文档库 最新最全的文档下载
当前位置:文档库 › 循环流化床锅炉燃烧控制特性研究_宋艳苹

循环流化床锅炉燃烧控制特性研究_宋艳苹

循环流化床锅炉燃烧控制特性研究_宋艳苹
循环流化床锅炉燃烧控制特性研究_宋艳苹

循环流化床锅炉(CFB )燃烧技术是一项近年来发展起来的新一代高效、

低污染清洁燃烧燃煤技术。通过向循环流化床锅炉(CFBB )内直接加入石灰石、白云石等脱硫剂,可以脱去燃料在燃烧过程中生成的SO 2。根据燃料中含硫量的大小确定加入的脱硫剂量,可达到90%以上的脱硫效率;另外,循环流化床锅炉燃烧温度一般控制在850~950℃的范围内,这一温度范围不仅有利于脱硫,而且可以抑制氮氧化物(热力

型NO)的形成,

同时由于循环流化床锅炉普遍采用分段(或分级)送入二次风,保证炉内尤其是NOx 生成区域处于还原型气氛,又可控制燃料型NO 的产生。在一般情况下,循环流化床锅炉NOx 的生成量仅为煤粉炉的1/4~1/3。NOx 的排放量可以控制在300mg/m 3以下。因此,循环流化

床燃烧是一种经济、

有效、低污染的燃烧技术。而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点,因此在国际上得到迅速的商业推广。因此,在我国得到了迅猛的发展,循环流化床锅炉日趋大型化。

本文以某电厂410t/h 超高压循环流化床锅炉为例简要介绍了燃烧控制系统。对循环流化床锅炉燃烧相关的控制系统的特点进行分析。

1.循环流化床燃烧控制特点

循环流化床锅炉不同于煤粉炉和燃油锅炉,其控制回路多,系统比较复杂,控制系统设计一般包括以下主要回路:汽包水位控制;过热汽温控制;燃料控制;风量及烟气含氧量控制;炉膛负压控制;料床温度控制;料床高度控制;二级返料回料控制。对于汽包水位控制和过热汽温控制特性与通常的煤粉炉和燃油锅炉相同,在此只对与循环流化床锅炉燃烧相关的控制系统的特点进行分析。

图1循环流化床锅炉输入和输出变量关系

表1循环流化床锅炉的参数耦合

由于循环流化床锅炉其燃烧过程十分复杂,燃烧受多种因素的影响,循环流化床锅炉是一个多参数、非线性、时变及多变量紧密接合的

复杂系统,使得其自动控制比一般锅炉更加复杂和困难,由于其自身的

工艺特点,它比普通锅炉具有更多的输入和输出变量,耦合关系更加复杂,如图1所示。

当锅炉负荷发生变化时(外扰),或给水量、给煤量、返料量、减温水量、引风量、一次风量、二次风量等任一输入量(内扰)改变时,所有输出量(如汽泡水位、蒸汽温度、炉膛压力、床温等)都要发生变化,只是程度

有所不同,如表1所示。因而循环流化床锅炉控制以系统稳定可靠,

负荷自我调节适应性好,系统运行的技术经济效益好,具备完善的操作指导和事故分析手段等,作为控制系统设计的标准。

2.循环流化床锅炉燃烧控制任务

循环流化床锅炉自动控制的基本任务是使燃料燃烧所提供的热量

适应锅炉蒸汽负荷的需要,同时还要保证锅炉安全经济运行。

每台锅炉燃烧过程控制系统的任务及系统的选择因燃料种类、燃烧设备以及锅炉运行方式不同而有区别,燃烧控制系统的任务归纳起来有如下几个方面:

(1)维持汽压(如果是1台锅炉运行,则维持过热器出口汽压;如果是几台锅炉并列运行,则维持母管汽压稳定)。汽压的变化表示锅炉的蒸汽产量与负载耗汽量不相适应,这时必须相应地改变燃料的供应量,以改变锅炉的蒸汽产量。

(2)保证锅炉燃烧过程的经济性。当燃料量改变时,必须相应地调节送风量,使它与燃料相配合,保证燃烧过程有较高的经济性。

(3)引风量与送风量相配合以保证炉膛压力在某一值。炉膛压力的高低,关系着锅炉的安全经济运行。

(4)料床温度是一个直接影响锅炉能否安全连续运行的重要控制参数,同时也直接影响着锅炉运行中的脱硫效率及NOx 的产生量。床温度控制在850℃~950℃左右,这个温度是实现炉内脱硫的最佳温度,同时NOx 的产生量也比较小。床温过低不但使锅炉效率下降,而且运行不稳定容易灭火;床温过高会使脱硫效率下降、NOx 产量大大增加,同时容

