文档库 最新最全的文档下载
当前位置:文档库 › 材料力学性能教学导案

材料力学性能教学导案

材料力学性能教学导案
材料力学性能教学导案

材料力学性能教案

————————————————————————————————作者:————————————————————————————————日期:

XXXX 教案

2013- 2014学年第2学期

课程名称材料力学性能

授课专业班级材料科学与工程2011级授课教师

职称

教学单位

教研室材料科学

学期授课计划

课程类别专业核心总学分 3 总学时48

本学期学时教学

周次

学时

学时分配

48 16 4/2

讲授实验上机练习讨论考查其他(习题)

48 6

教学目的和基本要求

本课程是高等学校本科材料科学与工程类专业的一门重要的专业课程。

设置本课程的目的和教学目标是:通过学习材料力学性能使学生能够从各种机械零件或构件最常见的服役条件和失效现象出发,了解时效现象的微观机制,提出衡量材料时效抗力的力学性能指标;掌握各种指标的物理概念、实用意义和测试方法;明确它们之间的相互关系;分析各种因素对力学性能指标的影响,为机械设计与制造过程中正确选择和合理使用材料提供依据,为研制新材料、改进冷热加工新工艺,充分发挥材料性能潜力指明方向,并为机械零件和构件的时效分析提供一定基础。

教学重点和难点重点:单向静拉伸力学性能;冲击载荷下的力学性能;应力腐蚀和氢脆。难点:单向静拉伸力学性能;金属的断裂韧度;复合材料的力学性能。

选用

教材

束德林主编《工程材料力学性能》,机械工业出版社2003

主要参考资料郑修麟主编《材料的力学性能,西北工大版,2001

冯端主编《金属物理学》(第三卷,科学出版社1999

匡震邦主编《材料的力学行为》,高等教育出版社1998

张清纯主编《陶瓷的力学性能》,科学出版社1997吴人洁主编《复合材料》,天津大学出版社2000

备注

单元教案

授课主题

(或章节)

第一章金属在单向静拉伸载荷下的力学性能学时10

教学内容纲要1、掌握应力-应变曲线;2、弹性变形与弹性不完整性;3、塑性变形、屈服强度、形变硬化;4、金属断裂、断裂强度、断裂理论及其应用

教学目的和要求1、掌握应力-应变曲线;

2、理解弹性变形与弹性不完整性;

3、理解塑性变形、屈服强度、形变硬化;

4、理解金属断裂、断裂强度、断裂理论及其应用。

教学重点应力-应变曲线

教学难点塑性变形、屈服强度、形变硬化;金属断裂、断裂强度、断裂理论及其应用

授课方式

(请打√)

讲授(√ ) 讨论课( ) 实验课( ) 习题课( ) 其他( )

教学辅助

手段

教学课件

教学后记由于本课程的前置课程应该有材料力学这门课,但材料科学与工程11级的同学没有学习过该课程,因此他们的基础欠缺,所以个人在教学中增加了这门课的相关知识,尽管如此,还有许多不到位不熟练的部分,希望以后增开这门课,或在其他课程中增加材料力学的相关知识点的教学。

分教案

授课主题(或

章节)第一节应力-应变曲线课

1

授课方式(请打√)讲授(√) 讨论课( ) 实验课( ) 习题课( ) 其他( )

2

教学目的

和要求

掌握拉伸试样的应力-应变曲线;理解真实应力与条件应力.

