文档库 最新最全的文档下载
当前位置:文档库 › 斯特雷克尔反应

斯特雷克尔反应

斯特雷克尔反应
斯特雷克尔反应

斯特雷克氨基酸合成--经典有机反应/人名反应数

据库

?发布时间:2004-10-25 来源:本站整理

?

斯特雷克氨基酸合成

Strecker Amino Acid Synthesis

Erlenmeyer, Tiemann, Zclinsky-Stadnikoff and Knoevenagel-Bucherer Modifications

Strecker, Ann. 75, 27 (1850); 91, 349 (1854).

Mowry, Chem. Revs. 42, 236, 237 (1948)

Migrdichian, The Chemistry of Organic Cyanogen Compounds, p 198(New York, 1947)

Fieser, Fieser, Organic Chemistry, 3rd ed, p 432 (New York, 1956)

Kurz in Houben-Weyl, Methoden der organischen Chemie 8, p 279 (1952)

Wieland, ihid. 11/2, p 305 (1958)

Greenstein, Winitz, Chemistry of Amino Acids tol. 3, p 698-700 (New York, 1961)

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

磁阻效应实验

磁阻效应实验 [概述] 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:交通车辆检测,导航系统、伪钞检测、位置测量等。其中最典型的锑化铟(InSb)传感器是一种灵敏度高的磁电阻,有着十分重要的应用价值。 [实验项目] 1、理解磁阻效应、霍尔效应等概念。 2、掌握测量锑化铟传感器的电阻与磁感应强度的关系的一种方法。 3、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线,并对此关系 曲线的非线性区域和线性区域分别进行拟合。 [实验原理] 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图2所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁电阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相 图1 磁阻效应

对变化率ΔR/R(0)正比于ΔR=R(B)-R(0),因此也对变FD-MR-II 型磁阻效应实验仪,图2为该仪器示意图 ρ/ρ(0),这里Δ可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相化率ΔR/R(0)正比于磁感应强度B 的平方,而在强磁场中ΔR/R(0)与磁感应强度B 呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 [实验仪器] 实验采用 图2 FD-MR-II 磁阻效应实验仪 FD-MR-II 型磁阻-2V 直流数字电压表、效应验仪包括直流双路恒流电源、 0电磁铁、数字式毫特仪(GaAs 作探测器) 、锑化铟(InSb)磁阻传感

电光效应和电光调制

电光效应和电光调制 当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。1875年克尔(Kerr)发现了第一个电光效应。即某些各向同性的透明介质在外电场作用下变为各向异性,表现出双折射现象,介质具有单轴晶体的特性,并且其光轴在电场的方向上,人们称这种光电效应为克尔效应。1893年普克尔斯(Pokells)发现,有些晶体,特别是压电晶体,在加了外电场后,也能改变它们的各向异性性质,人们称此种电光效应为普克尔斯效应。电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz的电场变化),因此被广泛用于高速摄影中的快门,光速测量中的光束斩波器等。由于激光的出现,电光效应的应用和研究得到了迅速发展,如激光通信、激光测量、激光数据处理等。 一.实验目的 1.掌握晶体电光效应和电光调制的原理和实验方法。 2.观察电光效应所引起的晶体光性的变化和会聚偏振光的干涉现象。 3.学会用简单的实验装置测量LN(LiNbO3铌酸锂)晶体半波电压。观察电光调制的工作性质。 二.仪器用具 电光效应实验仪,电光调制电源,LN晶体横向电光调制器,接收放大器,He-Ne激光器,二踪示波器和万用表。 三.实验装置与原理 (一)实验装置 (1)电光效应实验仪面板如图所示。 (2)晶体电光调制电源:调制电源由-200V—+200V之间连续可调的直流电源、单一频率振荡器(振荡频率约为1kHz)、音乐片和放大器组成,电源面板上有三位半数字面板表,可显示直流电压值。晶体上加的直流电压的极性可以通过面板上的“极性”键改变,直流电压的大小用“偏压”旋钮调节。调制信号可由机内振荡器或音乐片提供,此调制信号是用装在面板上的“信号选择”键来选择三个信号中的任意一个信

大学物理实验教案-霍尔效应 (1)

