文档库 最新最全的文档下载
当前位置:文档库 › 微分、变分、差分 的确切定义与区别

微分、变分、差分 的确切定义与区别

微分、变分、差分 的确切定义与区别
微分、变分、差分 的确切定义与区别

一元微分

定义

设函数y = f(x)在x.的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) ?f(x0)可表示为Δy = AΔx0 +o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx 高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

几何意义

设Δx 是曲线y =f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

多元微分

同理,当自变量为多个时,可得出多元微分得定义。

变分法(calculus of variations)是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。

同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工,称为Plateau问题。

最优控制的理论是变分法的一个推广。

差分是微分的近似,以差商代替微商变分是泛函中的极值问题

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

函数微分的定义

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。 叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。 通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。 导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的x值,都对

应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。 导数公式微分公式 函数和、差、积、商的求导法则函数和、差、积、商的微分法则 拉格朗日中值定理 如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。 注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理 如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,

导数与微分

导数和微分 问题 1.为什么用导数能研究函数的性态? 答:应用导数之所以研究函数的性态是因为函数 () f x 在点 0 x 导数 00 0 0 0 0 ()() '()lim lim x x x f x f x y f x x x x ?? - D == D - 本身蕴含了函数 () f x 在点 0 x 最本质的属性.为了说明这个事实,我们首先从比数 0 0 ()() f x f x y x x x - D = D - 说起,比数 y x D D 对研究函数 () f x 在点 0 x 的性态有什么意义呢? 我们知道,两个量a 与b 之比数 a k b = (或a kb = )是一个抽象的数,称为率。 在数学中有很多的率。例如,圆周率,离心率,斜率,曲率等。在社会科学中, “率”就更多了,例如,增长率,出生率,利率等。率这个抽象的数k 给出了两 个量a 与b 之间的倍数关系,即a 与b 的k 倍,它能刻划事物内在的规律和属性。 例如,椭圆 22 22 1 x y a b += 的离心率 22 (01) a b e e a - = £< 描绘了椭圆的扁圆的程度:e 愈大,椭圆愈扁;e 愈小,椭 圆愈近似于圆。 由此可见, 椭圆的离心率e 对认识椭圆的几何性态是十分必要的。 这就是几何性质定量化,是“以数表性”的实例。同样,导数这个“率”也能够 以数表性(函数的性态),而应用的范围更为广泛。 设函数 () y f x = 在点 0 x 可导,任取一点 x ,有自变量的改变量 0 , x x x D =- 相应函数 () y f x = 的改变量 0 ()(). y f x f x D =- 两者的比数为 0 0 ()() '. f x f x y k x x x - D == D - 用分析的语言说, ' k 是函数 () y f x = 在 0 x 附近的平均变化率。用几何的语言说, ' k 是曲线 () y f x = 过点 00 (,()) x f x 与 (,()) x f x 的割线斜率。 当 x 很靠近 0 x 时 (或 x D 很小时),平均变化率 ' k 能够近似地描绘函数 () y f x = 在点 0 x 附近的性态。例如,

微分的概念、性质及应用

第二章第 6 节:函数得微分 教学目得:掌握微分得定义,了解微分得运算法则,会计算函数得微分,会利用微分作近似计算 教学重点:微分得计算 教学难点:微分得定义,利用微分作近似计算 教学内容: 1.微分得定义 计算函数增量就是我们非常关心得。一般说来函数得增量得计算就是比较复杂得,我们希望寻求计算函数增量得近似计算方法。 先分析一个具体问题,一块正方形金属薄片受温度变 化得影响,其边长由变到(图21),问此薄片得面积改变了 多少? 设此薄片得边长为,面积为,则就是得函数:。薄片受温 度变化得影响时面积得改变量,可以瞧成就是当自变量自 取得增量时,函数相应得增量,即 。 从上式可以瞧出,分成两部分,第一部分就是得线性函 数,即图中带有斜线得两个矩形面积之与,而第二部分在图 中就是带有交叉斜线得小正方形得面积,当时,第二部分就 图21 是比高阶得无穷小,即。由此可见,如果边长改变很微小, 即很小时,面积得改变量可近似地用第一部分来代替。 一般地,如果函数满足一定条件,则函数得增量可表示为 , 其中就是不依赖于得常数,因此就是得线性函数,且它与之差 , 就是比高阶得无穷小。所以,当,且很小时,我们就可近似地用来代替。 定义设函数在某区间内有定义,及x在这区间内,如果函数得增量 可表示为 , ① 其中就是不依赖于得常数,而就是比高阶得无穷小,那么称函数在点就是可微得,而叫做函数在点相应于自变量增量得微分,记作,即。 定理1 函数在点可微得充分必要条件就是函数在点可导,且当在点可微时,其微分一定就是 。 设函数在点可微,则按定义有①式成立。①式两边除以,得。 于就是,当时,由上式就得到 。 因此,如果函数在点可微,则在点也一定可导(即存在),且。 反之,如果在点可导,即 存在,根据极限与无穷小得关系,上式可写成 , 其中(当)。由此又有