教学重难点重点:拉伸试样的应力-应变曲线;难点:真实应力与条件应力。

教学内容纲要备注

导言:

①静载是相对于交变载荷和高速载荷而言的。

②金属静载试验方法包括单向静拉伸试验、压缩、弯曲、扭转、

剪切、硬度试验等,是工业上应用最广泛的金属力学性能试验方法。

③这些试验方法的特点是:温度、应力状态和加载速率是确定的,

并且常用标准试样进行试验(硬度试验除外)。

④通过静载力学性能试验可以揭示金属材料在静载荷作用下常见

的三种失效形式,即过量弹性变形、塑性变形和断裂。

⑤可以标定出金属材料的最基本的力学性能指标。这些性能指标开课前向学生介绍自己,以及对该课程的准备情况;介绍课程主要内容,学习方法,主要参考书等

是机械设计、制造、选材、工艺评定以及内外贸易订货的主要依据。

本章将讨论性能指标的定义、测试方法以及试验方法的意义特点等。

第一节拉伸力-伸长曲线和应力应变曲线单向静拉伸试验是工业上应用最广泛的金属力学性能试验之一,原因是其测得的性能指标比较稳定,具有广泛的可比性。

一、光滑拉伸试样

光滑试样是相对于缺口试样和裂纹试样而言的。

1、采用光滑试样的目的:

光滑试样可保证试验材料承受单向拉应力,而缺口试样或裂纹试样将导致缺口或裂纹周围处于两向或三向应力状态。

2、试样的种类:

经常使用的光滑试样可分为:圆柱形试样、板状试样和管状试样。详见国家标准(GB/T228-2002 金属材料室温拉伸试验方法)

3、光滑试样的组成

光滑拉伸试样由三部分组成:

工作部分:是试样的中间部分,在取样和加工过程中应按照GB/T2975-1998《钢及钢产品力学性能试验取样位置及试样制备》、GB/T2649-1989《焊接接头机械性能试验取样方法》等相关标准执行,试样在原材料或机件中的取向、部位以及试样形状、精度、粗糙度和加工程序均按照标准执行。

过渡部分:是工作部分向外过渡的部分,为减少应力集中,采用圆弧过渡的形式。处理不好会在此断裂,导致试验失败(尤其是脆性材料)。

夹持部分:这部分的作用是保持自身承载能力,不能断裂(其截面积大);把载荷正确地传递到工作部分上去。

二、拉伸曲线及应力应变曲线

介绍试验机的种类、试样装夹、所用仪器和操作过程。

1、拉伸曲线(力-伸长曲线):F-纵坐标,ΔL-横坐标

2、拉伸过程:退火低碳钢在拉伸力作用下的变形过程可分为四

个阶段:弹性变形阶段→不均匀屈服塑性变形阶段→均匀塑性变形阶段

→不均匀集中塑性变形阶段。

3、拉伸曲线的分类:拉伸曲线可分为以下几种形式:

①退火低碳钢的拉伸曲线如图a所示,它有锯齿状的

屈服阶段,分上、下屈服,均匀塑性变形后产生颈缩,然后试

样断裂。

②中碳钢的拉伸曲线如图b所示,它有屈服阶段,但

波动微小,几乎成一条直线,均匀塑性变形后产生颈缩,然后

试样断裂。

③淬火后低中温回火钢的拉伸曲线如图c所示,它无

可见的屈服阶段,试样产生均匀塑性变形并颈缩后产生断裂。

④铸铁、淬火钢等较脆材料在室温下的拉伸曲线如图

d所示,它不仅无屈服阶段,而且在产生少量均匀塑性变形后

就突然断裂。

a b c d

4、 应力-应变曲线(σ-ε曲线)

拉伸曲线(力-伸长曲线)的不足之处是曲线的形状与拉伸试样的几何尺寸有关,只能反映特定试样的力学性质。若用应力-应变曲线σ(F/A 0)- (ΔL/L O )曲线表示,它与试样的几何尺寸无关,其形状相似。同时还可直接从σ-ε曲线上直接读出力学性能指标R b 、R 0.2、A 等。

三、真实应力与条件应力

1、

条件应力

在拉伸试验过程中,试样的横截面积不断减小,如果用外力除以横截面积,得到的应力为条件应力。

σ=

A F

2、

真实应力

如果用任意时刻的外力除以横截面积,得到的应力为真实应力。

S=

A

F

3、

真实应力与条件应力的关系

S=

A F =)-ψ1(0A F =ψ

σ-1 可见,随载荷的增加,横截面积不断减小,ψ不断加大,真实应力S 在不

断增加。

课后作业

教学后记

分 教 案

授课主题(或章节) 第一节 应力-应变曲线

课次 2

授课方式

(请打√)