易造成炉膛料床结焦,无法循环流化燃烧而停炉。由此可见,

料床温度是循环流化床锅炉运行极为重要的参数。

(5)床高控制也与锅炉的安全连续运行密切相关。床高控制也就是

控制料床的料层厚度。料层太厚,

会把一次风的“风头”压住,使炉料不能达到完全流化状态。料层太薄,首先不能满足带负荷的要求;其次会使一次风穿透料层吹灭炉火。

(6)二级返料回灰量控制。该量控制的好坏将自接影响CFBB 的循环效率,另外也对料床温度有影响。

3.410t/h 循环流化床锅炉的控制方法探讨

因此针对循环流化床锅炉其燃烧系统的特点,国产CFB 及引进CFB 的控制系统要是在煤粉炉的控制基础上做一定的调整。根据工程实际,主要有以下几个控制特点:

3.1单元制机组锅炉负荷指令

在单元制机组中,锅炉负荷指令在协调主控系统中形成。

鉴于CFB 锅炉的大惯性,燃料量的快速改变不能引发蒸汽参数的快速响应且不利于床温稳定,故协调主控宜采用机跟炉方式。此时,锅炉负荷指令根

据电功率(MW)指令通过前馈(作主调量)+偏差校正运算,

再经变化率限制及高低值限制后获得。汽机调速系统接受协调系统中汽机主控调节器输出,汽机调门控制主汽压力。为了充分利用锅炉蓄热提高负荷响应速度,在汽机主控调节器给定值上引入基于电功率(MW)偏差的函数校正,以控制主汽压力适度波动而加快电功率(MW)跟随指令。

当汽机侧不能承担主汽压力调节任务时,锅炉负荷以稳定主汽压力为目的。锅炉负荷指令由主汽压力PID 调节器输出经变化率限制及高低值限制后获得。此时,汽机调速系统不接受协调内容主汽压力过热蒸汽温度床温炉膛负压

烟气含氧量料层高度汽包水位燃料量强中强强中强一次风强中强强强弱中二次风强中中强强弱中引风弱弱弱强弱弱弱排渣弱弱弱弱弱强弱减温水流量中强无无无无无给水流量

无无

循环流化床锅炉燃烧控制特性研究

宋艳苹1,2刘圣勇1

(1.河南农业大学 2.河南城建学院)

[摘要]论文以410t/h 循环流化床锅炉为研究对象,通过分析其控制特点及控制任务,结合实践经验,对燃烧自动控制方法进行了

分析研究。[关键词]循环流化床燃烧自动控制汽泡水位蒸汽温度蒸汽压力蒸发量炉膛压力床温

烟气含氧量

气体污染排放量床高

给水量减温水量给煤量一次风量二次风量引风量返料量排渣量

其它影响因素

负荷指令

锅炉系统

作者简介:宋艳苹(1980-),河南鹤壁人,2004年毕业于华北水利水电学院热能与动力工程专业,现于河南城建学院建筑环境与能源工程系从事教

学工作。刘圣勇(1964-),通讯作者,教授,博士生导师,农业部可再生能源重点实验室副主任,河南农业大学能源与环境工程系系主任。

(下转第20页)

系统指令,相反,协调主控系统中汽机主控调节器输

出跟踪汽机调门阀位值。

3.2风量控制a.总风量指令

根据锅炉负荷指令与实际总煤量对应的风量取大值,并考虑烟气含氧量的校正,再经最小值限制作为总风量指令信号。根据此总风量指令信号按预设的函数关系分配为一次风量(床下配风)指令和二次风量(床上配风)的控制指令。

b.一次风控制

一次风用来流化床料,并为燃料的燃烧提供初始燃烧氧气。根据总

风量指令分配的一次风量(床下配风)指令,

经床温控制校正信号修正,与最小一次风量设定值取大值,作为一次风量的给定值。通过PID 调节回路,控制一次风挡板开度,确保一次风量在不低于安全流化风量的前提下,满足锅炉负荷及床温调整的要求。

c.二次风控制

二次风为床料提供燃尽风,主要承担调节烟气含氧量的任务,从不同高度送入还可均衡各段床温。根据总风量指令分配的二次风量(床上

配风)指令,

经烟气含氧量修正和床温控制校正信号修正,作为二次风量的给定值。通过PID 调节回路,控制相应的二次风挡板开度使二次风量满足运行要求。

烟气含氧量调节器的输出作为二次风量(床上配风)指令的有限幅的修正系数,并设置手/自动切换接口。在正常运行时调整烟气含氧量为期望值,保证锅炉燃烧经济性;当氧量信号故障时也不会造成二次风量的大幅突变,有利于炉内流化稳定。