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

导数与微分的关系

导数与微分的关系 宁小青 我们知道一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前、哪个概念产生在后呢? 一、微分概念的导出背景 当一个函数的自变量有微小的改娈时,它的因变量一般说来也会有一个相应的改变。微分的原始思想在于去寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确地估计出这个改变量。 我们来看一个简单的例子: 维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度。在中学里,利用计算向凡加速度的办法已经求出这种速度约为7.9千米/秒,现在我们改用另一种思路去推导它。 设卫星当前时刻在地球表面附近的A点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒种后本应到达B点,但事实上它要受到地球的引力,因而实际到达的并非是B 点,而是C点,BC=4.9米是自由落体在重力加速度的作用下,第一秒中所走过的距离。 容易看出,若C点与地心O的距离与A事点到O的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿地球的一个同心圆轨道运行,也就是作环绕地球的飞行了。因此,卫星应具有最小每秒飞行速度恰好在线段AB的长度。△OAB是直角三角形,OA和OC可近似的取为地球的平均半径6371千米,也就是6371000米,于是由勾股定理 显然就这样按上式去计算是不可取的——这将导致两个量级的数在直接相减,工作量大不说,在字长较短的计算机上,还可能产生较大的误差。 利用乘法公式 可将上式改为 由于,因此这一项与这一项想比可以忽略不计,于是可以把计算简化为 由此计算出千米。 这就是说,卫星的速度至少要达到每秒7.9千米才能维持其围绕地球的飞行,此即所要求的第一宇宙速度。 上面所计算的,实际上就是函数在处,自变量出现了一个微小的改变量之后,函数值的相应改变量4.9。然而在计算过程中,我们并没有完全精确地去算

微分、变分、差分 的确切定义与区别

一元微分 定义 设函数y = f(x)在x.的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) ?f(x0)可表示为Δy = AΔx0 +o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx 高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。 通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设Δx 是曲线y =f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。 多元微分 同理,当自变量为多个时,可得出多元微分得定义。 变分法(calculus of variations)是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工,称为Plateau问题。 最优控制的理论是变分法的一个推广。

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

常微分方程差分解法、入门、多解法

毕业论文 题目抛物型方程的差分解法学院数学科学学院 专业信息与计算科学 班级计算0802 学生王丹丹 学号20080901045 指导教师王宣欣 二〇一二年五月二十五日

摘要 偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。本文以基本概念和基本方法为主,同时结合算例实现算法。 第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系 数扩散方程: 2 2 ,,0 u u a x R t t x ?? =∈>?? 第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。 第三部分通过算例检验每种差分格式的可行性。 关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例

ABSTRACT The numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example. The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for the first time. 2 2 ,,0 u u a x R t t x ?? =∈>?? The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability. The third part tests the accuracy of each scheme. Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

微分的概念、性质及应用

第 二 章 第 6 节:函数的微分 教学目的:掌握微分的定义,了解微分的运算法则,会计算函数的微分,会利用 微分作近似计算 教学重点:微分的计算 教学难点:微分的定义,利用微分作近似计算 教学内容: 1. 微分的定义 计算函数增量()()00x f x x f y -?+=?是我们非常关心的。一般说来函数的增量的计算是比较复杂的,我们希望寻求计算函数增量的近似计算方 法。 先分析一个具体问题,一块正方形金属薄片受温度变 化的影响,其边长由0x 变到x x ?+0(图2-1),问此薄片 的面积改变了多少? 设此薄片的边长为x ,面积为A ,则A 是x 的函数: 2x A =。薄片受温度变化的影响时面积的改变量,可以看 成是当自变量x 自0x 取得增量x ?时,函数A 相应的增量A ?,即 ()()2020202x x x x x x A ?+?=-?+=?。 从上式可以看出,A ?分成两部分,第一部分A x ?02是A ?的线性函数,即图中带有斜线的两个矩形面积之和,而第二部分()2 x ?在图中是带有交叉斜线的小正方形的面积,当0→?x 时,第二部分()2x ?是比x ?高阶的无穷小,即()()x x ?=?02。由此可见,如果边长改变很微小,即x ?很小时,面积的改变量A ?可近似地用第一部分来代替。 一般地,如果函数()x f y =满足一定条件,则函数的增量y ?可表示为 ()x x A y ?+?=?0, 其中A 是不依赖于x ?的常数,因此x A ?是x ?的线性函数,且它与y ?之差 图2-1

