文档库 最新最全的文档下载
当前位置:文档库 › 数学分析教案(华东师大版)上册全集1-10章

数学分析教案(华东师大版)上册全集1-10章

数学分析教案(华东师大版)上册全集1-10章
数学分析教案(华东师大版)上册全集1-10章

第一章实数集与函数

导言数学分析课程简介( 2 学时 )

一、数学分析(mathematical analysis)简介:

1.背景: 从切线、面积、计算

sin、实数定义等问题引入.

32

2.极限 ( limit ) ——变量数学的基本运算:

3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.

微积运算是高等数学的基本运算.

数学分析与微积分(calculus)的区别.

二、数学分析的形成过程:

1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.

2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.

3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.

4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:

三、数学分析课的特点:

逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是

可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.

有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听

为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.

四、课堂讲授方法:

1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:

[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;

[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;

[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;

[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;

[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.

2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设.

3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.

4.讲解的重点: 概念的意义与理解,几何直观,理论的体系,定理的意义、条件、结论.定理证明的分析与思路,具有代表性的证明方法,解题的方法与技巧. 某些精细概念之间的本质差别.

五.要求、辅导及考试:

1.学习方法:尽快适应大学的学习方法, 尽快进入角色. 课堂上以听为主, 但要做课堂笔

: 3。

记.课后一定要认真复习消化, 补充笔记.一般课堂教学与课外复习的时间比例应为

对将来从事数学教学工作的师范大学本科生来说, 课堂听讲的内容应该更为丰富: 要认真评价教师的课堂教学, 把教师在课堂上的成功与失败变为自己的经验. 这对未来的教学工作是很有用的.

2.作业:作业以练习题中划线以上的部分习题为主要内容. 大体上每周收一次作业, 一次收清. 每次重点检查作业总数的三分之一. 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩.作业要按数学排版格式书写工整.

3. 辅导: 大体每周一次, 第一学期要求辅导时不缺席.

4. 考试: 按教学大纲的要求, 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容, 包括[1]中的典型例题. 考试题为标准化试题,理论证明题逐渐增多.

第一章实数集与函数

教学目的:

1.使学生掌握实数的概念,建立起实数集确界的清晰概念;

2.使学生深刻理解函数的概念,熟悉与函数性态有关的一些常见术语。要求学生:理解并熟练运用实数的有序性、稠密性与封闭性;掌握邻域的概念;牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式;理解实数确界的定义及确界原理,并在有关命题证明中正确地加以应用;深刻理解函数的定义以及复合函数、反函数、有界函数、单调函数和初等函数的定义,熟悉函数的各种表示方法;牢记基本初等函数的定义、性质及其图象,会求函数的定义域,会分析函数的复合关系。

教学重点:函数、确界的概念及其有关性质。

教学时数:10学时

§ 1 实数(2学时)

教学目的:使学生掌握实数的基本性质.

教学重点:

1. 理解并熟练运用实数的有序性、稠密性和封闭性;

2. 牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)

教学难点:实数集的概念及其应用.

教学方法:讲授.(部分内容自学)

一.复习引新:

1.实数集

:回顾中学中关于实数集的定义.

2.四则运算封闭性:

3.三歧性( 即有序性 ):

4.Rrchimedes性:

5.稠密性:有理数和无理数的稠密性, 给出稠密性的定义.

6.实数集的几何表示───数轴:

7.两实数相等的充要条件:

8.区间和邻域:

二. 讲授新课:

(一). 几个重要不等式:

1. 绝对值不等式: 定义 [1]P3 的六个不等式.

2. 其他不等式:

⑵均值不等式: 对

(算术平均值)

(几何平均值)

(调和平均值) 有平均值不等式:

时成立.

等号当且仅当

⑶ Bernoulli 不等式: (在中学已用数学归纳法证明过)

有不等式

且, 且时, 有严格不等式

证:由且

由二项展开式

⑷利用二项展开式得到的不等式: 对

有上式右端任何一项.