大学物理实验教案

实验名称:霍尔效应 实验目的: 1、了解霍尔效应原理。 2、了解霍尔电势差V H 与霍尔元件工作电流s I 之间的关系,了解霍尔电势差V H 与励磁电流m I 之 间的关系。 3、学习用“对称交换测量法”消除负效应产生的系统误差。 4、学习利用霍尔效应测量磁感应强度B 的原理和方法。 实验仪器: TH-H 霍尔效应实验仪 TH-H 霍尔效应测试 实验原理: 一、霍尔效应原理 若将通有电流的导体置于磁场B 之中,磁场B (沿z 轴)垂直于电流S I (沿x 轴)的方向,如图所示,则在导体中垂直于B 和S I 的方向上出现一个横向电势差H U ,这个现象称为霍尔效应。 这一效应对金属来说并不显著,但对半导体非常显著。利用霍尔效应可以测定载流子浓度、载流子迁移率等重要参数,是判断材料的导电类型和研究半导体材料的重要手段。还可以用霍尔效应测量直流或交流电路中的电流强度和功率,以及把直流电流转成交流电流并对它进行调制、放大。用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。 霍尔电势差产生的本质,是当电流S I 通过霍尔元件(假设为P 型,即导电的载流子是空穴。)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力

()B q =?F v B (1) 式中q 为载流子电荷。洛沦兹力使载流子产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =q E 与磁场作用的洛沦兹力相抵消为止,即 ()q q ?=v B E (2) 这时载流子在样品中流动时将不偏转地通过霍尔元件,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,即导电的载流子是电子,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为n ,宽度为b ,厚度为d 。通过样品电流nevbd I S =,则空穴的速度nebd I v S = ,代入(2)式有 nebd B I S = ?=B v E (3) 上式两边各乘以b ,便得到 S S H H I B I B V Eb R ned d == = (4) 霍尔电压H V ( A 、A '之间电压)与S I 、B 的乘积成正比,与霍尔元件的厚度d 成反比,比例系数H R ,称为霍尔系数。它是反映材料霍尔效应强弱的重要参数。 H H S V d 1 R I B ne = = (5) 在应用中一般写成 H H S V K I B = (6) 比例系数ned 1 I R K S H H = = ,称为霍尔元件灵敏度,单位为mV/(mA ·T)。一般要求H K 愈大愈好。H K 与载流子浓度n 成反比,半导体内载流子浓度远比金属载流子浓度小,所以选用半导体材料作为霍尔元件。H K 与片厚d 成反比,所以霍尔元件都做的很薄,一般只有0.2mm 厚。 由(4)式可以看出,知道了磁感应强度B ,只要分别测出传导电流S I 及霍尔电势差H V ,就可算出霍尔系数H R 和霍尔元件灵敏度H K 。

铌酸锂晶体的横向电光效应V0培训讲学

铌酸锂晶体的横向电光效应研究 1实验要求 1研究内容 1.1熟悉沿光轴条件下铌酸锂晶体的横向电光效应。 1.2研究近轴条件下铌酸锂晶体的横向电光效应,对铌酸锂晶体的电光效应进行理论推 导,分析降低晶体驱动电压的方法。 1.3研究非近轴条件下铌酸锂晶体的横向电光效应,分析入射角对晶体电光效应的影 响,进行数值仿真。 2成果形式 2.1采用理论分析与数值仿真结合的方式,研究结果以图表的形式给出。 2.2完成课题研究报告。 2背景介绍 铌酸锂( LINBO3) 晶体作为一种优良的横向电光调制材料,具有驱动电压低、插入损耗小、光谱工作范围宽、消光比高和易于大规模生产等优点,在光通信、光信号传输、电光开关等领域得到了广泛的应用。 理想情况下光线沿着铌酸锂晶体的光轴方向传播,并且在理论分析时不考虑自然双折射的影响,但是,实际应用中光线与光轴完全校准是不可能实现的,这就会造成理论与实际之间存在误差。分析铌酸锂晶体在近轴及非近轴情况下的横向电光效应,对于利用角度调节以改善其电光性能具有指导意义。同时,近轴及非近轴条件下晶体的电光特性对既需要利用晶体双折射效应进行分束或者合束,又需要利用其电光效应产生附加相移的新型电光器件来说是至关重要的。 3基础知识 研究铌酸锂晶体的横向电光效应,涉及到光的偏振、双折射及晶体的电光效应等较为基础的知识,为了更加深入地理解电光效应,更加透彻地分析不沿光轴条件下铌酸锂晶体的横向电光效应,对该问题所涉及一系列基础知识进行复习整理,如下所示。 1光的偏振 1.1电磁波是横波,具有偏振现象,这是许多的光学现象的重要基础,包括电光效应。 1.2对人眼、照相底片及光电探测器起作用的是电磁波中的电场强度E,因此常把电矢 量E称为光矢量,把E的振动称为光振动。在讨论光振动的性质时,只需要考虑 电矢量E即可。 1.3完全偏振光包括线偏振光、圆偏振光和椭圆偏振光,可用如下模型描述(图中给出 了线偏振光的例子,线偏振光的例子里x、y方向的振动无相位差):

