化钛溶液[质量浓度为15% 20%] 用盐酸(1+5)稀释至30mL 在冰箱中保存3.8 硫磷混酸 边搅拌边将150mL 硫酸( 为1.84g/L)慢慢注入700mL 水中加150mL 磷酸( 为 1.7g/mL) 混匀 3.9 高氯酸1+1 3.10 过氧化氢体积分数为30% 3% 3.11 高锰酸钾溶液40g/L 3.12 重铬酸钾溶液0.5g/L 3.13 氢氧化钠溶液20g/L 3.14 硫酸亚铁铵溶液c[(NH4)2Fe(SO4)2 6H2O]=0.05mol/L 称取19.7g 硫酸亚铁铵溶解于硫酸(5+95)中稀释至1000mL 混匀 3.15 重铬酸钾标准溶液c(1/6K2Cr2O7)=0.05000mol/L 称取2.4518g 预先在150 烘干2h 并在干燥器中冷却至室温的重铬酸钾[质量分数至 少99.9%] 溶解在适量水中移入1000mL 容量瓶中用水稀释至刻度混匀 3.16 钨酸钠溶液250g/L 称取25g 钨酸钠(Na2WO4)溶于适量水中加5mL 磷酸( 为1.7g/mL) 用水稀释至100mL 混匀 3.17 靛蓝溶液1g/L 称取0.1g 靛蓝(C16H8O8N2S2Na2)溶解于100mL 硫酸(1+1)中混匀 3.18 二苯胺磺酸钠(C6H5NHC6H4SO3Na)溶液2g/L 4 操作步骤 4.1 称样 称取0.20g 试样精确至0.0002g 4.2 空白试验 随同试样做空白试验 4.3 试样处理 4.3.1 分解 4.3.1.1 酸分解[钒的质量分数小于0.08% 钼和铜的质量分数均小于0.1%的试样] 将称取的试样置于250mL 烧杯中加30mL 盐酸(1+1) 盖上表面皿低温加热分解(<100 ) 用水淋洗表面皿及烧杯壁至体积约40mL 用中速滤纸过滤不溶残渣用热盐酸(1+50)洗烧杯3 次残渣7 次再用热水洗残渣6 次滤液为主液 将残渣及滤纸置于铂坩埚中灰化在800 灼烧20min 冷却加硫酸(1+1)润湿残渣 加5mL 氢氟酸( 为1.15g/mL) 低温加热至白烟冒尽加2g 焦硫酸钾于冷却后的坩埚中 在650 左右熔融至溶液澄清冷却将坩埚放入原烧杯中加5mL 盐酸( 为1.19g/mL) 加 热浸取熔融物用水洗出坩埚将溶液合并入主液低温蒸发至体积约100mL 注盐酸分解试样后如有少量白渣可以不用回渣对结果无显著影响 4.3.1.2 熔融酸化[钒的质量分数小于0.08% 钼和铜的质量分数均小于0.1 的试样] 将称取的试样置于刚玉坩埚中加3g 混合熔剂(过氧化钠+碳酸钠=2+1) 充分混匀上 盖1g 混合熔剂在800 熔融约15min 冷却 将坩埚置于300mL 烧杯中加100mL 热水加热浸取并煮沸数分钟分解过氧化氢加 20mL 盐酸( 为1.19g/mL) 取出并用热水洗涤坩埚低温蒸发试液至体积约为100mL 4.3.1.3 熔融过滤[钒的质量分数大于0.08% 钼的质量分数大于0.1% 铜的质量分数小 于0.1%的试样] 按4.3.1.2 熔融完毕冷却 将坩埚置于300mL 烧杯中加100mL 热水煮沸数分钟浸取熔融物取出坩埚并用热水 洗涤用中速滤纸过滤用氢氧化钠溶液(20g/L)洗涤2 次弃去滤液用20mL 热盐酸(1+1) 和热水分数次交替洗涤将沉淀洗入原烧杯中用热盐酸(1+1)将坩埚中残余熔融物溶解并洗入主液中低温加热溶解沉淀并蒸发至体积约100mL 4.3.2 还原 将试液加热至近沸 注如试样含砷和有机物加3 滴高锰酸钾溶液(40g/L) 并保持近沸5min 边搅拌边滴加氯化亚锡溶液(60g/L)至溶液呈浅黄色用少量水吹洗烧杯壁 注如果加入过量氯化亚锡溶液变为无色则滴加过氧化氢溶液[体积分数为3%]至 溶液呈浅黄色 任选下列方法之一氧化过量的三氯化钛

