文档库 最新最全的文档下载
当前位置:文档库 › NiSnCo合金电极材料的制备及性能

NiSnCo合金电极材料的制备及性能

NiSnCo合金电极材料的制备及性能
NiSnCo合金电极材料的制备及性能

本文由菜子100贡献

pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。

第39卷

2009年

第5期 lO月

BATTERY

BIMONTHLY

V01.39.No.5 Oct..2009

Ni.S n—C o合金电极材料的制备及性能

李求忠1.一,杨同欢1,郭永榔1

(1.福州大学化学化工学院,福建福州350002;2.宁德师范高等专科学校化学系,福建宁德352100) 摘要:采用化学还原共沉积法制备Ni.sn和Ni-Sn-Co合金材料.用XRD和SEM分析了结构和形貌,用充放电曲线,循环 伏安和交流阻抗谱研究了嵌脱锂行为.Ni.Sn合金为粒状结构.Ni-Sn-Co合金为疏松棉状多相结构.Ni.Sn-Co合金电极的

100

mA/g首次充放电比容量分别为542 mhh/g和1 419 mAh/g;第20次循环的可逆比容量为365 mAh/g,库仑效率为 负极材料;Ni-Sn-Co合金 文献标识码:A 文章编号:1001一1579(2009)05—0251—03

94.3%.

关键词:锂离子电池; 中图分类号:TM912.9

Synthesis and performance of Ni-?Sn-?Co alloy electrode material

LI

Qiu—zhon91",YA NG

Engineering

Tong-huan91,G UO Yong—lan91

University,Fuzheu,Fujian 350002,China;

(1.Chemistry and Chemical

cDZ姆,Fuzhou

2.ChemistryDepartment.Ningde Teachers Abstract:Ni-Sn and Ni-Sn-Co alloy materials

morphology cyclic

were were

College.Ningde,Flq溉352100,Chinal

structures

synthesized by chemical reduction oXleposition method.The

were

and

analyzed

by XRD

and SEM,the lithium insertion-extraction behaviors

W88

studied

by charge-discharge

curves,

vohammetry and AC impedance plots.Ni-Sn alloy

grainy structure,Ni-Sn-Co

alloy w鹳loose cottony and multi-phases

structure.The 1 00 mA/g initial 8pejcifk charge-discharge capacities of Ni—Sn-Co respectivdy.The reversible 8pecifie capacity

at

alloy

dectrode

w哦542

mAh/g and 1 419 mAh/g,

was

the 20th

cycle

was

365 mAh/g,the coulombic efficiency

94.3%.

Key words:Li-ion batterv;anode material;

Ni-Sn-Co alloy

商品化的锂离子电池主要以石墨为负极材料,其理论比 容量为372 mAh/g,仅为金属锂理论比容量3

860

Sn-Ni合金粉,在300℃下热处理2 h后的循环性能更好,他 们认为三元合金具有多个活性/活性和活性月E活性体系,更 能有效地抑制电极在嵌脱锂时的体积效应. 本文作者采用化学还原共沉积法制备了Ni-Sn和Ni-Sn- Co合金材料,对比研究了两者的电化学性能.

mAh/g的

9.6%.金属锡的理论比容量为990 mAh/g,但在嵌脱锂时 存在严重的体积效应,粉化,脱落现象严重,容易产生"死 锂",循环性能差…1.主要的解决方法是制备锡基合金电极, 抑制嵌脱锂时的体积效应【副.H.Mukaibo等【3J3用电沉积法 制备的Sn62Ni,8,第70次循环的可逆比容量为650

mAh/g.

l实验

1.1电极材料的制备与分析 将10

mmol

F.S.Ke等L41用溶胶法还原制备了三维复合sn.Ni合金,第 75次循环的可逆比容量达536 mAh/g.董全峰等…用不同 方法制备了非晶态和晶态Sn-Ni合金,晶态合金(Ni3Sn)具有 稳定的晶体结构,较高的比容量(300 mAh/g)和优良的循环 性能.袁庆丰等【6j采用湿化学还原法制备了复相Sn/Ni3Sn4 合金,经过高能球磨后具有较好的循环性能,同时研究了截 止电压对循环性能的影响.舒杰等【2】用机械合金法制备了 作者简介:

SnCh(天津产,AR),7.5

mmol

Nich(天津

产,AR)和2.5

mmol

CoCh(天津产,AR)溶于50 ml无水乙醇

(上海产,AR)中,配成溶液A;用NaOH(上海产,AR)将250

ml 0.1 mol/L

NaBH4(天津产,AR)溶液的pH值调至12,配

成溶液B.在快速搅拌下,将溶液A缓慢滴加到溶液B中, 搅拌1 h,抽滤,依次用二次水,无水乙醇各洗涤3次,再在

李求忠(1981一),男,福建人,福州大学化学化工学院硕士生,研究方向:电化学; 杨同欢(1981一),男,天津人,福州大学化学化工学院硕士生,研究方向:电化学; 郭永梆(1957一),男,福建人,福州大学化学化工学院教授,博士生导师,研究方向:电化学,本文联系人. 基金项目:宁德师范高等专科学校资助项目(2007201)

万方数据

252 BATTERY

BIMONTHLY

第39卷

120℃下真空(<133 Pa,下同)干燥,然后在220℃下热处理

从图2可知,Ni-Sn合金未发现完好的结晶,呈不均匀的 粒状,粒径在5"m以内,团聚明显;Ni-Sn-Co合金结晶差,呈 疏松棉状的多相结构,有利于电解液的渗透和锂的扩散.合 金材料经热处理后,可通过内部扩散进一步改善组成和结 构,提高晶体的结晶度,有利于提高电极的循环性能【6J. 2.2合金电极的循环性能 图3是合金电极的首次充放电曲线.

h,得到黑色的Ni.Sn.co合金材料.用同样的方法,仅不加

CoCh,制备黑色的Ni-Sn合金材料. 用D8 Advance型x射线衍射仪(德国产)进行物相分 析,CuKa,管压36 kv,管流30 mA,扫描速度为6(o)/rain,扫 描范围为10.一70 o;用S-3000N型扫描电子显微镜(日本 产)观察合金材料的形貌和颗粒大小. 1.2电池的组装及电化学性能测试 将活性物质,高导电碳DP2000(上海产,电池级)和聚偏 氟乙烯(上海产,电池级)按质量比75:15:10制备成浆料,均 匀涂覆约2.5 m异于直径约为1.5 cm,厚度为0.1 lllm的铜 片(广州产,电池级)上,在120℃下真空干燥4 h后,以

MPa的压力压片,再在120 oc下真空干燥1 以锂片(北京产,99.9%)为对电极,1

h.

mol/L LiPF6/EC

+DMC+DEC(体积比1:1:1,上海产,电池级)为电解液,

Celg盯d

2325膜(美国产)为隔膜,在充满氩气的手套箱中组

Specific capacity/mall'g一1

装CR2025型扣式电池. 用Land电池测试系统(武汉产)进行恒流充放电测试, 电流为100 mA/g,电压范围为0.OI一2.00 V.循环伏安和 交流阻抗实验采用CHl660C电化学分析仪(上海产),循环 伏安实验的扫描速率为0.1 mV/s,扫描范围为0—2 V(w. Li+/Li);交流阻抗实验的频率范围为0.05 流信号的振幅为5

mV. Hz~100 1.72 Fig.3

图3合金电极的首次充放电曲线

Initial charge-discharge

CUl'V髓of alloy electrodes

从图3可知,两种合金电极的充放电曲线特征相似.放 电曲线虽然没有明显的嵌锂平台,但可分成3段:①1.95一 v,电位下降很快,几乎不发生嵌锂反应,这是合金表面 氧化物的分解反应;②1.72—0.60 V,合金表面氧化物继续 分解,同时开始Li-Co合金化反应;③O.60~0.Ol V,电位下 降缓慢,对应的是Li,Sn(0<省≤4.4)合金化的多步嵌锂过 程[7J.除这3段以外,在首次充电曲线的0.加一0.70 V处 有一个较平坦的斜坡,对应的是去合金化过程.Ni.Sn.Co合 金电极首次循环时的放电比容量为l

419

kHz,交

2结果与讨论

2.1材料的分析 图1是合金材料的XRD图.

mAh/g,但充电比

容量只有542 mAh/g,库仑效率为38.2%;Ni-Sn合金电极首 次循环时的放电比容量为1 320 mAh/g,充电比容量为515 mAh/g,库仑效率为39.0%.合金材料首次不可逆比容量高 和库仑效率低的原因有:①电锯液在电极表面分懈形成SEI 膜;②合金材料在制备过程中,Sn表面容易被氧化,在首次 嵌锂过程中,氧化物中的氧与锂生成不可逆的LhO;

③嵌锂 过程产生体积膨胀,使部分活性物质的电导率下降,这部分 活性物质中的锂无法脱出,形成"死锂";④热力学与动力学

2一/.

的原因,部分锂在嵌入时被固定在某些间隙位置,无法再脱 出,或锂在材料中的扩散速度较慢,都会造成锂的损失【6J. 合金电极的循环性能见图4.