各种光学现象

天空为什么是蓝的: 因为当太阳光进入大气后,空气分子和微粒(尘埃、水滴、冰晶等)会将太阳光向四周散射。因为当微粒的直径小于可见光波长时散射强度和波长的四次方成反比,所以波长较长的红黄等光透射性大,大部分能够直接透过大气射向地面,而波长较短的蓝紫光,很容易被大气散射,但空气分子对紫光的吸收作用较强,所以晴天时天空是蓝色的。 吹肥皂泡时的光学现象: 刚开始时,肥皂泡各处厚度较厚,发生等厚干涉时各级彩色条纹重合在一起,故显为白色,在重力的作用下,使肥皂泡上面薄下面厚,发生等厚干涉时各级彩色条纹分开,故显为彩色,当肥皂泡越来越薄,其厚度接近可见光波长时,所有光干涉相消,从而为无色透明。 油膜的彩色原理: 光在油膜上发生等倾干涉。 晕: 天空中有一层高云,阳光或月光透过云中的冰晶(卷状云、冰雾等)时发生折射和反射,便会在太阳或月亮周围产生彩色光环,光环彩色的排序是内红外紫。称这七色彩环为日晕或月晕,统称为晕。 为什么日出日落太阳是扁的: 由于地球引力的作用,大气层中的空气密度是不均匀的,越接近地面密度越大。早晨和傍晚,太阳光是斜着通过密度不均的大气层的,就会产生明显的折射现象。这种折射越近地面越强,因而,从太阳这个巨大火球下部边缘射来的光线,比它上部边缘射来的光线折射得厉害,下缘也就比上缘抬高的更显著一些。

为什么天上的星星一闪一闪的: 由于恒星距地球远,在地球上只能看见一个小点,当光线穿过大气层时,光线经大气要屡次折射,大气是流动的,这样星星发射的光在传到观察者眼睛的过程中就会忽前忽后、忽左忽右、忽明忽暗,总在不时的变化,所以后一闪一闪的。月全食时月亮缘何“脸红”? “红月亮”归功于暗红色的光,其实就是照射到月面上的太阳光。在地球周围有层像薄纱似的透明度较好的大气层,阳光从地球侧面的大气中穿行时,是先从空间进入大气层,然后,又由大气层进入空间,这样就产生了两次折射,结果和光线透过凸透镜相仿,有点向内弯,向地心方向偏折的聚合光线就照到月亮上去了。太阳光是由红、橙、黄、绿、蓝、靛、紫各种颜色的光线混合成的。当太阳光经过地球上的大气层被折射到地球背后影子里去的时候,它们都受到大气层中极其微小的大气分子的散射和吸收。像黄、绿、蓝、靛、紫等色的光波比较短,在大气中受到的散射影响比较大,它们大部分都向四面八方散射掉了;红色的光线波长比较长,受到散射的影响不大,可以通过大气层穿透出去,折射到躲在地球影子后面的月亮上。所以,在月全食时,公众看到的月亮是暗红色的,即所谓的“红月亮”。 插入水中的筷子在水面处“弯折” 光从空气进到水里,因为水的密度比空气大得多,于是,在水和空气相交处发生折射,不再沿着原来的方向转播。把筷子伸进水里时,我们眼睛看到的是水下那部分已经发生折射的光线。这股光线当然不会与水面上的光线成一条直线,所以筷子没有断,但是看起来却像断了一样。