作业:P4.1.(1)2.(2)、(3)3

§ 2 数集 确界原理(4时)

教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。

教学要求:

1. 掌握邻域的概念;

2. 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

一、区间与邻域

二、有界数集与确界原理:

1.

有界数集: 定义(上、下有界, 有界),闭区间、为有限数)、邻域等都

是有界数集,集合也是有界数集.

无界数集: 定义, 等都是无界数集,

集合也是无界数集.

2.确界:给出直观和刻画两种定义.

例1⑴则

⑵则

例2 非空有界数集的上(或下)确界是唯一的.

例3 设和是非空数集,且有则有.

例4 设和是非空数集. 若对和都有则有

证是的上界, 是的下界,

例5和为非空数集,试证明:

证有或由和分别是和的下界,有或

即是数集的下界,

又的下界就是的下界,

是的下界,

是的下界, 同理有

3.数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.

4.确界与最值的关系: 设为数集.

⑴的最值必属于, 但确界未必,确界是一种临界点.

⑵非空有界数集必有确界(见下面的确界原理), 但未必有最值.

⑶若存在, 必有对下确界有类似的结论.

三、确界原理:

Th1.1 (确界原理)

设S为非空数集。若S有上界,则S必有上确界;若S有下界,则S必有下确界。

作业:P9:5;6;8

§ 3 函数概念( 2学时 )

教学目的:使学生深刻理解函数概念。

教学要求:

1. 深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法;

2. 牢记基本初等函数的定义、性质及其图象。会求初等函数的存在域,会分析初等函数的复合关系。

教学重点:函数的概念。

教学难点:初等函数复合关系的分析。

一、函数:

1. 函数: [1]P10—11的四点说明.

2. 定义域: 定义域和存在域.

3. 函数的表示法:

4. 反函数:一一对应,反函数存在定理.

5. 函数的代数运算:

二、分段函数:以函数

为例介绍概念.

例1

去掉绝对值符号.

例2

例3设

(答案为8)三、函数的复合:

例4

求并求

定义域.

例5⑴

A. B.

C.

D.

[4]P407 E62.

四、初等函数:

1.基本初等函数:

2.初等函数:

初等函数的几个特例: 设函数和都是初等函数, 则

3.

⑴是初等函数, 因为

⑵和都是初等函数,

因为 ,

.

⑶幂指函数是初等函数,因为

作业:P153;4.(2)(3);5. (2);7: (3);11

§4 具有某些特性的函数( 2学时 )

教学目的:熟悉与初等函数性态有关的一些常见术语.

教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期。

教学重点:函数的有界性、单调性。

教学难点:周期函数周期的计算、验证。

一、有界函数:有界函数概念.

内有界.

例6验证函数在

解法一由

当时,有

,

在内有界.

对总有即

解法二令关于的二次方程有实数根.

于是

解法三令对应

二、单调函数

三、奇函数和偶函数

四、周期函数

第二章数列极限

教学目的:

1.使学生建立起数列极限的准确概念,熟练收敛数列的性质;

2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数列极限的

概念.深刻理解数列

定义证明数列极限等有关命题。要求学生:逐步建立起数列极限的

发散、单调、有界和无穷小数列等有关概念.会应用数列极限的

能运用

唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些数列的敛散性;

定义及其应用.

教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的

§ 1 数列极限的定义

教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。

ε-定义及其应用。

教学重点、难点:数列极限的概念,数列极限的N

教学时数:4学时

一、引入新课:以齐诺悖论和有关数列引入——

二、讲授新课:

(一)数列:

1.数列定义——整标函数.数列给出方法: 通项,递推公式.数列的几何意义.

2.特殊数列: 常数列,有界数列,单调数列和往后单调数列.

(二)数列极限: 以为例.

”定义 )

定义( 的“

收敛的“”定义 )

定义( 数列

注:1.关于:的正值性, 任意性与确定性,以小为贵; 2.关于:的存在性与非唯一性,对只要求存在,不在乎大小.3.的几何意义.