讲授(√) 讨论课( ) 实验课( ) 习题课( ) 其他( )

学时

2

教学目的 和要求 掌握拉伸试样的应力-应变曲线;理解真实应力与条件应力,真实应变与条件应变;掌握真实应力应变曲线。

教学重难点

真实应力与条件应力,真实应变与条件应变。 教 学 内 容 纲 要

备注

第一节 应力-应变曲线

复习上节主要内容,然后引入本节知识: 一、 光滑拉伸试样

二、拉伸曲线及应力应变曲线 三、真实应力与条件应力 四、真实应变与条件应变

1、条件应变

伸长量与原始标距长度之比,即ε=0

l l

?称为条件应变。 2、真实应变e

对任意时刻真正伸长率是这时刻相对于前时刻试样的伸长Δl i 与前一时刻长度l i 之比,即

εi =

i

i

l l ? 试样的真实应变定义为每一时刻的真正伸长率的总和,即

先简要复习上次课的内容,而后引入本节内容

e =

01l l ?+102

l l l ?+?+2103l l l l ?+?+?+…+110...-?++?+?k k l l l l 0→?i l ?k

l l l

dl 0=ln

l l k

3、条件应变与真实应变之间的关系

e =ln

0l l k =ln (0

0l L l k

?+)=ln (1+ε) 断裂时:e k =ln (1+δk )

五、真实应力应变曲线

真实应力应变曲线见图1-3,可分为三个区段,各区段有不同的特点。

在Ⅰ区,为直线,真应力与真应变成直线关系。

在Ⅱ区,为均匀塑性变形阶段,是向下弯曲的曲线,遵循S =ke n

规律。K ,n 均为材料常数。n 为形变强化指数。

当n =1时,上式变成σ=E ε,表示理想刚性状态。 当n =0时,则表示无硬化效应,表示理想塑性状态。

一般金属材料,1>n>0,n 值不但在宏观上表征材料的形变强化特性,微观上反映了材料不同的应变强化机制。它是板材冲压成形和材料断裂分析的重要参数。

在Ⅲ区,曲线向上弯曲,可能是由三向应力造成的。

本节教学内

容结束后复

习一些材料

力学的基础

知识:杆件

的基本变形

;外力与内

力;应力的

概念;应变。课后作业

教学后记

分教案

授课主题

(或章节)

第二节弹性变形与弹性不完整性课次 3 授课方式

(请打√)

讲授(√) 讨论课( ) 实验课( ) 习题课( ) 其他( ) 学时 2

教学目的和要求

掌握弹性变形及其实质,掌握弹性模量定义及其影响因素;了解弹性比功、滞弹性、包申格效应。

教学重难点

教学内容纲要备注

变形-金属发生形状和尺寸改变的现象。分弹性变形和塑性变形。 变形可以由多种因素引起,在此仅讨论应力所引起的变形。

一、 弹性变形及其实质

1、物理过程(实质)

可用双原子模型来解释。

1、 在没有外加载荷作用时,金属中的原子在其平衡位置附近产生震动。

2、 相邻两原子之间的作用力由引力和斥力叠加而成。一般认为:引力是金属正离子和自由电子间的库仑力所产生,而斥力是由离子之间因电子壳层产生应变所致。引力和斥力都是原子间距的函数。

当原子间距因受力减小时,斥力开始缓慢增加;当电子壳层重叠时,斥力迅速增加。

引力随原子间距的增加而逐渐下降。 合力曲线在原子平衡位置处为零。

3、 原子间相互作用力F 与原子间距r 的关系为:

F =2r

A

-420r Ar

式中 A 、r 0-与原子本性或晶体、晶格类型有关的常数。

上式中第一项为引力,第二项为斥力。可见,原子间相互作用力与原子间距离的关系并非虎克定律所示的直线关系,而是抛物线关系。但外力要较小时,原子偏离平衡位置不远,合力曲线的起始阶段可视为直线,则虎克定律表示的外力-位移(原子间相互作用力-原子间距离)