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?= 1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡,

B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1 = 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低温)条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温和超强磁场(25T)下,一种以分数形态出现的量子电阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理论模型,解释这一现象。 获1998年诺贝尔物理学奖 (4)霍尔效应的应用 随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。 (5)消除副效应 根据实验内容要求测量霍尔电压引入关于“副效应”问题。 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A 、 之间的电压为V H 与各副效应电压的叠加值。 指出:“副效应”是影响测量的系统误差,必须设法消除。 i e h I U R H H H 1 2?==3,2,1=i

晶体电光效应

1.晶体的电光效应 2.KDP 晶体线性电光效应 3.KDP 晶体的应用 1 晶体的电光效应 因为晶体折射率的各向异性与组成晶体的原子或分子的排列方式及相互作用的特点有关,因此,外界作用可以改变他们的排列方式(例如压力下的形变)或相互作用的状况(例如电场使原子极化),导致晶体光学性质产生相应的变化。 人工双折射就是指光学介质受到人为施加的外力或外场作用而产生的偏振和双折射现象。 人工双折射可以根据人们的意愿加以控制。例如将一块受到电场作用的晶体放在两块偏振器之间,人们就可以通过改变电场的大小或方向而有效的控制出射光束的强度、方向和偏振态等,达到电光调制、偏转、调Q 等目的。 1.1 电光效应基本原理 在各向异性晶体中,介电常数是随作用在介质上的电场强度而变化的,尤其在强场作用下这种变化就更加明显,光波在其中的传播规律也要改变。 对于无对称中心的晶体,外加电场沿一个主轴方向作用于晶体上,感生电位移矢量D 和外加电场E 的方向一致,大小关系可表示为: ?+++=320E E E D βαε 以D(E)曲线的切线斜率定义介电常数,上式可写为: ?+++== 2032d d E E E D βαεε 显然,折射率随外加电场而变化(如下图)。我们把介质由于外加电场作用而引起的折射率变化的现象称为电光效应。

为了定量的描述电场引起的折射率变化,上式写为: 2 /122020022 0232132n ??? ? ??++=? +++=E n E n n n E E n βαβα 利用公式,上式可简化为: ?++ + =2 023n n n E n E βα 令:,2/3,/00n b n a βα== 则有电场引起折射率变化为: ?++=20n -n bE aE 此外,不仅电场能够引起介质折射率变化,而且外力也能引起介质的折射率变化。沿晶体主轴方向作用单向压力,参照上述分析方法,折射率因应力而产生的变化,可表示为: ?++=2''0n -n σσb a 其中σ表示应力。由于应力产生的折射率变化成为弹光效应。 当介质上作用一外电场时,除了由于介电常数的变化引起折射率的变化外,电场还通过反压电效应作用,使介质产生应变,这种应变通过弹光效应引起折射率变化。为了区别这两种折射率变化, 我们把由外加电场通过介电常数引起的折 ())0x (11→+≈+当mx x m

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

3晶体的电光效应与电光调制_实验报告

晶体的电光效应与光电调制 实验目的: 1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。 实验仪器: 1) 晶体电光调制电源 2) 调制器 3) 接收放大器 实验原理简述: 某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制 如图 入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为 wt A e x cos 0'=wt A e y cos 0'= 用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0('A E y =)0(' 所以入射光的强度为22 '2 '2)0()0(A E E E E I y x i =+=?∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差A l E x =)('δi y Ae l E -=)(' 通过检偏器出射的光,是这两个分量在y 轴上的投影之和