(三)用定义验证数列极限:讲清思路与方法.

例1

例2

例3

例4

注意到对任何正整数

时有就有

于是,对

例5

证法一令有用Bernoulli不等式,有

证法二(用均值不等式)

例6

证时,

证明

例7设

(四)收敛的否定:

”定义 ).

定义( 的“

发散的“”定义 ).

定义( 数列

例8 验证

(五)数列极限的记註:

1.满足条件“”的数列

2.改变或去掉数列的有限项, 不影响数列的收敛性和极限.重排不改变数列敛散性:

3.数列极限的等价定义:

任有理数

对任正整数

(六)无穷小数列: 定义.

Th2.1 ( 数列极限与无穷小数列的关系 ).

§ 2 收敛数列的性质(4学时)

教学目的:熟悉收敛数列的性质;掌握求数列极限的常用方法。

教学重点、难点::迫敛性定理及四则运算法则及其应用,数列极限的计算。

教学时数:4学时

一.收敛数列的性质:

1.极限唯一性:(证)

2.收敛数列有界性——收敛的必要条件:(证)

3.收敛数列保号性:

若则(证)

Th 1 设

若,(注意“ = ”;

系1 设

并注意

(或

系3 若则对

绝对值收敛性见后.

4.迫敛性 ( 双逼原理 ):

Th 2 ( 双逼原理 ). ( 证 )

5.绝对值收敛性:

Th 3 ( 注意反之不正确 ).

( 证 )

}和{}收敛, 则

系设数列{

( 证明用到以下6所述极限的运算性质 ).

6.四则运算性质:

Th 4 ( 四则运算性质, 其中包括常数因子可提到极限号外 ). ( 证 )

7. 子列收敛性: 子列概念.

Th 5(数列收敛充要条件) {}收敛{}的任何子列收敛于同一极限.

Th 6 (数列收敛充要条件) {}收敛子列{}和{}收敛于同一极限.

}收敛子列{}、{}和{都收敛.

Th 7 ( 数列收敛充要条件 ) {

( 简证 )

二.利用数列极限性质求极限:

两个基本极限:

1.利用四则运算性质求极限:

例1

註:关于的有理分式当时的极限情况

例2填空:

例3

例4

2.双逼基本技法: 大小项双逼法,参阅[4]P5

3.

例5求下列极限:

例6 (

例7求证

存在. 若则

例8 设

三.利用子列性质证明数列发散:

例9 证明数列发散.

§ 3 收敛条件(4学时)

教学目的:使学生掌握判断数列极限存在的常用工具。

教学要求:

1. 掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;

2. 初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。

教学重点:单调有界定理、Cauchy收敛准则及其应用。

教学难点:相关定理的应用。

教学方法:讲练结合。

一.数列收敛的一个充分条件——单调有界原理:回顾单调有界数列.

Th 1 ( 单调有界定理 ). ( 证 )

例1 设证明数列{

}收敛.

例2 (重根号),证明数列{

调有界, 并求极限.

例3求

( 计算的逐次逼近法, 亦即

迭代法 ).

解由均值不等式, 有有下界;

注意到对

有有↘,

二、收敛的充要条件——Cauchy收敛准则:

1.Cauchy列:

2.Cauchy收敛准则:

收敛,

Th 2 数列{

(或数列{收敛,} Th 2 又可叙述为:收敛列就是Cauchy列. (此处“就是”理解为“等价于”).

( 简证必要性 )

例4证明:任一无限十进小数的不足近似值所组成的数列

是中的数.

收敛. 其中

证令有

……

例5设试证明数列

收敛.

{

证明留在下节进行.