()x x A y ?=?-?0, 是比x ?高阶的无穷小。所以,当0≠A ,且x ?很小时,我们就可近似地用x A ?来代替y ?。 定义 设函数()x f y =在某区间内有定义,x x ?+0及x 0在这区间内,如果函数的增量 ()()00x f x x f y -?+=? 可表示为 ()x x A y ?+?=?0, ① 其中A 是不依赖于x ?的常数,而()x ?0是比x ?高阶的无穷小,那么称函数()x f y =在点0x 是可微的,而x A ?叫做函数()x f y =在点0x 相应于自变量增量x ?的微分,记作dy ,即 x A dy ?=。 定理1 函数()x f 在点0x 可微的充分必要条件是函数()x f 在点0x 可导,且当()x f 在点0x 可微时,其微分一定是 ()x x f dy ?'=0。 设函数()x f y =在点0x 可微,则按定义有①式成立。①式两边除以x ?,得 ()x x A x y ??+=??0。 于是,当0→?x 时,由上式就得到 ()00lim x f x y A x '=??=→?。 因此,如果函数()x f 在点0x 可微,则()x f 在点0x 也一定可导(即()0x f '存在),且()0x f A '=。 反之,如果()x f y =在点0x 可导,即 ()00lim x f x y x '=??→? 存在,根据极限与无穷小的关系,上式可写成 ()α+'=??0x f x y , 其中0→α(当0→?x )。由此又有 ()x x x f y ?+?'=?α0。

常微分方程的差分方法

第五章 常微分方程的差分方法 一、教学目标及基本要求 通过对本节课的学习,使学生掌握常微分方程、常微分方程方程组的数值解法。 二、教学内容及学时分配 本节课主要介绍常微分方程的数值解法。具体内容如下: 讲授内容:欧拉公式、改进的欧拉公式。 三、教学重点难点 1.教学重点:改进的欧拉公式、龙格库塔方法、收敛性与稳定性。 2. 教学难点:收敛性与稳定性。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解。 五、正文 基于数值积分的求解公式:欧拉公式、改进的欧拉公式 引 言 1.主要考虑如下的一阶常微分方程初值问题的求解: 00()(,)()y x f x y y x y '=??=? 微分方程的解就是求一个函数y=y(x),该函数满足微分方程并且符合初值条件。 2. 例如微分方程: xy'-2y=4x ;初始条件: y(1)=-3。 于是可得一阶常微分方程的初始问题 24(1)3y y x y ?'=+???=-?。 显然函数y(x)=x 2-4x 满足以上条件,因而是该初始问题的微分方程的解。

3. 但是,只有一些特殊类型的微分方程问题能够得到用解析表达式表示的函数解,而大量的微分方程问题很难得到其解析解,有的甚至无法用解析表达式来表示。因此,只能依赖于数值方法去获得微分方程的数值解。 4. 微分方程的数值解: 设微分方程问题的解y(x)的存在区间是[a,b],初始点x 0=a ,将[a,b]进行划分得一系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。y(x)的解析表达式不容易得到或根本无法得到,我们用数值方法求得y(x)在每个节点x k 的近似值y(x k ),即 y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 如果计算y n 时,只利用y n-1,称这种方法为单步法;如果在计算y n 时不仅利用y n-1,而且还要利用y n-2, y n-3,…, y n-r ,则称这种方法为r 步方法,也称多步法。 §5.1 欧拉方法 §5.1.1 欧拉格式 方程()(,)n n n y x f x y '=中,1()()()n n n y x y x y x h +-'≈ 1()()(,())n n n n y x y x hf x y x +≈+?1(,)n n n n y y hf x y +=+ 称为解一阶常微分方程初值问题的欧拉公式,也称显示欧拉公式。 欧拉公式的几何意义非常明显,因为微分方程的解在xoy 平面上表示一族积分曲线。用欧拉公式求数值解的几何意义如图: 容易验证,该折线各个顶点的纵坐标(1,2...)n y n =就是欧拉公式算得的近似值解,所以,欧拉方法又称为折线法。 算例:P98

第2章 导数与微分总结

1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是:0lim x y x ?→?? 2、导数的多种变式定义: 00000()()()() lim =lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??- 要注意细心观察发现,0 ()() lim x f x x f x x ?→+?-?是描述趋近任意x 时的斜率。而 00 ()() lim x x f x f x x x →--可以刻画趋近具体x0时的斜率。 3、 若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: (),0f x x x =< 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 0()()()(0) lim lim x x f x x f x f x x f x x ?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意0 00 ()() lim x x f x f x x x →--中的0()f x 到底是神马。比如求上图 中01 ()() lim x f x f x x x + →-- ,这个f(x0)千万要等于2/3,而不是1!

微分方程与差分方程 详解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点内容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+? ? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

相关文档
相关文档 最新文档