() 12 45cos )()('0-= ?=-δ δi i y y e A e l E E 其对应的输出光强I t 可写为()()[] 2 sin 2*2200δ A E E I y y t =?∝ 由以上可知光强透过率为2 sin 2δ==i t I I T 相位差的表达式()d l V r n l n n y x 223 0'' 22λ π λ π δ= -= 当相位差为π时?? ? ??= l d r n V n 223 02λ 由以上各式可将透过率改写为()wt V V V V V T m sin 2sin 2sin 02 2 +==π π π π可以看出改变V0或 Vm ,输出特性将相应变化。 1) 改变直流电压对输出特性的影响 把V0=Vπ/2带入上式可得 ()?? ???? ???? ??+=+==wt V V wt V V V V V T m m sin sin 121sin 2sin 2sin 02 2 πππππ π 做近似计算得?? ???????? ??+≈ wt V V T m sin 121ππ 即T ∝Vmsinwt 时,调制器的输出波形和调制信号的波形频率相同,即线性调制 如果Vm >Vπ,不满足小信号调制的要求,所以不能近似计算,此时展开为贝塞尔函数,即输出的光束中除了包含交流信号的基波外,还有含有奇次谐波。由于调制信号幅度比较大,奇次波不能忽略,这时,虽然工作点在线性区域,但输出波形依然会失真。

弧面宝石的特殊光学效应

宝石琢型设计与加工实训课程学习报告 一、学习目的 天然的珠宝玉石有很多不同的种类,然而这些美丽的宝石在打磨加工之前,珠宝玉石的外表都十分质朴,只有经过人工的琢磨才能呈现出珠宝玉石内部的璀璨和光华。彩色宝石的绚丽多彩是通过宝石的颜色、光泽、透明度、折射和琢型等衬托出来的。不同的宝石有着不同的颜色、光泽等,也正是由于其独特的物理构造,宝石在光照下会出现一些特殊光学效应。 宝石的素面有素面朝天的意思,也就是几乎没有任何修饰的宝石,经过人工简单的打磨抛光加工之后而产出的宝石成品,呈现出弯曲,弧度表面的外观,也被称作光面、蛋面、弧面等。素面宝石特别适合具有特殊光学效应的宝石,能充分弥补宝石在火彩、透明度和瑕疵等方面的不足。在光照下,所出现的一些光学效应,使得宝石更美丽动人。比较常见的光学效应有星光效应、猫眼效应、变色效应、变彩效应、月光效应、砂金效应等。 二、学习时间与地点 家庭网络授课 三、学习内容及过程 星光效应 弧形凸面宝石在点光源的照射下,宝石表面呈现交会的四射、六射或十二射星状光芒的光学现象,似夜空中的星光,被称为星光效应。当垂直纤维状包裹体长轴方向切割打磨后,二组或三组平行排列的包裹体以不同角度相交就会产生闪亮的放射状光带。在红(蓝)刚玉的晶体中,含有针状的金红石矿物包裹体,它们平行地伸向六角柱状晶体,在各个面上密集地排列在一起。 这些气体、液体包裹体或微细矿物包裹体具有的条带丝状构造,使光的反射以一定角度交汇于一点,产生星状光芒。四射星光如星光透辉石、星光尖晶石;六射星光如星光红宝石和蓝宝石、星光芙蓉石,十二射的如星光红宝石。以刚玉宝石(红、蓝宝石)的星光效应最好。 猫眼效应