水质铁的测定 EDTA滴定法

HZHJSZ00119杭州环境水质 :水质铁的测定EDTA滴定法 1 范围 本方法适用于炼铁矿山电镀酸洗等废水中铁的测定测定铁的适宜含量为 5~20mg 在测定条件下铜铝离子含量较高大于5.0mg 时产生正干扰其它多数离子对本方法没有影响 2 原理 水样经酸分解使其中铁全部溶解并将亚铁氧化成高铁用氨水调节至pH2 左右用磺基水扬酸作指示剂用EDTA 络合物滴定法测定样品中的铁含量 3 试剂硝酸硫酸盐酸氨水精密pH 试纸磺基水扬酸溶液50g/L 六次甲基四胺溶液300g/L 4 铁标准溶液称取4.822g 硫酸高铁铵[FeNH4(S04) 12H20]溶于水中加1.0mL 硫酸移入1000mL 容量瓶中加水至标线混匀此溶液的浓度为0.010mol/L 5 0.01mol/L EDTA 标准滴定溶液: 称取3.723g 二水合乙二胺四乙酸二钠盐溶于水中稀释至1000 mL 贮于聚乙烯瓶中按下法标定: 标定吸取20.00mL 铁标准溶液置锥形瓶中加水至100mL 用精密pH 试纸指示滴加1+1 氨水调至pH=2 左右在电热板上加热试液至60 左右加磺基水扬酸溶液3.6 2mL 用EDTA 标准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫红色消失而呈淡黄色为终点记下消耗EDTA 标准滴定溶液的毫升数(V0) 计算EDTA 标准滴定溶液的准确浓度 c Na2-EDTA =0.010mol/L 20.00/ V0 4 仪器 25 或50mL 酸式滴定管 5 水样处理 如果水样清澈且不含有机物或络合剂,则可取适量水样(合铁量约为5~20mg) 于锥形瓶中,加水至约100mL 如果水样混浊或有沉淀或含有机物则分取适量混匀水样置锥形瓶中加硫酸3mL 硝酸5mL 徐徐加热消解至冒三氧化硫白烟试样应呈透明状否则再加适量硝酸继续加热消解得透明溶液为止冷却加水至100mL 往上述处理过的水样中滴加1+1 氨水调节至pH2 左右(用精密pH 试纸检验) 6 操作步骤 将调节好pH 的试液加热至60 加磺基水扬酸溶液3.6 2mL 摇匀用EDTA 标准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫色消失而呈现淡黄色为终点记录消耗EDTA 标准滴定溶液的毫升数V2) 7 结果计算 c 铁Fe, mg/L = c 55.847 1000 V1/ V2 式中V1 滴定所消耗EDTA 标准滴定溶液体积(mL)V2 水样体积(mL) EDTA 标准滴定溶液的摩尔浓度(mol/L) (Fe)的摩尔质量(g/mol) 8 精密度和准确度