三. 关于极限

例6

例7

例8

华东师范大学2004数学分析试题

华东师范大学2004数学分析试题

华东师范大学2004数学分析 一、(30分)计算题。 1、求 2 1 20)2 (cos lim x x x x -→ 2、若)), sin(arctan 2ln x x e y x +=-求' y . 3、求 ?--dx x xe x 2)1(. 4、求幂级数∑∞ =1 n n nx 的和函数)(x f . 5、 L 为过 ) 0,0(O 和 )0,2 (π A 的曲线 ) 0(sin >=a x a y ,求 ?+++L dy y dx y x . )2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中) 10(,22 ≤≤+=z y x z , 取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则} {n x 至少存在一个聚点). ,(0 +∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连 续. 3、若 ) (x f , ) (x g 在] 1,0[上可积,则 ∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim .

4、若∑∞=1n n a 收敛,则∑∞ =1 2n n a 收敛. 5、若在 2 R 上定义的函数 ) ,(y x f 存在偏导数 ),(y x f x ,) ,(y x f y 且),(y x f x , ) ,(y x f y 在(0,0)上连续,则),(y x f 在 (0,0)上可微. 6、),(y x f 在2 R 上连续,} ) ()(|),{(),(22 2 r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(0 0 则.),(,0),(2 R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上有最大值或最小值。 四、(15分)求证不等式:]. 1,0[,122∈+≥x x x 五、设) (x f n , ,2,1=n 在],[b a 上连续,且) (x f n 在],[b a 上一致 收敛于 ) (x f .若 ] ,[b a x ∈?, )(>x f .求证: , 0,>?δN 使 ],[b a x ∈?, N n >,. )(δ>x f n 六、(15分)设}{n a 满足(1); ,2,1,1000 ++=≤≤k k n a a n k (2)级数∑∞ =1 n n a 收敛. 求证:0 lim =∞ →n n na . 七、(15分)若函数)(x f 在),1[+∞上一致连续,求证: x x f )(在),1[+∞上有界. 八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3 R 有连续偏导数,而且对以任意点) ,(00, 0z y x 为中心,以任意正数r 为半径的上半球面, ,)()()(:02202020z z r z z y y x x S r ≥=-+-+-

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x ) = f ( x0 ) , ( 1) 则称f 在点x0 连续. 例如, 函数f ( x ) = 2 x + 1 在点x = 2 连续,因为 又如,函数li m x → 2 f ( x) = lim x →2 ( 2 x + 1 ) = 5 = f (2 ) . f ( x) = x sin 1 x , x ≠ 0, 0 , x = 0 在点x = 0 连续,因为 lim x →0f ( x) = lim x →0 x sin 1 x= 0 = f ( 0) . 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为 Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 . 注自变量的增量Δx或函数的增量Δy 可以是正数,也可以是0 或负数. 引进了增量的概念之后,易见“函数y = f ( x ) 在点x0 连续”等价于 lim Δy = 0 . Δx→0

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析课本(华师大三版)-习题及答案04

第四章 函数的连续性 习题 §1 连续性概念 1. 按定义证明下列函数在其定义域内连续: (1)()x x f 1 = ; (2) ()x x f = 2. 指出下列函数的间断点并说明其类型: (1)()x x x f 1+ =; (2)()x x x f sin =; (3)()[] x x f cos =; (4)()x x f sgn =; (5)()()x x f cos sgn =; (6)()?? ?-=为无理数; 为有理数, x x x x x f ,, (7)()()?? ? ? ??? +∞<<--≤≤--<<-∞+=x x x x x x x x f 1,11sin 11 7,7,71 3. 延拓下列函数,使其在R 上连续: (1)()2 8 3--=x x x f ; (2)()2cos 1x x x f -=; (3)()x x x f 1cos =. 4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续。又问:若f 与2f 在I 上连续, 那么f 在I 上是否必连续? 5. 设当0≠x 时()()x g x f ≡,而()()00g f ≠。证明:f 与g 两者中至多有一个在0 =x 连续 6. 设f 为区间I 上的单调函数。证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间 断点 7. 设f 只有可去间断点,定义()()y f x g x y →=lim ,证明:g 为连续函数 8. 设f 为R 上的单调函数,定义()()0+=x f x g ,证明:g 在R 上每一点都右连续 9. 举出定义在[]1,0上分别符合下述要求的函数: (1)只在 41,31,21三点不连续的函数; (2)只在4 1 ,31,21三点连续的函数;