线性关系近似是正确的。

4、弹性断裂载荷及变形量

当r=r m时,斥力接近为零,与外力平衡的原子间作用力只有引力,合力曲线上出现极大值Fmax,Fmax是拉伸时两原子间的最大结合力。如果外力达到Fmax,就可以克服两原子间的引力而使它分开。因此,Fmax也就是金属材料在弹性状态下的断裂载荷(断裂抗力)。相应的原子位移量r m-r0,即弹性变形最大量,接近23%。

弹性滞后和循环韧性

1、弹性滞后:金属在弹性区内加载、卸载时,由于应变落后于应力,使加载线与卸载线不重合而形成一封闭回线,是为弹性滞后。封闭回线称为弹性滞后环。说明加载时消耗于金属的变形功大于卸载时金属释放的变形功,有一部分变形功被金属吸收,这部分吸收的变形功称为金属的内耗,大小用回线面积度量。

如果所加的是交变载荷,其最大应力低于宏观弹性极限,且加载速率比较大,弹性后效不能顺利进行,则得到交变载荷下的弹性滞后环。若交变载荷的最大应力超过宏观弹性极限,则得到塑性滞后环。

2、金属的循环韧性:

金属材料在交变载荷(振动)下在塑性变形区内加载时,吸收不可逆变形功的能力,称为金属的循环韧性。用塑性滞后环面积度量。

金属在弹性区内加载时吸收不可逆变形功的能力称为内耗。用弹性滞后环面积度量。

这两个名词有时混用。

金属的循环韧性又称消振性。目前尚无统一的评定标准,通常用振动试样中自由振动振幅衰减的自然对数值δˉ来表示其大小。

δˉ=ln

1+k k T T =ln T T T ?+≈T

T

? 其值越大,消振能力越强。则机件依靠材料自身的消振能力越好。因此,高的循环韧性对于降低机械噪声,抑制高速机械的振动,防止共振导致疲劳断裂是很重要的。铸铁因含有石墨不易传送弹性机械振动,故具有很高的循环韧性。机床床身、发动机缸体等选用灰铸铁,气轮机叶片用1Cr13钢制造,其重要原因就是这类材料的循环韧性高,消振性好,可以保证机器稳定运转。

对于仪表传感元件,选用循环韧性低的材料,可以提高仪表的灵敏度。乐器所用金属材料的δˉ越小,其音质越好。

六、包申格(Bauschinger )效应

1、 定义:金属材料经过预先加载产生微量塑性变形(残余应变小于1~4%),而后再同向加载规定残余伸长应力(σe )升高,反向加载时(σe )下降。这种现象成为包申格效应。

2、 原因:用位错塞积群来解释。

3、 度量:用包申格应变表示。即在给定应力下,拉伸卸载后第二次再拉伸与拉伸后第二次压缩两曲线之间的应变差。

4、危害:包申格效应在许多金属中均有发现。对高

温回火的钢材较为明显。对预微量塑性变形的钢材若反向

使用时,会产生很大危害。

例1:包申格效应对于承受应变疲劳载荷的机件是很重要的。因为材料在应变疲劳过程中,每一周期内都产生微量塑性变形,在反向加载时,微量塑性变形抗力(规定残余伸长应力)降低,显示循环软化现象。例2:对预先经受冷变形的材料,如服役时受反向力作用,

就要考虑微量塑性变形抗力降低的有害影响,如冷拉型材及管子在受压状态下使用就是此种情况。

例3:有利的一面。可以利用包申格效应,如板材反向弯曲成型;拉拔的钢棒经过轧辊压制变直等。

消除:①预先进行较大的塑性变形。②在第二次反向受力前先对金属材料进行恢复或再结晶退火,如钢在400~500℃以上,铜合金在250~270℃以上退火。

课后作业

教学后记

材料力学性能课后题参考答案(DOC)