电位滴定法测定铁离子含量的应用研究

- 39 - 第5期2018年10月No.5 October,2018 金属材料受周围介质的作用而损坏,称为金属的腐蚀,腐蚀现象非常普遍,其中用量最大的金属—铁制品的腐蚀最为常见。常见的铁的腐蚀分为析氢腐蚀和吸氧腐蚀。而在酸性较强的溶液中发生电化学腐蚀时放出氢气,这种腐蚀叫作析氢腐蚀。 实验原理:通常析氢腐蚀只会产生Fe 2+,而Fe 2+在空气中易被氧化,所以采用液封的方法来隔绝空气。用K 2Cr 2O 7 溶液把Fe 2+完全氧化成Fe 3+,再用SnCl 2将Fe 3+ 还原为Fe 2+,通 过电位的突越来确定终点,并通过滴定剂的用量确定Fe 2+ 浓度,以此来得到腐蚀速率。 主要反应式:Fe+2H +→Fe 2++H 2↑ 6Fe 2+ + Cr 2O 72-+14H +→6Fe 3+ +2Cr 3++7H 2O Sn 2++2Fe 3+→Sn 4++2Fe 2+ 分析溶液中亚铁离子含量的方法有很多种,例如原子吸收分光光度法,该方法虽然测量在小含量时精确度高、稳定性好,但实验条件较苛刻,成本较昂贵,稳定性好且使用条件固定,不能改变温度,不宜直接用于计算平均腐蚀速率。电位滴定法是电位分析法的一种,是以测量电池电动势为基础的定量分析法,从滴定剂的体积和浓度来计算待测物的含量,在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n 个数量级,引起电位的突跃,以此来指示滴定终点。该方法温度、液体接界电位的影响并不重要,其准确度优于直接电位法,被测成分的含量仍然通过消耗滴定剂的量来计算,可用于有色或混浊的溶液的滴定,还可用于浓度较稀的试液或滴定反应进行不够完全的情况;灵敏度和准确度高。而普通滴定法是依靠指示剂颜色变化来指示滴定终点,如果待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。此实验中,待测溶液本身就有颜色,用指示剂可能会导致滴定终点不易观察。 采用普通滴定管的电位滴定法,无法在进行了液封的待测溶液中直接滴加滴定剂。如果把滴定管底部直接插入溶液中,则会因为气压原因无法加入滴定剂。所以,本实验主要采用注射器来代替滴定管进行滴定。注射器具有可以 外部施压的优点,同时刻度精确,且易控制注射量,采用 不锈钢针头,防止有些针头会被高浓度的盐酸腐蚀,影响测定结果。1 实验部分1.1 仪器和试剂 仪器:雷磁PHS-2F 型PH 计;雷磁232甘汞参比电极;雷磁213铂电极;IKA RCT 基本型加热磁力搅拌器;磁石;恒温水浴锅;兽用不锈钢注射器。 试剂:盐酸;N80钢;K 2Cr 2O 7固体;SnCl 2·2H 2O 固体;锡粒;液体石蜡。1.2 溶液的配置 标准重铬酸钾溶液的制备:将少量K 2Cr 2O 7固体至于干燥器干燥(T =120 ℃)2 h ,待冷却至室温,用分析天平准确称取1.860 2 g K 2Cr 2O 7药品用蒸馏水溶解,并洗涤3次,定容于1 L 量瓶中待用。 稀释:取125 mL 上述的K 2Cr 2O 7于500 mL 量瓶内进行定容。 C =0.001 580 mol/L 。SnCl 2溶液的配置:称取1.161 0 g SnCl 2于200 mL 烧杯中。加入30 mL 浓盐酸,用恒温水浴锅加热(50 ℃),边加热边搅拌,直到溶液澄清透明,待冷却至室温,移至500 mL 量瓶中用1∶1的盐酸洗涤3次并定容至刻度线。加入两粒锡粒并用液体石蜡液封防止SnCl 2被空气氧化。取用时倒入烧杯,用液体石蜡液封备用(由于SnCl 2不稳定,极易被氧化,不易保存,所以每次需现配现用)。2 实验内容2.1 实验操作 将N80钢预先称重,并用细绳悬挂卡入磨口锥形瓶加入1∶2的盐酸作腐蚀介质1 h 后取出挂片,用棉球擦洗,无水乙醇擦拭,吹干后称量挂片损失的质量。后搭建如图1的电位滴定装置,预热装置。在常温下,用移液管移取25 mL 腐蚀液放入100 mL 烧杯中,液面下加入磁石并插入已在饱和KCl 溶液里浸泡了2 h 的参比电极和清洗干净的铂电极。接着用液体石 蜡覆盖腐蚀液表面进行液封,防止Fe 2+ 被空气氧化。记下初 电位滴定法测定铁离子含量的应用研究 胡 箫,朱锦旗,周永博,鲁凯能 (长江大学 工程技术学院,湖北 荆州 434020) 摘 要:本实验采用稍加改良的电位滴定法研究不同条件对铁的腐蚀速率的影响,该实验模拟在实验条件相对简便的条件下 高效、相对准确地测定铁的平均腐蚀速率,并测定电位滴定法滴定亚铁离子浓度实验的灵敏度,即采用电位滴定法在一定条件下所能准确测定的最低亚铁离子浓度。最后,通过与失重法对比研究了滴定法测定腐蚀速率的可行性,结果表明,电位滴定法与失重法测得的腐蚀速率有较高的一致性,相对平均偏差未超过4%。关键词:析氢腐蚀;电位滴定法;失重法基金项目:长江大学工程技术学院大学生创新创业计划(201813245005);长江大学工程技术学院科研基金项目(2018KY05)作者简介:胡箫(1997— ),男,湖北黄石人,本科生;研究方向:分析化学。 现代盐化工 Modern Salt and Chemical Industry

铁测定方法全铁的测定方法有些

铁测定方法全铁的测定方法有些 溶解性铁 地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。 实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。 铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。水中铁的污染主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。 1.方法的选择 原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁

环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。避免高倍数稀释操作引起的误差。 2.水样的保存与处理 测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45?m的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。 (一)火焰原子吸收分光光度法 GB11911--89 概述 1.方法原理 在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm 处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。 2.干扰及消除 影响铁原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,

重铬酸钾滴定法测定亚铁离子和全铁的操作规程

Fe2+和全铁的测定—重铬酸钾滴定法 1. 全铁原理: 试样用硫磷混合酸分解,加盐酸使铁成三氧化铁进入溶液,用氯化亚锡将三价铁全部还原成二价,过量的氯化亚锡用氯化高汞氧化,以二苯胺磺酸钠为指示剂,标准重铬酸钾滴定计算铁含量。 2. 试剂 2.1 氯化亚锡溶液10%:称取10g氯化亚锡,加入20ml浓盐酸,加热溶解,冷却后加水稀释至100ml,混匀。 2.2 饱和氯化高汞5%:称取5g氯化高汞溶于100ml水中。 2.3 硫磷混合酸(1+1):150ml硫酸+150ml磷酸+700ml水 2.4 二苯胺磺酸钠0.5% :称取0.5g二苯胺磺酸钠,溶于水,稀释至100ml。 2.5 重铬酸钾标准液[c(1/6K2Cr2O7=0.02mol/L)]:称取1.7559g预先在150℃干燥2h的基准重铬酸钾于500ml烧杯中,加入适量水溶解,移入1000ml容量瓶中,用水稀释至刻度,混匀,此溶液1ml相当于0.002g铁。 3.测定 Fe2+的测定 取试样20ml于锥形瓶,加50ml蒸馏水,20ml硫磷混酸,4-5滴二苯磺酸钠,立即用重铬酸钾标准溶液滴定至紫红色为终点。 全铁测定