数学分析教案_(华东师大版)上册全集_1-10章

第一章实数集与函数 导言数学分析课程简介( 2 学时) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:

三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析,高等教育出版社,2001; [2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992; [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

数学分析华东师大反常积分

数学分析华东师大反常 积分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十一章反常积分 §1 反常积分概念 一问题提出 在讨论定积分时有两个最基本的限制: 积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制, 考虑无穷区间上的“积分”, 或是无界函数的“积分”, 这便是本章的主题. 例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图 11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v0 至少要多大设地球半径为R, 火箭质量为m, 地面上的重力加速度为 g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为 mg R2 F = . x2 于是火箭从地面上升到距离地心为r ( > R) 处需作的功为

r mg R ∫ ∫ 2 ∫ d x = m g R 2 1 - 1 .R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = m g R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

华东师大数学分析试题

华东师大2019年数学分析试题 一、(24分)计算题: (1) 求011lim()ln(1)x x x →-+; (2) 求32cos sin 1cos x x dx x +?g (3) 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数, 试求grad z 。 二、(14分)证明: (1)11(1)n n +??+???? 为递减数列: (2) 111ln(1),1,21n n n n <+<=+???? 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之 一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导, '()f x K ≤ (K 为正常数) ,(,)x a b ∈ 证明:f 在点a 右连续,在点b 左连续。 四、(14分)设1 20(1)n n I x dx =-?,证明: 五、(12分)设S 为一旋转曲面,它由光滑曲线段

绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为: 2(b a A f x π=? 六、(24分)级数问题: (1) 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧, “死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。设 sin ,01,0()x x x x f x ≠=?=??{}[]() x a,b ()()11()()n n n f x f x f x f x f x ∈? ?,求 ()(0),1,2,k f k =L (2) 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教 谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故 ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P .3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明|||| 2 22 2c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是2 2 b a +,OC 的长度是2 2 c a +, AC 的长度为||c b -。因为三角形两边的差 大于第三边,所以有

数学分析-上册--第三版-华东师范大学数学系-编

数学分析-上册--第三版-华东师范大学数学系-编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,

1 再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明| ||| 2222c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是 2 2b a +,OC 的长度是2 2c a +, a c b ) ,(b a A ) ,(c a C x y O

数学分析教案(华东师大版)第七章实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:14学时 § 1 关于实数集完备性的基本定理(4学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 .

三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1. ⅰ>对 一个闭区间包含在前一个闭区间中 ; . 即当时区间长度趋于零. ⅱ> 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个“闭、缩、套”区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 递增, 递减. 例如和都是区间套. 但、 和都不是. 2.Cantor区间套定理: 是一闭区间套. 则存在唯一的点,使对有 Th 3 设 简言之, 区间套必有唯一公共点. 四. Cauchy收敛准则——数列收敛的充要条件 :

1.基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy列. 例1验证以下两数列为Cauchy列 : ⑴ . ⑵ . 解⑴ ; ,为使,易见只要 . 对 于是取 ⑵ . 当 为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 ,

数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。

一、引入新课: 通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌 握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什 么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数 的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第 六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.wendangku.net/doc/4513203926.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参 阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