图l合金材料的XRD图

Fig.1 XRD

patterns

of alloy materials

从图l可知,两种合金在30 o和43 o处有两个强度较弱 的宽峰,说明是非晶态结构. 图2是合金材料的SEM图.

I.暑与,岳,寺一.)商—百.占一姜

Cycle number

图2合金材料的5EM幽

Fig.2 SE M photographs of alloy materials Fig.4

图4合金电极的循环性能

Cycle performance of alloy electrodes

万方数据

第5期

李求忠,等:Ni.Sn-Co合金电极材料的制备及性能

253

从图4可知,放电比容量随着循环次数的增加逐渐下 降,说明嵌脱锂过程的体积效应使材料逐渐粉化,脱落并失 效,产生越来越多的"死锂".第20次循环时,Ni.Sn.Co合金 电极的可逆比容量为365 mall/g,库仑效率为94.3%;Ni.Sn 合金电极的可逆比容量只有245 mAh/g,库仑效率为92.6%. Ni-Sn-Co合金电极的循环性能比Ni.sn合金电极高,说明加 入co的三元合金结构比二元合金更加理想,能更有效地抑 制嵌脱锂时的体积效应. 2.3循环伏安测试 图5是Ni-Sn-Co合金电极前4次循环的循环伏安曲线.

Fig.7

图7交流阻抗谱的等效电路图

Equivalent circuit of AC impedance

Cots

从图6可知,电极的R.在循环前很高,在经过首次循环 后明显减小,说明经过首次循环后,电极被激活.随着循环 次数的增加,R.先减小后逐渐增大,可能是因为经过几次循 环后,电导率逐渐升高,电极完全被激活,但随着循环引起合 金电极的粉化,脱落,电导率逐渐下降,月.逐渐增大.

3结论

采用化学还原共沉积方法制备了Ni.sn和Ni.sn.Co合 金材料.在220℃下热处理6 h后,合金主要以元定形晶体 的形式存在,但形貌和结构不同,Ni.Sn合金为粒状结构,团 聚明显,Ni-Sn-Co合金的结晶差,为疏松棉状的多相结构.

EIV l l,.Li./Li)

图5

Fig.5

Ni-SmCo合金电极前4次循环的循环伏安曲线

CV

curves

以100 mA/g的电流充放电,Ni-Sn.Co合金电极的首次充放

of

Ni-Sn-Co alloy

electrode in the first 4

电比容量分别为542 mAh/g和l

419

mAh/g,库仑效率为

38.2%,第20次循环的可逆比容量为365 mall/g,库仑效率 为94.3%.与Ni-Sn合金电极相比,Sn.Ni-Co合金电极的循 环性能有所提高,抑制了电极材料的体积效应. 参考文献:

[I]YUAN Qing-feng(袁庆丰),PU Dong-lei(卜冬蕾).WANG Wen- lu(王文璐),et a1.锂离子电池负极SrdNi3Sn.合金的制备和表 征[J].The Chinese Journ8l of 报),2006.6(6):983—986. [2]SHU Jie(舒杰),CHENG Xin.qun(程新群).SHI Peng-fei(史鹏 飞).锂离子电池用Sn.Ni合金负极的研究[J].Battery Bi. monlhly(电池),2004,34(4):235—237. 【3]

Mukaibo H,Momma T,Osaka T.Changes Sn—Ni alloy charge

thin of Process En

cycles

从图5可知,首次阴极扫描曲线在1.25 v处有一个电 流峰,在随后的循环中不再出现,对应的是SEI膜的形成和 氧化物的分解;在之后的阴极扫描中,当电位低于0.60

时,电流逐渐增大,说明大量锂开始嵌入;首次阳极扫描曲线 在0.58 V和1.23 V处分别有一个电流峰,对应的是".Sn 的去合金化过程.从第2次阴极扫描开始,在0.22 V处出 现一个逐渐明显的电流峰,该峰在第3,4次循环时基本重 叠,说明Li,sn的多步合金化特征逐渐明显;第2次阳极扫 描在0.58 V处的电流峰略有增高,之后的循环中不再变化. 在I.23 V处的电流峰强度随着循环次数的增加而略有 减弱. 2.4交流阻抗谱分析 利用交流阻抗法考察合金材料充放电过程的阻抗特性, 结果如图6所示.图6中所有的曲线均由一个扁的半圆和 一条斜线组成,高频区和中频区的半圆是电荷传递阻抗R., 低频区的斜线则是Li+在活性物质中扩散的Warburg阻抗 z.,阻抗谱的等效电路图见图7,其中RL为溶液电阻,C棚为 双电层电容.

gin∞ri"g(过程工程学

deetro-deposited

tim for lithium

Power

ion

battery llnodEs during charge dis—

cycJing[J].J

Sources,2005,146(1—2):457—463.

properties

[4]Ke

S.Huang L,Jiang H H,et a1.Fabfication and

of

three-dimensional macropomus Sn?Ni alloy electrodes of high

pm

ferential(1 lO)ofientation for lithium ion batteries[J].Ekc.

trochem

Commun,2007,9(2):228—232.