准确称取0.2000g试样于250ml锥形瓶中,加少许水润湿样品,加10-15ml盐酸,加15ml硫磷混合酸,摇匀。于高温电热板上加热分 解,并加以摇动,直至分解到冒SO 3白烟,SO 3 白烟冒到锥形瓶三分 之二处时立即取下(加热时间不能过久,以防生成焦磷酸盐,造成结果报废),待试液冷却后,加入10ml(1+1)盐酸,加入2-3g氯化铵,边搅拌边加入氨水至完全沉淀并过量15ml,加100ml水,加热至近沸,趁热滴加10%氯化亚锡至二价铁离子的黄色消失并过量2滴。用少许水冲洗杯壁,放冷水中冷却,待冷却后加入5%氯化高汞10ml,摇匀放置3-5分钟,用水稀释至150ml,加入20ml硫磷混酸,加4-5滴二苯胺磺酸钠指示剂,用重铬酸钾标准滴定至溶液呈现稳定紫色为终点。 4.计算 T Fe =% 100 ? ? m V T 式中: T—重铬酸钾标准溶液对铁的滴定度(g/ml)V—滴定消耗重铬酸钾标准溶液的体积(ml)M—试样重(g)

铁矿石中铁的测定及重铬酸钾滴定法

铁矿石中铁的测定及重铬酸钾滴定法 铁是地球上分布最广的金属元素之一,在地壳中的平均含量为5%,在元素丰度表中位于氧、硅和铝之后,居第四位。自然界中已知的铁矿物有300多种,但在当前技术条件下,具有工业利用价值的主要是磁铁矿(Fe3O4含铁72.4%)、赤铁矿(Fe2O3含铁70.0%)、菱铁矿(FeCO3含铁48.2%)、褐铁矿(Fe2O3·nH2O含铁48%~62.9%)等。 铁矿石是钢铁工业的基本原料,可冶炼成生铁、熟铁、铁合金、碳素钢、合金钢、特种钢等。用于高炉炼铁的铁矿石,要求其全铁TFe(全铁含量)≥50%,S≤0.3%,P≤0.25%,Cu≤0.2%,Pb≤0.1%,Zn≤0.1%,Sn≤0.08%,而开采出来的原矿石中铁的品位一般只有20%~40%.通过选矿富集,可将矿石的品位提高到50%~65%。我国每年从国外进口大量商品铁矿石。 铁矿石的常规分析是做简项分析,即测定全铁(TFe)、亚铁、可溶铁、硅、硫、磷。钱分析还要测定:氧化铝、氧化钙、氧化镁、氧化锰、砷、钾、钠、钒、铁、铬、镍、钴,铋、银、钡、锶、锂、稀有分散元素。吸附水、化合水、灼烧减量及二氧化碳等。本节着重介绍全铁的测定。 一、铁矿石试样的分解 铁矿石属于较难分解的矿物,分解速度很慢,分析试样应通过200目筛,或试样粒度不大于0.074mm。 铁矿石一般能被盐酸在低温电炉上加热分解,如残渣为白色,表明试样分解完全若残渣有黑色或其它颜色,是因为铁的硅酸盐难溶于盐酸,可加入氢氟酸或氟化铵再加热使试样分解完全,磁铁矿的分解速度很慢,可用硫-磷混合酸(1+2)在高温电炉上加热分解,但应注意加热时间不能太长,以防止生成焦磷酸盐。 部分铁矿石试样的酸分解较困难,宜采用碱熔法分解试样,常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和过氧化钠-碳酸钠(1+2)混合熔剂等,在银坩埚、镍坩埚、高铝坩埚或石墨坩埚中进行。碱熔分解后,再用盐酸溶液浸取。 二、铁矿石中铁的分析方法概述 铁矿石中铁的含量较高,一般在20~70%之间,其分析方法有氯化亚锡-氯化汞-重铬酸钾容量法,三氯化钛-重铬酸钾容量法和氯化亚锡-氯化汞-硫酸铈容量法。 第一种方法(又称汞盐重铬酸钾法)是测定铁矿石中铁的经典方法,具有简便、快捷、准确、稳定、容易掌握等优点,在实际工作中得到了广泛应用,成为国家标准方法之一——《铁矿石化学分析方法,氯化亚锡-氯化汞-重铬酸钾容量法测定全铁量》(GB/T6730.4-1986)。其基本原理是:在热、浓盐酸介质中,用氯化亚锡还原试液中的Fe(Ⅲ)为Fe(Ⅱ),过量的氯化亚锡用氯化汞氧化除去,在硫-磷混合酸存在下,以二苯胺磺酸钠为指示剂,用重铬酸钾标准滴定溶液滴定生成所有Fe(Ⅱ)至溶液呈现稳定的紫色为终点,以重铬酸钾标准溶液的消耗量来计算出试样中铁的含量。 (1)在实际工作中,为了使Fe(Ⅲ)能较为迅速地还原完全,常将制备溶液加热到小体积时,趁热滴加SnCl2溶液至黄色褪去。趁热加入SnCl2溶液,是因为Sn(Ⅱ)还原Fe(Ⅲ)的反应在室温下进行得很慢,提高温度到近沸,可加快反应速度。浓缩至小体积,既提高了酸度,防止SnCl2水解,又提高了反应物浓度,有利于Fe(Ⅲ)的还原和还原完全时颜色变化的观察。 (2)加HgCl2除去过量的SnCl2必须在冷溶液中进行,其氧化作用较慢,在加入HgCl2溶液后需放置2~3min,才能滴定。因为在热溶液中,HgCl2可氧化Fe(Ⅱ),使测定结果偏低:加入HgCI2溶液后不放置,或放置时间太短,反应不完全,Sn(Ⅱ)未除尽,使结果偏高:若放置时间过长,已被还原的Fe(Ⅱ)可被空气中的氧所氧化,使结果偏低。 (3)滴定前加入硫-磷混合酸的作用:是保证K2Cr2O7氧化能力所需的酸度,二是H3PO4与Fe(Ⅲ)形成无色配离子[Fe(HpO4)2]-,既可消除FeCl3黄色对终点色变的影响,又可降低Fe(Ⅲ)/Fe(Ⅱ)电对的电位,使滴定突跃范围变宽,指示剂颜色突变明显。但是,必须注意,在H3PO4介质中,Fe(Ⅱ)的稳定性较差,加入硫-磷混合酸后,要尽快滴定。 (4)二苯胺磺酸钠与K2Cr2O7的反应速度本来很慢,因微量Fe(Ⅱ)具有催化作用,使其与K2Cr2O7的反应迅速进行,变色敏锐。因此,同时做空白试验时,要加入一定量的硫酸亚铁铵溶液。由于指示剂被氧化时也消耗K2Cr2O7,所以应严格控制指示剂用量。 第二种方法(又叫无汞盐重铬酸钾法)是由于汞盐有剧毒,污染环境,危害人体健康,人们提出了改进方法,避免使用汞盐。该方法的应用较为普遍,也是国家标准分析方法之一——《铁矿石化学分析方法,三氯化钛-重铬酸钾容量法测定全铁量》(GB/T6730.5-1986)。其基本原理是:在盐酸介质中,用三氯化钛溶液将试液中的Fe(Ⅲ)还原为Fe(Ⅱ)。Fe(Ⅲ)被还原完全的终点,用钨酸钠(也可用甲基橙、中性红、次甲基蓝等)溶液来指示。当无色钨酸钠溶液变为蓝色(钨蓝)时,表示Fe(Ⅲ)已还原完全。用重铬酸钾溶液氧化过量的三氯化钛至钨蓝刚消失,然后加入硫-磷混合酸,以二苯胺磺酸钠为指示剂,用重铬酸钾标准滴定溶液滴定生成所有Fe(Ⅱ)至溶液呈现稳定的紫色为终点。