《工程材料力学性能》课后题参考答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 一、解释下列名词 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 1、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 2、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 4、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】

材料力学习题册答案-第3章 扭转

第三章扭转 一、是非判断题 1.圆杆受扭时,杆内各点处于纯剪切状态。(×) 2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×) 3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×) 4.圆杆扭转变形实质上是剪切变形。(×) 5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√) 6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×) 7.切应力互等定理仅适用于纯剪切情况。(×) 8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√) 9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√) 10.受扭圆轴的最大切应力只出现在横截面上。(×) 11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√) 12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×) 二、选择题

1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B ) A τ; B ατ; C 零; D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C ) 0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B ) A 1τ=τ2, φ1=φ2 B 1τ=τ2, φ1≠φ2 C 1τ≠τ2, φ1=φ2 D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。 5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3 1 16p D W πα=- B ()3 2 1 16p D W πα=- C ()3 3 1 16p D W πα=- D ()3 4 1 16p D W πα=- 6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上; ②在横截面上和包含杆件的纵向截面上均无正应力; ③圆轴内最大拉应力的值和最大剪应力的值相等。

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

[材料力学,教学改革,形势]论新形势下高校《材料力学》教学改革

论新形势下高校《材料力学》教学改革 《材料力学》是高校机械、能源动力、土木、材料等工科类专业的一门重要的专业基础课,课程的特点是理论性较强,同时又与工程实际联系紧密。它的任务是在保证构件既满足强度、刚度和稳定性要求又经济合理的前提下,研究构件在外力作用下的变形和破坏规律,为构件的合理设计提供基本理论和计算方法。《材料力学》对培养学生的力学思维能力和应用实践能力非常重要,同时也为学生学习许多后续课程如《机械设计》、《弹性力学》、《流体力学》等提供必要的基础。 随着高校专业改革的不断深入,一方面本课程的学时数逐渐减少,许多专业的教学时数缩减为48学时,而另一方面为了适应现代工程技术发展的需要,课程的教学要求却又有所提高。因此,为了在减少学时的情况下达到相同的教学效果,本课程的教学内容和教学模式也需要与时俱进。本文依照课程教学内容服从专业培养目标、课程教学方法服务于课程教学内容、素质教育贯穿于整个教学过程的原则,以培养学生的创新意识和分析解决工程实际问题的能力为目的,针对新形势下《材料力学》课程的教学内容和教学模式进行了一些研究与探索。 一、教学内容改革 《材料力学》课程教学大纲规定的基本教学内容主要包括:杆件的四种基本变形(轴向拉伸及压缩、剪切、扭转和弯曲)、应力状态与强度理论、组合变形及压杆的稳定性分析等内容,这些内容也是各专业教学大纲的基本要求。由于课程与工程实际问题联系紧密,因此,按照课程教学内容服从专业培养目标的要求,对于不同的专业还应适当加入新的针对专业实际需求的内容,以使《材料力学》这一课程更好地与专业工程实际相适应。例如,对机械专业,应增加构件的疲劳与断裂等内容,同时可适当加入结构可靠性设计及优化设计等部分内容,使学生在学习过程中能体会到本课程与现代设计方法的有机结合,增强他们运用基本理论解决工程实际问题的能力;对能源与动力工程专业,应增加热应力和薄壁容器的设计与寿命预测等内容,以更好地分析解决工程实际问题;对材料专业,可增加复合材料力学性能知识,使学生接触到完整的材料学性能的知识。在基本教学内容的基础上增加符合各专业实际需求的内容,构成了适合于不同专业需求的教学内容体系,这些改革措施不仅可以激发学生对于本课程的学习兴趣,而且面向各专业实际工程应用的内容也能够提高他们运用基本理论解决工程实际问题的能力。 二、教学方法与手段的改革 (一)引导式教学法 引导式教学就是针对每一部分教学内容,先在黑板上列出本部分内容的研究思路和步骤,然后提示学生按此思路进行有针对性的自学,然后再由教师进行讲解。如基本变形问题的研究思路通常是:观察变形规律,提出变形假设;建立变形几何方程(协调方程);建立物理方程(本构方程);空间静力学平衡方程。在讲述扭转变形时,通过扭转变形平截面假设及扭转变形动画,在黑板上列出扭转变形问题的研究思路,并给出适当提示,然后让学生仿照轴向拉压杆件横截面上点的正应力的推导方法,从圆轴中沿轴线方向截取出一微段,根据扭转变形的平截面假设,变形几何关系、物理关系和静力关系的顺序去推导扭转变形时横截面上的切应