数学分析(华东师大版)第三章习题详解

P 47 1.按定义证明: (1)65lim 6;x x x →+∞+= (2)2 2 lim (610)2;x x x →-+= (3) 2 2 5lim 1;1 x x x →∞ -=- (4)2 lim 0;x - →= (5)0 0lim cos cos .x x x x →= 证: (1) 不妨设0,x >则 6556.x x x +-= 0,ε?>取5 ,M ε = 则当x M >时, 有6556, x x x ε+-= <故65lim 6.x x x →+∞ += (2)22|(610)2||68||4||2|.x x x x x x -+-=-+=--限制|2|1,x -<则 |4||(2)2||2|23,x x x -=--≤-+< 进而有 2 |(610)2|3|2|.x x x -+-<- 0,m in{1,},:0|2|3 x x ε εδδ?>?=?<-<有2 |(610)2|.x x ε-+-<故得证. (3)2 2 22 2 2 54488 ||2, 1| |.1 1 || 2 x x x x x x x x ->-= <= < --- 当时8 0,m ax{2,},||M x M εε?>?=>当时有 2 2 51,1 x x ε--<-故得证. (4) 当021x <-<时有12,x <<进而 20(2)(2)4(2),x x x == ≤+-<- 对于0,ε?>取,4 ε δ= 当02x δ<-<时,有 0,ε< 所以2 lim 0.x - →= (5) 001|cos cos |sin sin ||,22 2 x x x x x x x x +--=- ≤- (1)

数学分析课本(华师大三版)-习题及答案10

习 题 十 1. 求下列曲线所围图形的面积. (1) y x x x y = ===1 14,,,0=; (2) 轴; y x y y ==3 8,, (3) ; y e y e x x x ==?,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2 380,,=1; (6) y x y y x y =+===14,,,;3 (7) ; y x x y 2 24=?=, (8) . x y y x =?=2 10(), 2. 求抛物线以及在点y x x =?+?2 4(,)03?和处的切线所围图形的面积. (,)30 3. 设曲线与直线y x x =?2y ax =,求参数,使该曲线与直线围图形面积为 a 92 . 4. 曲线与相交于原点和点f x x ()=2 g x cx c ()=>3 0()(,)11 2 c c ,求的值,使位于区间c [,01 c 上,两曲线所围图形的面积等于 23. 5. 求星形线所围图形的面积(a ). x a t y a t t ==?????≤≤cos sin 3 3 02 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积. (1) 三叶玫瑰线r =83sin θ; (2) 心形线r =?31(sin )θ; (3) r =+1sin θ与r =1; (4) r =2与r =4cos θ. 7. 证明:球的半径为R 、高为的球冠的体积公式为: h V h R = ?13 32 π()h

8. 计算圆柱面与所围立体(部分)的体积. x y a 22+=2 2 x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积. x y a 2 2 +=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为. h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积. (1) ; y x x =≤sin () 0π≤;(2) y x x y ===2 20,,(3) y x y x == 2,; (4) ; y x x e =≤ln () 1≤3 (5) . y x y x ==2 2 , 12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体 积. 13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =?3 2y x =2 y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长. (1) ; y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38; (3) x y y y = ?≤≤141 2 12ln (),e ; (4) r a a =>≤≤θθ ,()003; (5) r a =≤sin ()3 3 03≤θ θπ,; (6) . x a t t t y a t t t t =+=?≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2 2 20+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密 度x a y a ==cos sin 3 θ,3 θρ为常数) . 17. 计算下列曲线所围图形的质量中心. (1) ax ; y ay x a ==>2 2 0, () (2) x a y b x a y b 222 2100+=≤≤≤≤,,(); (3) 轴,()y a x x =sin ,01≤≤x ; 18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3 (c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功. 20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,

数学分析教案华东师大第三版

§6 重积分的应用 (一) 教学目的:学会用重积分计算曲面的面积,物体的重心,转动惯量与引力. (二) 教学内容: 曲面面积的计算公式;物体重心的计算公式;转动惯量的计算公式;引力的计算公式. 基本要求:掌握曲面面积的计算公式,了解物体重心的计算公式,转动惯量的计算公式 和引力的计算公式. (三) 教学建议: 要求学生必须掌握曲面面积的计算公式,物体重心的计算公式,转动惯量的计算公式和引力的计算公式,并且布置这方面的的习题. ________________________________________ 一 曲面的大面积 设D 为可求面积的平面有界区域函数在D 上具有连续一阶偏导数,讨论由方程 D y x y x f z ∈=),(,),( 所确定的曲面S 的面积i σ? ==i i i i 1 1当 0||||→T 时,可用和式∑=?n i i A 1的极限作为S 的面积 首先计算i A ?的面积,由于切平面的法线向量就是曲面S 在),,(i i i i M ζηξ处的法线向量,记它与z 轴的夹角为i γ,则