水中铁含量的测定方法 4种

1. 水中铁含量的测定方法: 〔实验原理〕常以总铁量(mg/L)来表示水中铁的含量。测定时可以用硫氰酸钾比色法。Fe3++3SCN-=Fe(SCN)3(红色) 〔实验操作〕1.准备有关试剂(1)配制硫酸铁铵标准液称取0.8634 g分析纯的NH4Fe(SO4)2·12H2O溶于盛在锥形瓶中的50 mL蒸馏水中,加入20 mL 98%的浓硫酸,振荡混匀后加热,片刻后逐滴加入0.2 mol/L的KMnO4溶液,每加1滴都充分振荡混匀,直至溶液呈微红色为止。将溶液注入l 000 mL的容量瓶,加入蒸馏水稀释至l 000 mL。此溶液含铁量为0.1 mg/mL。(2)配制硫氰酸钾溶液称取50 g分析纯的硫氰酸钾晶体,溶于50 mL蒸馏水中,过滤后备用。(3)配制硝酸溶液取密度为1.42 g/cm3的化学纯的硝酸191 mL慢慢加入200 mL蒸馏水中,边加边搅拌,然后用容量瓶稀释至500 mL。2.配制标准比色液取六支同规格的50 mL比色管,分别加入0.1 mL、0.2 mL、0.5 mL、1.0 mL、2.0 mL、4.0 mL硫酸铁铵标准液,加蒸馏水稀释至40 mL后再加5 mL硝酸溶液和1滴2 mol/L KMnO4溶液,稀释至50 mL,最后加入l mL硫氰酸钾溶液混匀,放在比色架上作比色用。3.测定水样的含铁总量取水样40 mL装入洁净的锥形瓶中,加入5 mL硝酸溶液并加热煮沸数分钟。冷却后倾入与标准比色液所用相同规格的比色管中,用蒸馏水稀释至50 mL处,最后加入1 mL硫氰酸钾溶液,混匀后与上列比色管比色,得出结果后用下式进行计算并得到结论。式中“相当的硫酸铁铵标准液量”指的是配制标准比色液时所用的硫酸铁铵标准液的体积。 2, 铁离子测定仪 https://www.wendangku.net/doc/4112345813.html,/ShowProduct.asp?ProductID=158 技术指标 测量范围 0.00to5.00mg/LFe 0to400μg/LFe 解析度0.01mg/L 1μg/L0.01mg/L 精度读数的±2%±0.04mg/L 读数的±8%±10μg/L 波长/光源 470nm硅光源 555nm硅光源 标准配置主机、HI93721-01试剂、HI731313玻璃比色皿两个、9V电池 主机、HI93746-01试剂、HI731313玻璃比色皿两个、9V电池 测量方法采用EPA推荐的方法中用于天然水和处理水的315B法,铁和试剂反应使 样剂呈淡蓝色采用EPA推荐的方法中用于天然水和处理水的315B法,铁 和试剂反应使样剂呈淡蓝色 3. 水中铁离子含量测定方法-- 二氮杂菲分光光度法