材料力学简明教程(景荣春)课后答案第3章

第 3 章扭转 思考题 3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩? 答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力 偶矩)称为扭矩。 对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。 用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。 3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件 是什么? 答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所 做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力?,因为筒壁的厚度 ?很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。 又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公 式; 在圆轴两端施加一对大小相等、方向相反的外力偶。从实验中观察到的现象,假设轴变 形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆 轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。 公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。 3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。 答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。 3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ?之间关系。 答剪切胡克定律? = G?(反映角度的变化)与拉伸(压缩)胡克定律 ? = E∑(反映 长度的变化)皆为应力与应变成正比关系。3 个弹性常量E, G, ?之间关系为G = E 2(1 + ? ) 。 3-5圆轴扭转时如何确定危险截面、危险点及强度条件? 答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为 ? max = T max W p δ [? ] 3-6金属材料圆轴扭转破坏有几种形式? 答塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小,最后沿与轴线约45°方向的螺旋面断裂,如图 b 所示。

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

[材料力学,教学改革]有关材料力学教学改革的探索与实践

有关材料力学教学改革的探索与实践 材料力学是机械类专业重要的技术基础课,对于培养学生今后从事专业知识的工作有极大的作用。材料力学的教学质量提高始终是高等院校所重视的,长期以来同行进行了大量的教学实践及改革,效果显著。学生在学习该课程时,存在一系列的问题,例如,学生反映虽然理论听懂了,也完成了基本的作业内容,初步掌握了材料力学的基本知识,但是运用材料力学知识进行创造性解决问题的能力仍然显得不足。为此,我们结合多年的材料力学教学实践提出材料力学的教学改革方案措施。作为引玉之砖,供同行参考。 1教学过程注重知识的产生原理及过程 在人类长期的生产实践活动中,人们进行了大量的科学试验及归纳,总结出比较系统的材料力学知识,形成教科书上的基本知识。 材料力学教学教师在授课的过程中应该从知识产生的详细过程开始给学生进行深入细致的剖析。课堂教学中对力学的基本概念产生的历史背景及渊源,当初科学家是如何提出所面临的材料力学问题及解决该问题过程,对材料力学的性质是如何研究的,要对学生进行详细的说明和解释。科学家经过反复的实验及数据分析总结出的经典力学理论,最后又应用经典材料力学理论到实践过程中。这样学生在掌握一个材料力学基本概念的时候,对概念的提出背景及原因,概念的内涵和外延及产生的过程和应用等都能够有更加深入的认识。学生学习力学的知识就能够真正变成活的知识并且形象生动有趣,这样不但提高了学生理解力学基本概念和运用材料力学知识的能力,也在学习材料力学基本概念的时候真正感觉到了乐趣,体会到先辈们的优秀的思维品质,能够进一步激发学生对材料力学知识的深入思考。书本上以前看起来枯燥乏味的知识就能变成为活的知识。进而真正内化到学生的头脑,对知识的理解程度就能够更加深刻。 在介绍知识产生的过程中,学生无形中也对先辈们追求真理的科学精神非常钦佩,对进行书本上来之不易的材料力学知识产生敬畏感。还能进一步激发学生对科学知识的追求。 在课堂教学中多加引用一些古代前辈们运用材料力学知识创造出的优秀成果,能激发学生的爱国主义热情。尤其结合中国的古代先贤们在机械工程中的优秀成果介绍,例如:秦始皇时期的铜车马存在的力学知识及原理、兵马俑等优秀的作品展示,还有古代的战车的构造及春秋战国时中国人发明的弩等材料力学原理,结合历史人物张衡发明的浑天仪,西汉所发明的鼓车等装备,结合我们国家的机械工程先进成就等提高学生对我国古代机械的认识,也进一步使学生增强民族自信心和自豪感。 2提高学生的动手能力、力学实际应用及科研能力 材料力学知识是在人们长期的生产实践中总结出来的理论,理论必然又指导于实践。对于机械专业的学生来说,明确机器的工作原理及构造,对学生深刻理解材料力学知识在机械工程中的应用有极其重要的作用。机械零部件设计及制造很多都是符合材料力学基本原理的,通过引导学生在课堂上及课下观察常用的机械产品及构造,分析材料力学的基本原理,学生对机械产品的认识能够更加深刻,也提高了学习材料力学兴趣和学习质量。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