[5】DONG Qua.一feng(董全峰),ZHAN Ya-ding(詹亚丁),JIN Ming- gang(金明钢),d a1.锡镍合金的制备及电化学性能[J].Bat.

tery

Bimonthly(电池),2005,35(1):3—5.

【6]HUANG Ke-long(黄可龙),ZHANG Ge(张戈),LIU Su.qin(刘

素琴),et a1.Sn.SnSb/石墨复合材料的制备及电化学性能[J】.

Chinese Journal of Inorganic

Chemistry(无机化学学报),2006.22

(11):2 075—2 079. [7]Qing H Y,Zhan x B,Jiang N P,et a1.Solvothermal synthesis and

蹦situ XRD 8tudy of z豫n 1.首次循环后 2?10次循环后 zIkft 3.20次循环后 lithium ion

nano-Ni3Sn2 u¥ed as扑anode material for

I姐tteries[JJ.J Power Sources,2007,171(2):948—952.

图6

Fig.6

Ni.Sn.Co合金电极的交流阻抗谱 收稿日期:2009—02一I)4 AC impedance plots of Ni-Sn-Co alloy electrode

万方数据

1.2 金属材料的工艺性能

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:002 §1.2 金属材料的工艺性能 【使用说明】 1、依据学习目标,全体同学积极主动的根据教材内容认真预习并完成导学案, 小组长做好监督与检查,确保每位同学都能认真及时的预习相关知识。 2、结合导学案中的问题提示,认真研读教材,回答相关问题。 3、要求每位同学认真预习、研读课本,找出不明白的问题,用红笔做好标记。【学习目标】 1、知识与技能:掌握工艺性能的定义,并熟知金属材料工艺性能的分类。 2、学习与方法:通过研读课本,积极讨论,踊跃展示,牢记各种工艺性能。 3、情感态度价值观:激情投入,大胆质疑,快乐学习。 【重点难点】 工艺性能的定义 工艺性能的分类 【自主学习】 铸造性重要级别:★★★★★ 可锻性重要级别:★★★ 焊接性重要级别:★★★ 冷弯性重要级别:★★★ 切削加工性重要级别:★★★ 【合作探究】 1、工艺性能的定义: 2、工艺性能的内容: ①铸造性——定义及内容:

班级:姓名:使用时间:年月日②可锻性——定义及内容: ③焊接性——定义及影响因素: ④冷弯性——定义及如何测定: ⑤切削加工性——定义及衡量因素: 【当堂巩固】 1、低碳钢的焊接性较差,高碳钢、铸铁的焊接性较好。() 2、碳钢的铸造性比铸铁好,故常用来铸造形状复杂的工件。() 3、一般认为金属材料的硬度为 HBW时,具有良好的切削加工性。 4、可锻性的好坏主要与金属材料的塑性有关,塑性越好,可锻性越好。() 5、流动性是指液态金属充满铸模的能力,其影响因素主要是、 和。 【课后作业】(自己默写,组长监督) 1、理解掌握本导学案内容,并完成习题册第一章第二节相关题目。 【学后反思】