铁 EDTA滴定法

HZHJSZ00119 水质铁的测定 EDTA滴定法 HZ-HJ-SZ-0119 水质EDTA滴定法 1 范围 本方法适用于炼铁电镀测定铁的适宜含量为5~20mg í-′óóú 5.0mg2úéú?y?éè? 2 原理 水样经酸分解并将亚铁氧化成高铁用 磺基水扬酸作指示剂 3 试剂 3.1 硝酸 3.3 盐酸 3.5 精密pH试纸 50g/L 300g/L 3?è?4.822g硫酸高铁铵[FeNH4(S04)?ó1.0mL硫酸 加水至标线此溶液的浓度为0.010mol/L ??êí?á1000 mL°′??·¨±ê?¨ ?üè?20.00mL铁标准溶液置锥形瓶中用精密pH试纸指示 在电热板上加热试液至60?ó???ù?????áèüòo2mL ·??yμ??¨?ù?è ??????o?EDTA标准滴定溶液的毫升数(V0) c=0.010mol/L 5 试样制备 如水样清澈则可取适量水样(合铁量约为5~20mg)于锥形瓶中加硝酸5mL使Fe2+全部氧化为Fe3+如水样混浊或有沉淀则分取适量混匀水样置锥形瓶中硝 酸5mLê??ùó|3êí??÷×′ à?è′ 往上述处理过的水样中滴加1+1氨水  6 操作步骤 将调节好pH的试液 3.6摇匀 放慢滴定速度记录消耗EDTA标准滴定溶液的毫升数  7 结果计算 c铁= c1000 V1滴定所消耗EDTA标准滴定溶液体积(mL)

V2水样体积(mL) 55.847(Fe)的摩尔质量(g/mol) ?à??±ê×???2?2?3?1y1.2%单个实验室测定实际废水样的精密度和回收率    表1 测定实际废水样的精密度和准确度 实验室编号废水名称六次重复测定结果相对标准偏差 1 炼铁废水11. 2 7.4 97.3 2 钢厂排水153.6 0.25 101.0 3 化工厂排水9. 4 1.1 96.5 4 电镀车间997.4 0.21 99.7 5 铁矿废水7268.2 0.2 100.6 6 冷轧钢废水594.3 0.1 101.2 7 机械厂电镀合金废水376.1 0.3 97.6 注意事项 应适当增加酸量进行消解否则会使结果偏低 镍干扰离子滴加1+1氨水至刚产生混浊 加2g氯化铵 3.7?ù1yá?8mL 并保持15min·?à? 用1+1盐酸10mL将滤纸上沉淀溶解返回烧杯中洗液并入烧杯中 冷却后溶液定容至200mLμ÷?úpH后 (3) 用EDTA标准滴定溶液滴定铁离子的适宜pH值为1.5~2.0ó?êêò?óú???ù?????á??ê???μ?pH值过高将产生氢氧化铁沉淀而影响滴定 因此滴定时试液应保持在60?ú?ó?ü??μ?ê±ó|?o?yμ??¨ê1???ó?ù·′ó| 9 参考文献 ±à?ˉ?á±àμúèy°?pp. 182~184 ±±??