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

3-6 晶体的电光效应及其应用

3-6 晶体的电光效应及其应用 实验目的和要求: 了解熟悉晶体的电光效应;理解晶体光学和物理光学中的相关知识;学会激光实验中光路的调节和光学现象的观察;学会调节晶体的光轴;学会电光晶体半波电压的多种测量方法。 教学内容: 1.KD*P晶体一次电光效应的观察和测量;测出KD*P晶体的半波电压和电光系数。2.将电光晶体作为相位补偿器,测出云母片双折射样品的微小相位差和折射率差。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 什么是电光效应?晶体的光学性质如何受晶体对称性的影响?电光晶体各主轴的定义,性质和调节意义是什么?一次电光效应为什么只存在于没有对称中心的晶体中?电光调制器的构成和作用是什么? 用补偿法测样品相位差的原理是什么,如何实现? 在KD*P晶体的纵向电光效应中,外加电场如何改变晶体的折射率?半波电压如何定义?实验中采用三种方法测量晶体的半波电压,各有什么特点?半波电压测量中零点漂移产生的原因是什么?此实验中晶体的半波电压受温度影响,测量中应记录温度的变化,有什么方法可以减小温度的影响,制造出稳定的电光调制器?你可以想到利用电光效应于哪些方面? 实验装置:He-Ne 激光器的工作和输出光特性,电光调制器的构成,高压电源和电压调节器的使用,电光调值器输出光强的几种探测方式。强调使用高压和激光要注意安全! 实验的主要内容和问题 1.调节KD*P晶体的光轴z轴与激光的传播方向一致。(为什么要作此调节?如何判断? 此光学现象的物理内容是什么?) 2.判断并调节电光调制器中两个偏振片的通光方向分别与电光晶体的主轴x, y 平行,同时估测晶体的半波电压。(晶体上加半波电压,起偏片和检偏片互相成什么角度时,电光调制器的输出光强最弱?) 3.测量电光调制器的输出光强随晶体外加直流电压的变化曲线。(判断光强极小值是否存在于电压为零的位置,为什么?如何由光强的极值位置得到晶体的半波电压?)4.加晶体上交流电压信号Vsinωt,观察受调制的激光输出光强随直流电压的变化。(什么情况下输出光强不改变电压信号的基本特性?什么情况下输出光强的频率为2ω,出现“倍频失真”?如何测量零点漂移电压和晶体的半波电压?) 5.根据倍频原理和相位补偿法原理,设计实验方案,测量双折射样品云母片的相位差和折射率差。(什么情况下置于电光调制腔中的云母片对纵向传播光产生的相位差才可以和电光晶体上产生的相位差线性相加?如何判断并调节云母片的晶轴方向与电光晶体的感应轴一致?) 实验报告要求: 用清晰简明的科学语言写报告。根据自己的理解和提炼阐述实验的相关背景,记录实验操作过程中观察到的物理现象和实验数据,对电光调制器的输出光强随纵向直流电压的变化曲线要进行数据拟合,说明测量样品的相位差和折射率差的实验方案。

磁阻效应实验

实验1: 磁阻效应实验 一、 实验目的 测量锑化铟传感器的电阻和磁感应强度的关系; 作出锑化铟传感器的电阻变化与磁感应强度的关系曲线; 对此关系曲线的非线性区域和线性区域进行曲线和直线拟合。 二、 实验内容 在锑化铟传感器的电流保持不变的条件下,测量锑化铟传感器的的电阻和磁感应强度的关系,作出/(0)R R ?与感应强度B 的关系曲线,并进行曲线拟合。 三、 实验原理 一定条件下,导电材料的电阻值R 随磁感应强度B 变化规律称为磁阻效应。当半导体处于磁场中时,半导体的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减小,电阻增大,表现出横向磁阻效应。通常以电阻率的相对改变量来表示磁阻的大小,即用/(0)ρρ?表示。其中(0)ρ为零磁场时的电阻率。设磁电阻电阻值在磁感应强度为B 的磁场中电阻率为(B)ρ,则()(0)B ρρρ?=-。由于磁阻传感器电阻的相对变化率/(0)R R ?正比于/(0)ρρ?,这里R R()(0)B R ?-=因此也可以用磁阻传感器的电阻相对改变量/(0)R R ?来表示磁阻效应的大小。测量磁电阻值R 与磁感应强度的关系实验装置如图所示: 实验证明:当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率/(0)R R ?正比于磁感应强度B 的二次方,而在强磁场中/(0)R R ?与磁感应强度B 呈线性函数关系。 四、 实验组织运行要求 本实验采用集中与开放相结合方式运行。即导论课时以讨论和练习为主的集中模式进

晶体的电光效应

晶体的电光效应 学号: 姓名: 日期:五、数据处理 1.研究LN单轴晶体的干涉: (1)单轴锥光干涉图样: 调节好实验设备,当LN晶体不加横向 电压时,可以观察到如图现象,这是典型的 汇聚偏振光穿过单轴晶体后形成的干涉图 样。 (2)晶体双轴干涉图样: 打开晶体驱动电压,将状态开关打在直 流状态,顺时针旋转电压调整旋钮,调整驱 动电压,将会观察到图案由一个中心分裂为 两个,这是典型的汇聚偏振光穿过双轴晶体 后形成的干涉图样,它说明单轴晶体在电 场的作用下变成了双轴晶体 2.动态法观察调制器性能: (1)实验现象: 当V1=143V时,出现第一次倍频失真:

当V 2=486V 时,信号波形失真最小,振幅最大(线性调制): 当V 3=832V 时,出现第二次倍频失真: (2)调制法测定LN 晶体的半波电压: 晶体基本物理量 第一次倍频失真对应的电压V 1=143V ,第二次倍频失真对应的电压V 3=832V 。故31832143689V V V V V V π=-=-=。 由3 022 ( )2d V n l πλ γ=得:12 223 0( ) 6.4110 2d n V l π λ γ-= =?

3.电光调制器T-V工作曲线的测量: (1 依据数据作出电光调制器P-V工作曲线:

(2)极值法测定LN 晶体的半波电压: 从图中可以看到,V 在100~150V 时取最小值,在800~850V 时取最大 比较数据可以得出,极小值大致出现在1110V V ≈,极大值大致出现 在3805V V ≈,由此可得31805110695V V V V V V π=-=-= 由3 022 ( )2d V n l πλ γ= 得:12 223 0( ) 6.3510 2d n V l π λ γ-= =? 4.测量值与理论值比较: 算出理论值3 022 ( )649.22d V V n l πλ γ= =。与理论值相比,调制法测量 结果相对误差约6.1%,极值法测量结果误差约7.1%,实验值与理论值符合较好。其中,动态法比极值法更精确。

霍尔效应原理与实验

霍尔效应 一、简介 霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。流体中的霍尔效应是研究“磁流体发电”的理论基础。 二、理论知识准备 1. 1. 霍尔效应 将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。H V 称为霍尔电压。 X (a) (b) 图1 霍尔效应原理图 实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即 d IB R V H H =(1) 或 IB K V H H =(2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。 如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(3) 式中V 为电子的漂移运动速度,其方向沿X 轴的负方向。e 为电子的电荷量。m F 指向Y 轴的负方向。自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正 电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场H E (即霍尔电场),使运动电子受 到一个沿Y 轴正方向的电场力e F ,A 、B 面之间的电位差为H V (即霍尔电压),则 j b V e j eE E e E q F H H H H e ==-==(4)

3.6_电光效应光折变效应非线性光学效应

3 材料的光学性能
3.1 光传播的基本性质 3.2 光的反射和折射 3.3 材料对光的吸收和色散 3.4 光的散射 3.5 材料的不透明性和半透明性 3.6 电光效应、光折变效应、非线型光学效应 3.7 光的传输与光纤材料 3.8 特种光学材料及其应用
https://www.wendangku.net/doc/4312835879.html,
LOGO Materials Physics

3.6 电光效应、光折变效应、非线性光学效应
3.6.1 电光效应及电光晶体 (1) 电光效应(electro-optical effect) 由于外加电场所引起的材料折射率的变化效应。 电场与折射率的关系:
n = n + aE0 + bE + L
0 2 0
泡克尔斯效应
克尔电光效应
n0:没有加电场E0时介质的折射率 a, b:常数
https://www.wendangku.net/doc/4312835879.html,
LOGO Materials Physics

3.6 电光效应、光折变效应、非线性光学效应
3.6.1 电光效应及电光晶体 (a) 泡克尔斯效应(Pockels effect) 1893年
在没有对称中心的晶体中,外加电场与折射率的 关系具有一次电光效应。 旋转椭球折射率体 三轴椭球光折射率体 (双轴晶体) rc:电光陶瓷的电光系数
1 3 Δn = n rc E 2
https://www.wendangku.net/doc/4312835879.html,
LOGO Materials Physics

3.6 电光效应、光折变效应、非线性光学效应
3.6.1 电光效应及电光晶体
透 明 电 极
压 电 晶 体
透 明 电 极
电光晶体:KDP 偏振片:P1⊥P2 电场∥光传播方向 光沿光轴方向传播
ΚD
P
偏振片1
不加电场 不加电场
偏振片2
P P22 不透光 不透光
https://www.wendangku.net/doc/4312835879.html,
LOGO Materials Physics

相关文档