铜合金

牌号:白铜C7521prefix = o ns = "urn:schemas-microsoft-com:office:office" 标准:日本 C7521白铜: 以镍为主要添加元素的铜合金。纯铜加镍能显著提高强度、耐蚀性、硬度、电阻和热电性,因此白铜较其他铜合金的机械性能、物理性能都异常良好,延展性好、硬度高、色泽美观、耐腐蚀、富有深冲性能,被广泛使用于造船、石油化工、电器、仪表、医疗器械、日用品、工艺品等领域,并还是重要的电阻及热电偶合金。 C7521白铜分类: 普通白铜是铜和镍的合金﹔ 复杂白铜:加有锰、铁、锌、铝等元素的白铜合金称复杂白铜(即三元以上的白铜),包括铁白铜、锰白铜、锌白铜和铝白铜等。 ①铁白铜:铁白铜中铁的加入量不超过2%以防腐蚀开裂,其特点是强度高,抗腐蚀特别是抗流动海水腐蚀的能力可明显提高。 ②锰白铜:锰白铜具有低的电阻温度系数,可在较宽的温度范围内使用,耐腐蚀性好,还具有良好的加工性。 ③锌白铜:锌白铜具有优良的综合机械性能,耐腐蚀性优异、冷热加工成型性好,易切削,可制成线材、棒材和板材,用于制造仪器、仪表、医疗器械、日用品和通讯等领域的精密零件。 ④铝白铜:是以铜镍合金为基加入铝形成的合金。主要用于造船、电力、化工等工业部门中各种高强耐蚀件。 C7521白铜性能: 白铜是以镍为主要添加元素的铜基合金,呈银白色,有金属光泽,故名白铜。铜镍之间彼此可无限固溶形成连续固溶体,即不论彼此的比例多少,而恒为α--单相合金。当把镍熔入红铜里,含量超过16%以上时,产生的合金色泽就变得洁白如银,镍含量越高,颜色越白。白铜中镍的含量一般为25%。 C7521白铜应用: 产品广泛用于电器、电子、电力、汽车、通讯、五金等行业,如变压器铜带、引线框架材料带、射频电缆带、太阳能光伏铜带、高炉用铜冷却壁板、含银无氧铜板、电子接插件铜带、模具电极铜板、乐器铜板等。 C7521白铜化学成分: 牌号主要成份其他成份 日本Cu Ni Zn Fe Al Pb Mn C752164.5-66.516.5-19.5余量———— C7521白铜力学性能:

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

金属基复合材料的制备方法

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介 (1)定义:金属基复合材料是以金属或合金为基体,以高性能的第二相为增强体的复合材料。它是一类以金属或合金为基体, 以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物, 其共同点是具有连续的金属基体。 (2)分类:按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料 按用途分为:1.结构复合材料;2.功能复合材料 (3)性能特征:金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性

铜及铜合金教案

铜及铜合金教案 教学目的: 掌握铜及铜合金的分类、牌号、性能及用途。 教学重点与难点: §7—1铜及铜合金 教学过程: 新课: ▲金属材料分为黑色金属和有色金属。 ▲铁及其合金是黑色金属,其他的金属属于有色金属。 ▲有色金属中密度小于3.5g/cm3 称为轻金属,密度大于3.5g/cm3 称为重金属。 一、纯铜(Cu) 1、物理性能:密度为8.9×103 kg/m3 ,熔点为1083℃,良好的导电导热。 2、化学性能:在大气及淡水中有良好的耐蚀性能。 3、力学性能:良好的塑性易于冷、热压力加工。 4、成分:杂质0.05%~0.3%;铜99.7%以上。 工业纯铜:T1、T2、

T3 5、按化学成分分类: 无氧铜:TU1、TU2 二、铜合金 ▲分类:黄铜、青铜、白铜。 1、黄铜 1)、黄铜是以锌为主加合金元素的铜合金。 2)、按所含合金元素的种类可分为:普通黄铜和特殊黄铜 (1)、普通黄铜 ①、是Cu—Zn的二元合金。 ②、成分和性能:含锌量在32%以下时,随含锌量的增加,黄铜的强度和塑性不断提高,当含量在32%时,塑性达到最高峰值。 含锌量在45%时,强度达到最高峰值。 (2)特殊黄铜 ①、是在普通黄铜的基础上加入Sn、Si、Mn、Pb、Al等元素所形成的铜合金。 ②、比普通黄铜具有更高的强度、硬度和耐蚀性。 (3)、牌号: 普通压力加工黄铜:H+平均含铜量表示 特殊压力加工黄铜:H+主加元素符号(除锌外)+平均含铜量+主加

元素含量表示。 铸造黄铜:ZCu+主加元素符号+主加元素含量+其他加入元素符号及含量组成。 2、白铜 1)、以镍为主加合金元素的铜合金。 2)、性能:具有高的耐蚀性和优良的冷热加工成形性。 3)、牌号:用“B”加镍含量表示,三元以上用“B”加第二个主添元素符号及除基元素铜外的成分数字组表示。