[材料力学,研究性,教学改革]关于材料力学研究性教学改革的探讨

关于材料力学研究性教学改革的探讨 材料力学是研究固体在不同形式外载荷作用下产生的变形特征及力学性质的学科,它既是物理学、理论力学等基础课程的延伸,又是后续弹性力学、结构力学等专业课程的基础,在工科院校本科生的培养方案中有着十分重要的地位。材料力学教学在过去几十年为我国培养了大批的工程人才,但是随着知识大爆炸时代的到来以及国家对素质教育的要求不断提高,以教师为主导的传统讲授式教学难以满足新时期对学生的培养要求,对材料力学课程进行教学改革势在必行。研究性教学是指在一定的情景中,引导学生通过主动发现问题和解决问题而获得知识、形成能力、发展个性的教学方法。它的实质就是让学生在教学过程中体验科学原理的发现和应用科学原理解决实际问题等不同类型的研究过程。与传统教师主导的讲授式教学相比较,研究性教学更能激发学生的学习兴趣,启发学生的创造性思维,同时锻炼协作意识。具体对于材料力学课程而言,实施研究性教学改革需要从课程体系的编排、案例教学的开展、考核方式的设置等方面进行具体设计和实施。 一、改革措施 研究性教学首先需要对课程体系进行重新编排,增加案例研讨课,也需要对课程的考核体系进行改革,从而在保证公平和区分度的前提下,激发学生的自主学习的兴趣,培养学生的创造性思维,最大程度提升整体教学效果。 1.课程体系编排。研究性教学方法则是立足于学生为主体,通过各种方法激发学生主动探索的兴趣,而不是被动的接受教师的想法,所以针对材料力学传统教学方法中存在的问题,需要对课程体系进行重新编排。具体措施如下: (1)在绪论之后,加一部分内容,即材料力学的知识体系,如图1所示,应该让学生领悟到材料力学的知识体系是双线程的,即按照变形的方式可以分为拉压,剪切,挤压,扭转以及弯曲,而按照研究内容,每种变形则要研究构件的内力,应力,应变,变形以及应变能。学生了解了材料力学的课程体系以后,引导学生建立类似图一的表格,在弯曲章节学习之后,要求学生将每一个格子里相应的公式自己整理出来,这样既能使学生在正式学习之前对可能总体结构有个清晰的认识,又可以引导学生们自主思考,通过填表完善自己的材料力学知识体系。同时,又可以压缩课时,把更多的时间留给案例研讨课。弯曲之后还有应力应变分析、强度理论、组合变形以及压杆稳定等内容,这些课程体系无需调整。 (2)将各章节的专题内容分离出来,单独成章,或者作为案例留给讨论课。材料力学中的超静定问题、薄壁圆筒的扭转、弹簧变形等专题问题,并不属于材料力学的主线,而是主线内容的实际应用。而研究性教学倡导学生们自主学习,在实际情境中思考、解决问题,所以将这些内容从课堂教学主线中拿出来,单独成章或者作为案例供讨。 (3)重新安排实验课课时。在48课时的材料力学教学中,实验课一般占8课时,一般是在对应章节讲授之后再进行实验,有个别学校由于实验室相对紧张,有的班级更是等到学期末才能排到实验课,这样的实验课安排使学生丧失了对未知实验结果的期待,实验课变成了被动的完成任务,使教学效果大大降低。根据研究性教学的本质,为了引导同学们主动探索,建议将实验课安排在知识点与实验现象之间进行,例如在拉压一章,实验课应放到应力应变的基本规律之后,材料拉压的力学性能之前进行,这样学生们既可以掌握实验中所用到的知