《采用配位滴定法和氧化还原滴定法分别测定混合溶液中Fe2+-Fe3+的含量》实验方案.doc

精品文档 《采用配位滴定法和氧化还原滴定法分别测定混合溶液中Fe2+, Fe3+的含量》实验方案 实验方案包括① 实验题目② 目前有关该元素常量测定方法的概述③ 选定实验方案的原理 ④ 所需试剂的计划用量及配制方法⑤ 实验步骤⑧ 主要参考资料) 单独列出一份试剂清单,包括试剂名称,规格及计算用量;(若用到自己实验台里没有的仪 器也要单独列出,如水浴锅等) 各组组长(平时收实验报告的同学)将组内同学的试剂清单统计一份总试剂清单及仪器清单 (实验台里没有的仪器) [ 注意 ] 所给试剂均为固体,所有试剂均需自己配制,到时会让大家预约配试剂的时间的 除老师指定的时间外,可以跟实验值班老师预约其他时间前来实验(12月16日-1月5日之 间未安排其他组同学进行实验的非周末时间均可,可以根据实验进度预约多次,直至完成实验内容。) 【实验目的】 1.通过分析化学综合性实验、设计性实验,培养学生初步的解决分析化学实际问题的能力, 培养学生的创新意识与创新能力。 2.学习查阅参考文献、综合参考资料、设计小型分析化学实验。 3.复习和巩固有关理论基础知识并用于指导实践。 4.进一步熟练掌握实验操作技术。 【目前有关常量铁测定方法的概述】 常量铁分析的主要方法有邻菲啰啉分光光度法、磺基水杨酸分光光度法、硫氰酸钾比色法、 铁离子测定仪法、重量法、EDTA 络合滴定法、硫酸铈滴定法、硫代硫酸钠滴定法和重铬酸 钾滴定法等。最经典的方法是重铬酸钾法,测定时以二苯胺磺酸钠为指示剂,高锰酸钾溶液滴定至紫色为终点,用高锰酸钾法测全铁含量时要将Fe3+还原成 Fe2+,一般使用的还原剂 有硝酸亚汞、 SnCl2 、 TiCl3 、 Na2SO3、抗坏血酸等,滴定时为了防止Fe2+再次被氧化,可用 CO等惰性气氛保护,或加入邻菲啰啉络合Fe2+生成稳定的络合物。二氯化锡还原- 重铬酸钾滴定法为常量铁测定的经典方法,1973 年被 ISO 采纳为国际标准方法,但该方法使用 对人类健康和环境产生危害的二氯化汞,因此,科学工作者一直致力于不使用汞盐的重铬酸 钾滴定法测定铁矿石中总铁含量的研究。研究报导的方法有金属(银或锌)还原法、盐酸羟胺还原法、三氯化钛还原法、硼氢化钾还原法等。 【实验原理】 本实验采用络合滴定法和氧化还原滴定法分别测定混合溶液中Fe2+、Fe3+的含量。 1.络合滴定法 在 pH =1.8 ~ 2.5 的条件下,磺基水杨酸指示剂与Fe3+生成紫红色络合物,Fe2+则不显示颜色, 磺基水杨酸本身无色。颜色强度与铁的含量成正比,其反应式为 Fe3++3SSal2-=[Fe(SSal)3]3- 。当用 EDTA标准溶液滴定时,由于EDTA与 Fe3+结合能力强于磺基水杨酸,故滴定至紫红色消失时即为终点,EDTA与 Fe3+形成的络合物为亮黄色(或 无色),使原来的紫红色消失,终点变色明显;测全铁含量时(含有Fe2+),可先测出 Fe3+ 的含量,或取相同含量样品测定总铁含量,再将溶液的Fe2+用过硫酸铵氧化成 Fe3+,再继续用 EDTA滴定至紫红色消失。滴定时溶液的温度以60~ 70℃为宜,温度太低, Fe3+与 EDTA 反应缓慢,不易得出准确的终点。由于EDTA与 Fe3+络合速度慢,滴定速度不宜太快,并需 不断振荡,否则将使测定结果偏大。 2.氧化还原滴定法 在热 HCl 溶液中,以甲基橙为指示剂,用SnCl2 将 Fe3+还原至 Fe2+,并过量 1 滴(只能