金属材料的性能

1金属材料的性能 金属材料的性能分为使用性能和工艺性能。使用性能是指金属材料在使用过程中反映出来的特性,它决定金属材料的应用范围、安全可靠性和使用寿命。使用性能又分为机械性能、物理性能和化学性能。工艺性能是指金属材料在制造加工过程中反映出来的各种特性,是决定它是否易于加工或如何进行加工的重要因素。 在选用金属材料和制造机械零件时,主要考虑机械性能和工艺性能。在某些特定条件下工作的零件,还要考虑物理性能和化学性能。 1.1金属材料的机械性能 各种机械零件或者工具,在使用时都将承受不同的外力,如拉力、压力、弯曲、扭转、冲击或摩擦等等的作用。为了保证零件能长期正常的使用,金属材料必须具备抵抗外力而不破坏或变形的性能,这种性能称为机械性能。即金属材料在外力作用下所反映出来的力学性能。金属材料的机械性能是零件设计计算、选择材料、工艺评定以及材料检验的主要依据。 不同的金属材料表现出来的机械性能是不一样的。衡量金属材料机械性能的主要指标有强度、塑性、硬度、韧性和疲劳强度等。 1.1.1强度 金属材料在外力作用下抵抗变形和断裂的能力称为强度。按外力作用的方式不同,可分为抗拉强度、抗压强度、抗弯强度和抗扭强度等。一般所说的强度是指抗拉强度。它是用金属拉伸试验方法测出来的。 1.1.2刚性与弹性 金属材料在外力作用下,抵抗弹性变形的能力称为刚性。刚性的大小可用材料的弹性模量(E)表示。弹性模量是金属材料在弹性变形范围内的规定非比例伸长应力(ζρ)与规定非比例伸长率(ερ)的比值。所以材料的弹性模量(E)愈大,刚性愈大,材料愈不易发生弹性变形。但必须注意的是:材料的刚性与零件的刚度是不同的,零件的刚度除与材料的弹性模量有关外,还与零件的断面形状和尺寸有关。例如,同一种材料的两个零件,弹性模量E虽然相同,但断面尺寸大的零件不易发生弹性变形,而断面尺寸小的零件则易发生弹性变形。 零件在使用过程中,一般处于弹性变形状态。对于要求弹性变形小的零件,如泵类主轴、往复机的曲轴等,应选用刚性较大的金属材料。对于要求弹性好的零件,如弹簧则可通过热处理和合金化的方法,达到提高弹性的目的。 1.1.3硬度 金属材料抵抗集中负荷作用的性能称为硬度。换句话说,硬度是金属材料抵抗硬物压入的能力。材料的硬度是强度、塑性和加工硬化倾向的综合反映。硬度与强度之间往往有一定的概略比例关系,并在很大程度上反映出材料的耐磨性能。此外,硬度测定方法简便,不需制备特殊的试样,可以直接在零件上进行测定,而不损坏工件。所以硬度通常在生产上作为热处理质量检验的主要方法。 1.1.4冲击韧性 有些机器零件在工作时,如齿轮换挡、设备起动、刹车等,往往受到冲击负荷的作用;还有

铜及铜合金牌号对照表

铜及铜合金牌号对照表 CONVERSION TABLE OF GRADES FOR COPPER & ITS ALLOYS

Werkstoffe: Automatenstahl: 11SMn30 11SMnPb30 * 11SMnPb37 * *) auc h 麻省理工学院Zus5atzen 冯Bi und Te (1.0715) (1.0718) (1.0737) Nirosta (INOX): X14CrMoS17 X8CrNiS18-9 (1.4104) (1.4305) 弄乱: CuZn38Pb1,5 CuZn39Pb3 CuZn35Ni2 CuZn40Al2 (2.0371) (2.0401) (2.0540) (2.0550) Neusilber: CuNi7Zn39Pb3Mn2 CuNi12Zn30Pb1 (2.0771) (2.0780) Kupfer: OsnaCu58S OsnaCu58Te (2.1498) (2.1546) 铝: AlMgSiPb AlCu4PbMgMn AlCu6BiPb (3.0615) (3.1645) (3.1655) Titan: 6.Al4V (3.7165) Maschinen: ? 索引Automaten □2 - □60mm ? Tornos-Langdrehautom aten □2 - □26mm ? Esco-Ringdrehautomaten □1 - □9mm ? 索引, Tornos und Esco CNC-Drehautomaten bis □100mm ? Kummer Feinstdrehautomaten ? 6-Spindel-Drehautomaten: 索引bis □32mm (CNC), 可利用的合金从瑞士METALWORKS