),(),(11 cos 22 i i y i i x i f f ηξηξγ++= i i i y i i x i i i f f A σηξηξγσ?++=?= ?),(),(1cos 22 ∑∑==?++=?n i i i i y i i x n i i f f A 1 221),(),(1σηξηξ 是连续函数),(),(122i i y i i x f f ηξηξ++在有界闭域上的积分和,所以当0||||→T 时,就得 到 ∑=→?++=?n i i i i y i i x T f f S 1220||||),(),(1lim σηξηξ dxdy y x f y x f D i i y i i x ??++=),(),(122 或 ∑??=→=?=?n i D i i T z n dxdy S 10|||||),cos(||)cos |lim γσ 例 1 求圆锥 22y x z += 在圆柱体 x y x ≤+22内那一部分的面积 解 dxdy y x z y x z S D i i y i i x ??++= ?),(),(122 x y x D ≤+22: 所求曲面方程为 ?+= 22y x z 2222,y x y z y x x z y x +=+=

最新数学分析教案华东师大版第五章导数和微分精编版

2020年数学分析教案华东师大版第五章导数和微分精编版

第五章导数和微分 教学目的: 1.使学生准确掌握导数与微分的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分; 2.弄清函数可导与可微之间的一致性及其相互联系,熟悉导数与微分的运算性质和微分法则,牢记基本初等函数的导数公式,并熟练地进行初等函数的微分运算; 3.能利用导数与微分的意义解决某些实际问题的计算。 教学重点、难点:本章重点是导数与微分的概念及其计算;难点是求复合函数的导数。 教学时数:16学时 § 1 导数的概念(4学时) 教学目的:使学生准备掌握导数的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分,能利用导数的意义解决某些实际应用的计算问题。 教学要求:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数

的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用为体;会求曲线上一点处的切线方程。 教学重点:导数的概念。 教学难点:导数的概念。 教学方法:“系统讲授”结合“问题教学”。 一、问题提出:导数的背景. 背景:曲线的切线;运动的瞬时速度. 二、讲授新课: 1.导数的定义: 定义的各种形式. 的定义. 导数的记法. 有限增量公式: 例1 求 例2 设函数在点可导, 求极限 2.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点. 例3考查在点的可导情况. 3.导数的几何意义: 可导的几何意义, 导数的几何意义, 单侧导数的几何意义.

华师大04数分

华东师范大学2004数学分析 一、(30分)计算题。 1、求12 0)2 (cos lim x x x x -→ 2、若)),sin(arctan 2ln x x e y x +=-求'y . 3、求?--dx x xe x 2) 1(. 4、求幂级数∑∞=1n n nx 的和函数)(x f . 5、L 为过)0,0(O 和)0,2(π A 的曲线)0(sin >=a x a y ,求?+++L dy y dx y x .)2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中)10(,22≤≤+=z y x z ,取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则}{n x 至少存在一个聚点).,(0+∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连续. 3、若)(x f ,)(x g 在]1,0[上可积,则∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim . 4、若∑∞=1n n a 收敛,则∑∞ =12n n a 收敛. 5、若在2R 上定义的函数),(y x f 存在偏导数),(y x f x ,),(y x f y 且),(y x f x ,),(y x f y 在(0,0)上连续,则),(y x f 在(0,0)上可微. 6、),(y x f 在2R 上连续,})()(|),{(),(2202000r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(00 则.),(,0),(2R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上

【精品】数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1- 10章

第一章实数集与函数 导言数学分析课程简介( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 32 sin、实数定义等问题引入. 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算 研究变实值函数.主要研究微分(differential)和积分(integration) 两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函 数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是 连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三 世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、 成果的积累时期.

3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法:

相关文档
相关文档 最新文档