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

[材料力学,教学改革,课程]机械类材料力学课程教学改革的研究

机械类材料力学课程教学改革的研究 材料力学紧密结合工程实际,实用性广,是高等工科学校机械类专业的一门重要专业基础课,是构成专业课程的基础性支撑平台课,对学生后续课程的学习和知识结构的完善起着重要作用.通过学习该课程,学生应掌握将工程实际构件抽象为力学模型的方法;掌握研究杆件内力、应力和应变分布规律的基本原理和方法等,为后续相关课程的学习以及进行构件设计和科学研究打好力学基础. 然而,一方面,随着高等教育的改革与发展,高等教育体制和课程设置及学时分配都发生了重大变化,机械类材料力学课被压缩到60课时.欲在有限的时间内达到教学计划的要求,传统的材料力学教学体系已暴露出许多不合理的地方,需要进行调整.另一方面,随着科学技术的飞速发展,力学的新知识不断涌现,工程技术对材料力学的要求也越来越高.为达到培养基础厚、能力强的创新性适用人才的目标,材料力学教学改革刻不容缓. 本文结合西南大学工程技术学院材料力学课程教学的实际情况,从教学内容、方法和手段等方面提出对机械类本科材料力学课程教学改革的几点思考. 1 教学内容和方法的探索 1.1 焦点式和模块式集成化的教学方法 传统的材料力学课程教学内容是以4种基本变形为主线,每种基本变形均采用了相同的推导方式.显然,这种按基本变形为主线的内容体系,尽管分类清晰,但是内容重复多,花费学时量大,教学过程缺乏新意,很难引起学生的兴趣,学习效果显而易见.对此,笔者针对现有的材料力学内容体系提出焦点式和模块式集成化的教学方法. 针对机械类的学生,教学大纲中安排有相应的精工实习以及机械拆装等实验课程.这些课程中的实际问题可以为机械类学生学习材料力学提供丰富的素材,例如牛头刨床中存在典型的拉压杆构件、车床加工中紧固的加工构件就是典型的悬臂梁结构等.以学生所学实际问题(基于构件的4种基本变形)为焦点,分别从问题构件的固体力学角度和该材料的力学行为两个方面进行研究.在固体力学分析中,对构件的4种基本变形采用模块式的教学方法分别从内力、应力和应变3个模块来进行讲述.在内力分析模块中,又以截面法的思想为焦点,然后将其分别应用到拉压、剪切、扭转和弯曲各基本问题中,求解相应的内力等.结合学生所学的实际问题为焦点的教学模式,可以激发学生学习材料力学的兴趣,加强所学内容体系间的联系,并加深学生对该课程的实际应用的认识.此外,模块式的教学方法可以避免教学内容重复而缩短课时量. 1.2 自主参与式教学 实验教学是创新性高等教育的重要环节,发挥着理论教学不可替代的作用.目前,材料力学实验主要有:拉压实验、扭转实验和弯曲实验.但是,该部分教学以往被作为材料力学理论课程的延伸并采用以课程教学分离的形式而进行;教学过程中,学生往往是以观摩实验为主,不能亲自操作.这种教学模式导致了学生理论学习与实践能力培养的严重分离,不利于高素质材料力学人才的培养.因此,笔者提出采用自主参与式教学方法.比如,在讲授拉压杆的应

相关文档
相关文档 最新文档