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

金属材料的工艺性能

金属材料的工艺性能 金属材料的工艺性能是指制造工艺过程中材料适应加工的性能,即指其铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能。 1、铸造性能 金属材料铸造成形获得优良铸件的能力称为铸造性能,用流动性、收缩性和偏析来衡量。 1)流动性熔融金属的流动能力称为流动性。流动性好的金属容易充满铸型,从而获得外形完整和尺寸精确、轮廓清晰的铸件; 2)收缩性铸件在凝固和冷却的过程中,其体积和尺寸减少的现象称为收缩性。铸件用金属材料的收视率越小越好; 3)偏析铸锭或铸件化学成分和组织的不均匀现象称为偏析,偏析大会使铸件各部分的力学性能有很大的差异,降低铸件的质量。 被铸物质多为原为固态,但加热至液态的金属,如铜、铁、锡等,铸模的材料可以是沙,金属甚至陶瓷。南关菜市场东头前两年有两个人把大量的铝易拉罐盒熔化后倒进模子里铸成大大小小的铝锅、铝盆等 2、锻造性 工业革命前锻造是普遍的金属加工工艺,马蹄铁、冷兵器、铠甲均由各国的铁匠手锻造(俗称打铁),金银首饰加工、金属包装材料是锻造与冲压的总和。什么是锻造性能? 锻造性能:金属材料用锻压加工方法成形的适应能力称锻造性。

锻造性主要取决于金属材料的塑性和变形抗力。塑性越好,变形抗力越小,金属的锻造性能越好。高碳钢不易锻造,高速钢更难。 (塑性:断裂前材料产生永久变形的能力。) 3、焊接性 金属材料对焊接加工的适应性成为焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度。钢材的含碳量高低是焊接性能好坏的主要因素,含碳量和合金元素含量越高,焊接性能越差。4、切削加工性能 切削加工性能一般用切削后的表面质量(用表面粗糙程度高低衡量)和道具寿命来表示。金属材料具有适当的硬度和足够的脆性时切削性良好。改变钢的化学成分(如加入少量铅、磷等元素)和进行适当的热处理(如低碳钢进行正火,高碳钢进行球化退火)可以提高刚的切削加工性能。(热处理的四把火:正火、退火、淬火、回火等,后面我们将进一步学习。)铜有良好的切削加工性能。 5、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性,即钢接受淬火的能力。(淬火能获得较高的硬度和光洁的表面),含锰、铬、镍等元素的合金钢淬透性比较好,碳钢的淬透性较差。铝合金的热处理要求较严,铜合金只有几种可以熔热处理强化。三国时诸葛亮带兵打仗,请当时的著名工匠蒲元为他造了3000把钢刀,蒲元用了(清水淬其锋)的热处理工艺,经过千锤百炼,使钢刀削铁如泥,从而大败敌军.有关方面的成语:趁热打铁、斩钉截铁等。

铜及铜合金系列

C36000铅黄铜 C36000延展性好,深冲性能好。应用于钟表零件、汽车、拖拉机及一般机器零件。 铅黄铜切削加工性能优良,有高的减摩性能,用于钟表结构件及汽车拖拉机零件。 C36000化学成分: 锌(Zn)余量,铅(Pb)2.4~3.0,铝(Al)≤0.5,铁(Fe)≤0.10,锑(Sb)≤0.005,磷(P)≤0.01,铋(Bi)≤0.002,铜(Cu)62.0~65.0,杂质总和%≤0.75 ANK20无氧红铜 产品说明: 无氧红铜(Oxygen-free copper) 型号:ANK-20 Madel:ANK-20 标准:JIS-C1020P 制造工艺:冷拔/冷轧/热轧 产品特点:结构致密均匀,无气孔,砂眼,纯度高损耗小,导电导热延伸性能均佳,含氧量低于0.002%,性能优越,是精密模具放电加工的最佳之选. 产品应用:适用于各种高精密模具的放电加工材料或高压电气开关等电器配件 相关参数:硬度为HV86-102导电率大于等于59ms/m比重约8.9g/cm3 提供板材、棒材、异型件加工 ANK570钨铜合金 钨铜合金(Tungsten copper) 型号:ANK-5-70(ANK-是型号70表示钨含量约为70%) Model:ANK-5-70 产品特性:铜钨合金综合铜和钨的优点,高强度/高比重/耐高温/耐电弧烧蚀/导电电热性能好/加工性能好,ANK钨铜采用高质量钨粉及无氧铜粉,应用等静压成型(高温烧结账-渗铜, 保证产品纯度及准确配比,组织细密,性能优异.) 提供板材、棒材、触点材、焊轮、电子封装片、异型件 产品应用:应用于高硬度材料及溥片电极放电加工,电加工产品表面光洁度高,精度高,损耗低,有效节约材料。有钨60/钨70/钨85/钨90可供选择。 主要参数:密度G/cm3(13.9)抗拉强度Mpa(≥680 )硬度HV(≥186 )硬度软化温度℃(≥1000)导电率IACS(%)(≥42 )热导率W/mk(247 )库存板、棒材供客户选择 CuCrZr铬锆铜 铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬度(HRB78-83)导电率 43ms/m 软化温度550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好,铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本