《采用配位滴定法和氧化还原滴定法分别测定混合溶液中Fe2+-Fe3+的含量》实验方案

《采用配位滴定法和氧化还原滴定法分别测定混合溶液中Fe2+,Fe3+的含量》实验方案 实验方案包括①实验题目②目前有关该元素常量测定方法的概述③选定实验方案的原理④所需试剂的计划用量及配制方法⑤实验步骤⑧主要参考资料) 单独列出一份试剂清单,包括试剂名称,规格及计算用量;(若用到自己实验台里没有的仪器也要单独列出,如水浴锅等) 各组组长(平时收实验报告的同学)将组内同学的试剂清单统计一份总试剂清单及仪器清单(实验台里没有的仪器) [注意]所给试剂均为固体,所有试剂均需自己配制,到时会让大家预约配试剂的时间的 除老师指定的时间外,可以跟实验值班老师预约其他时间前来实验(12月16日-1月5日之间未安排其他组同学进行实验的非周末时间均可,可以根据实验进度预约多次,直至完成实验内容。) 【实验目的】 1.通过分析化学综合性实验、设计性实验,培养学生初步的解决分析化学实际问题的能力,培养学生的创新意识与创新能力。 2.学习查阅参考文献、综合参考资料、设计小型分析化学实验。 3.复习和巩固有关理论基础知识并用于指导实践。 4.进一步熟练掌握实验操作技术。 【目前有关常量铁测定方法的概述】 常量铁分析的主要方法有邻菲啰啉分光光度法、磺基水杨酸分光光度法、硫氰酸钾比色法、铁离子测定仪法、重量法、EDTA络合滴定法、硫酸铈滴定法、硫代硫酸钠滴定法和重铬酸钾滴定法等。最经典的方法是重铬酸钾法,测定时以二苯胺磺酸钠为指示剂,高锰酸钾溶液滴定至紫色为终点,用高锰酸钾法测全铁含量时要将Fe3+还原成Fe2+,一般使用的还原剂有硝酸亚汞、SnCl2、TiCl3、Na2SO3、抗坏血酸等,滴定时为了防止Fe2+再次被氧化,可用CO等惰性气氛保护,或加入邻菲啰啉络合Fe2+生成稳定的络合物。二氯化锡还原-重铬酸钾滴定法为常量铁测定的经典方法,1973年被ISO采纳为国际标准方法,但该方法使用对人类健康和环境产生危害的二氯化汞,因此,科学工作者一直致力于不使用汞盐的重铬酸钾滴定法测定铁矿石中总铁含量的研究。研究报导的方法有金属(银或锌)还原法、盐酸羟胺还原法、三氯化钛还原法、硼氢化钾还原法等。 【实验原理】 本实验采用络合滴定法和氧化还原滴定法分别测定混合溶液中Fe2+、Fe3+的含量。 1.络合滴定法 在pH =1.8~2.5的条件下,磺基水杨酸指示剂与Fe3+生成紫红色络合物,Fe2+则不显示颜色,磺基水杨酸本身无色。颜色强度与铁的含量成正比,其反应式为 Fe3++3SSal2-=[Fe(SSal)3]3-。当用EDTA标准溶液滴定时,由于EDTA与Fe3+结合能力强于磺基水杨酸,故滴定至紫红色消失时即为终点,EDTA与Fe3+形成的络合物为亮黄色(或无色),使原来的紫红色消失,终点变色明显;测全铁含量时(含有Fe2+),可先测出Fe3+的含量,或取相同含量样品测定总铁含量,再将溶液的Fe2+用过硫酸铵氧化成Fe3+,再继续用EDTA滴定至紫红色消失。滴定时溶液的温度以60~70℃为宜,温度太低,Fe3+与EDTA 反应缓慢,不易得出准确的终点。由于EDTA与Fe3+络合速度慢,滴定速度不宜太快,并需不断振荡,否则将使测定结果偏大。 2.氧化还原滴定法 在热HCl 溶液中,以甲基橙为指示剂,用SnCl2将Fe3+还原至Fe2+,并过量1 滴(只能

铁离子测定的几种方法

铁离子测定的几种方法 (邻菲啰啉法) 本方法采用邻菲啰啉分子吸收光谱法测定铁含量,本方法适用于含Fe0.02~20mg/L范围工业循环冷却水中铁含量的测定。 1 方法提要 用抗坏血酸将试样中的三价铁离子还原成二价铁离子,在pH2.5~9时,二价铁离子可与邻菲啰啉生成橙红色络合物,在最大吸收波长(510nm)处,用分光光度计测其吸光度。本方法采用pH4.5。 2 试剂和材料 2.1 硫酸; 2.2 硫酸铁铵[NH4Fe(SO4)2·12H2O2]; 2.3 硫酸:1+35溶液; 2.4 氨水:1+3溶液; 2.5 乙酸—乙酸钠缓冲溶液(pH=4.5):称取164g乙酸钠,溶于水,加84mL冰乙酸,稀释至1000mL; 2.6 抗坏血酸:20g/L溶液;溶解10.0g抗坏血酸于200mL水中,加入0.2g乙二胺四乙酸二钠(EDTA)及8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一个月); 2.7 邻菲啰啉溶液:2.0g/L; 2.8 过硫酸钾溶液:40.0g/L,溶解4.0g过硫酸钾于水中并稀释到100mL,室温下贮存于棕色瓶中,此溶液可稳定放置14d。 2.9 铁标准溶液Ⅰ:1mL含有0.100mgFe,称取0.863g硫酸铁铵,精确至0.001g,置于200mL烧杯中,加入100mL水,10.0mL浓硫酸,溶解后全部转移到1000mL容量瓶中,用水稀释至刻度,摇匀。 2.10 铁标准溶液Ⅱ:1mL含有0.010mgFe,取1mL含有0.100mgFe的铁标准溶液Ⅰ稀释10倍,只限当日使用。 3 仪器和设备 分光光度计:带有厚度为3㎝的吸收池。 4 分析步骤 4.1 工作曲线的绘制 分别取0mL(空白),1.00mL,2.00mL,4.00mL,6.00mL,8.00mL,10.00mL铁标准溶液Ⅱ于7个100mL容量瓶中,加水至约40mL,加0.50mL(1+35)硫酸溶液,调pH 接近2(可投加一小块儿刚果红试纸,试纸变蓝pH即为2.5),加3.0mL抗坏血酸溶液,10.0mL 缓冲溶液,5.0mL邻菲啰啉溶液。用水稀释至刻度,摇匀。室温下放置15min,用分光光度

相关文档
相关文档 最新文档