3.3燃料控制

锅炉燃料量指令是由锅炉负荷指令与实际进入锅炉的总风量取小值,并经床温控制校正信号修正后获得。锅炉燃料量指令作为燃料主控的给定值,所有输入锅炉的燃煤量测量值的总和经发热量补偿运算后所得值,与燃油折算煤量之和作为反馈值,燃料主控PID 输出值经分配后调整各给煤机的出力,保证总热量输入满足锅炉负荷及床温调整的要求。

对于采用气力播煤装置的系统,还需对播煤风压和风量进行调节,使之与给煤量相适应,才能实现煤粒在密相区床面上的均匀分布。

3.4床温控制

床温是CFB 锅炉运行状态的重要表征参数,也是较难控制的参数

之一。这是因为床温是燃料燃烧发热和床料放热综合作用的结果,而影

响燃料发热和床料放热的因素较多,如燃料热值、

粒度尺寸、物料流速、物料浓度、入炉风量、火炉风温以及吸热工质参数等等。

床温通过在燃烧室密相区布置多支热电偶进行测量。将多个测量值进行综合运算后得出床温表征值。为了保证CFB 锅炉的稳定燃烧并有利于获得最佳脱硫效果和减少NOx 排放量,床温需控制在850℃~900℃。

对于采用高温回料系统的CFB 锅炉,循环灰(回料)温度与炉内床温十分接近,循环灰量不能明显影响床温且在正常运行中不单独调整(保证返料风在正常范围时,循环灰量具有平衡能力)。影响床温的主要因素是一次风与二次风比率和燃料量。一次风为床料提供流化动力和初始燃烧氧气,但同时对密相区有明显的冷却效果;二次风为床料提供燃尽风,从不同高度送入可均衡各段床温,二次风还主要承担调节烟气

含氧量的任务。

燃料量直接影响炉内发热量,与锅炉负荷相适应的风煤比是决定床温的最终因素。

为达到控制床温的目的,采取串级校正调节方式。床温信号进入床温调节器与床给定值比较所得偏差经不同的函数转换后生成校正指令分别送至一次风调节器、二次风调节器和燃料调节器对其给定值进行修正,这样通过调节一、二次风的比率来实现床温调节基本满足床温控制的要求,同时一次风量的调整还必须受安全流化风量的限制。

4.存在问题

(1)各参数之间的耦合关系复杂,用变量配对,没充分考虑控制床温和主蒸汽压力以及经济运行之间的关系;

(2)控制精度要求高,总是希望床温控制在给定值上,系统克服干扰的鲁棒性较差;

(3)为控制床温有可能忽视整个炉膛温度的分布,导致床温控制不好。

参考文献

[1]

于小骞.循环流化床锅炉控制方法初步探讨[J ].科技广场,2009.1,18-20

[2]于龙等.循环流化床燃烧技术的研究与展望[J ].热能动力工程,2004(4)

[3]岑可法等.循环流化床锅炉理论设计与运行[M ].北京:中国电力出版社,2002.

(上接第18页)应力分布云图(没有显示齿轮),见图6。

图4弯曲应力

图5扭转应力

图6Von Mises 应力分布云图

主轴采用牌号为20Cr2Ni4A 的合金结构钢,其抗拉强度≥1200MPa 。一般来说,汽车主减速器齿轮的许用弯曲应力不超过材料强度极限的75%,即应小于900MPa ,而主轴的弯曲应力通过上面曲线分析,主轴满足强度要求。

4.结论

通过以上的分析,我们得到以下结论:(1)用Romax 软件建立了包括主减速器、差速器和轮边减速器在内的驱动桥齿轮传动系统动力模型,为齿轮传动系统的刚度和强度分析及动态特性研究奠定了基础。

(2)以驱动桥齿轮传动系统中的主动锥齿轮轴静强度进行了分析,分析结果表明,主轴满足强度要求。参考文献

[1]