铜及铜合金的高温特性

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Under the supervision of Prof. S. K. Sahoo
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

National Institute of Technology Rourkela
CERTIFICATE
This is to certify that thesis entitled, “High Temperature behavior of Copper” submitted by Mr. “Ramkumar Kesharwani” in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with specialization in “Production Engineering” at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other university/ institute for award of any Degree or Diploma.
Date: Dept. of Mechanical Engineering
Prof. S.K. Sahoo National Institute of Technology Rourkela-769008

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

工业设计材料与加工工艺考试题及答案

1、金属材料的性能包括使用性能和工艺性能。 2、金属材料的使用性能是指材料在使用过程中表现出来的性能,它包括机械性 能、物理性能和化学性能等。 3、金属材料的工艺性能是指材料对各种加工工艺适应的能力,它包括铸造性 能、压力加工性能、焊接性能和切削加工性能等。 4、根据载荷作用性质不同,载荷可分为静载荷、冲击载荷、疲劳载荷等 三种。 5、材料按照其化学组成可以分为金属材料、非金属材料、复合材料和有机材料四类。 6、材料基本性能包括固有特性和派生特性。 7、材料的工艺性能包括切削加工工艺性能、铸造工艺性能、锻造工艺性能、焊接工艺性能、热处理工艺性能等。 8、工业产品造型材料应具备的特殊性能包括感觉物性、加工成型性、表面工艺性和环境耐候性。 9、钢铁材料按化学组成分为钢材、纯铁和铸铁;其中钢材按化学组成分为碳素钢和合金钢。 10.铸铁材料按照石墨的形态可分为可锻铸铁、灰口铸铁和球墨铸铁三种。 11、变形铝合金主要包括锻铝合金、硬铝合金、超硬铝合金和防锈铝合金。 12、金属制品的常用铸造工艺包括砂型铸造、熔模铸造和金属型铸造等。 13、金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 14、塑料按照其重复加工利用性能可以分为热塑性塑料和热固性塑料。 15、塑料制品的成型工艺主要包括吹塑成型、挤塑成型、吸塑成型、注塑成型等。 16、陶瓷材料根据其原料、工艺和用途,可以分为传统陶瓷和近代陶瓷两 大类。 17、陶瓷制品的工艺过程一般包括原配料、坯料成型和窑炉烧结三个主 要工序。 18、陶瓷制品的坯体成型方法主要有压制成型、可塑成型和注浆成型三种。

19、陶瓷制品的旋压成型可以分为覆旋旋压法和仰旋旋压法两种。 20、日用陶瓷制品可以分为陶器、瓷器和炻器。其中陶器的气孔率和吸水率介于炻器和瓷器之间。 21、玻璃按用途可分为日用器皿玻璃、技术用玻璃、建筑用玻璃、和玻璃纤维四大类。 22、玻璃的加工工艺包括原料装配、加热熔融、成型加工、热处理和表面装饰。 23、玻璃成型工艺包括压制、拉制、吹制、压延、浇注和结烧等。 24、锻造是利用手锤锻锤或压力设备上的模具对加热的金属抷料施力,使金属材料在不分离条件下产生变形,以获得形状尺寸和性能符合要求的零件。 25、金属焊接按其过程特点可分为3大类:熔焊、压焊、钎焊 26、金属切削加工可分为钳工和机械加工两部分。 27、木材与其他材料相比,具有多孔性、各向异性、湿涨干缩性、燃烧性和生物降解性等独特性质。 28、木材在横切面上硬度大,耐磨损,但易折断,难刨削,加工后不易获得光洁表面。 29、塑料的基本性能:质轻比强度高,优异的电绝缘性能,减摩耐磨性能好,优良的化学性能,透光及防护性能,减震消音性能好,独特的造型工艺性能,良好的质感和光泽度。 30、塑料的挤出成型也称挤压模塑和挤塑,它是在挤出机中通过加热,加压而使物料以流动状态连续通过挤出模成型的方法。 31、按照陶瓷材料的性能功用可分为普通陶瓷和特种陶瓷两种。 32、玻璃的熔制过程分为:硅酸盐的形成,玻璃的形成,澄清和均化,冷却。 33、金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 34、金属件的连接工艺可以分为机械性连接、金属性连接和化学性连接三种类型。 35、涂料由主要成膜物质、次要成膜物质和辅助材料三部分组成。

相关文档