仝令胜,石博强.45t 铰接式自卸车贯通式驱动桥主减速器设计.煤矿机械,2008,29(2):16-18

[2]R omaxDesigner User Manual,R omax Technology Ltd,Notting-ham,UK,

2003

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

锅炉燃烧调整总结

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在,下部压力,近期炉膛差压在,下部压力,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm 细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次风,

自动控制原理-PID控制特性的实验研究——实验报告

自动控制原理-PID控制特性的实验研究——实验报告

2010-2011 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2010 年月日评分:

一、实验目的 1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选择系统参数的方法; 3、通过仿真实验研究,总结PID 控制规律及参数变化对系统性能影响的规律。 二、实验任务及要求 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P )、比例积分(PI )、比例微分(PD )及比例积分微分(PID )控制规律和控制器参数(Kp 、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验内容如下: ) s (Y ) s (R ) 6)(2(1 ++s s ) (s G c 1、比例(P )控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。总结比例(P )控制的规律。 2、比例积分(PI )控制,设计参数Kp 、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和K I 的变化情况。总结比例积分(PI )控制的规律。 3、比例微分(PD )控制,设计参数Kp 、K D 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制

特殊特性控制程序(含表格)

特殊特性控制程序 (ISO9001-2015/IATF16949-2016) 1.0目的 采用适当的方法确定和控制产品和过程的特殊特性,以保证产品关键、特性的质量。 2.0范围 适用于本公司的所有产品和过程特殊特性的控制。 3.0职责 3.1 技术部负责组织特殊特性的选定并在相关的文件中进行标明。 3.2销售部负责协助技术部查明、确认顾客所有的特殊特性及标识方法。 3.3质量部参与特殊特性的选定,负责对所有特殊特性(产品和过程)进行测量和监控并保存记录。 3.4生产部参与特殊特性的选定并对自己所管辖范围内出现的特殊特性进行管理。 4.0术语和定义 4.1特殊特性: 特殊特性包括产品特性或过程参数,其影响到安全性或法律法规的符合性,影响到产品的配合和功能以及后续生产过程,或者是由顾客要求的,在验证活动中要求特别关注的特性。 4.2产品特性: 指在图纸或其他的工程技术资料中所描述的零部件或总成的特点与性能。如,尺寸、材质、外观、性能等特性。 4.3过程特性: 指与被识别产品特性具有因果关系的过程变量,亦称过程参数。

5.0管理办法 5.1 特殊特性分类 5.1.1本公司特殊特性分类及标识及对照见附件1 《特殊特性分类和标识对照表》 5.2 特殊特性的识别 5.2.1在项目开发或合同评审时销售部/技术部负责查明、确认顾客所有的特殊特性及标识方法,并反馈给技术部。 5.2.2 技术部/项目组组织项目成员进行特殊特性的识别,识别时应: 5.2.2.1 识别顾客设计资料中有关产品特殊特性及其标识,并作为公司的产品的特殊特性。 5.2.2.2 除顾客指定的特殊特性外,根据特殊特性定义进行识别: 1)与车辆运行安全性相关的;与国际、国家、行业、地方法律法规相关的;与操作安全性相关的应识别为产品的关键特性。 2)与顾客的配合尺寸、产品的外形尺寸、产品内部零部件配合尺寸、功能、性能等应识别为产品的重要特性。 3)在过程控制中的关键/重要加工参数应识别为过程的关键/重要特殊特性。 4)FMEA分析的结果: 1)严重度S为9~10定义为关键特性(CC); 2)严重度(S)为5-8同时频度(o)在4-10时的特性定义为重要特性(SC);3)产品或过程特性超出公差范围时,就会严重影响影响过程本身的操作或后续操作(不需要特别控制措施)可定义为严重影响特性(HI); 5.3特殊特性的评审

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 为提高锅炉效率,降低辅机耗电率,保持煤粉“经济细度”的要求,力争机械不完全燃烧损失和制粉系统能耗之和最小;保证锅炉设备安全、各经济指标综合最优和环保参数达标排放,制定以下燃烧优化调整方案: 1、优先运行A、B、C、D层煤粉燃烧器,低负荷时运行 B、C、D层煤粉燃烧器,负荷增加时,根据需要依次投入E、F层煤粉燃烧器,运行中应平均分配各层燃烧器出力(可通过各分离器出口风粉温度、压力是否一致判断,通过调整各容量风门偏置维持各容量风门后磨煤机入口风压一致来实现),各层煤粉燃烧器出力应在24~28t/h(根据单只燃烧器设计热负荷,19.65MJ/kg热值对应出力6.1t/h,17.5 MJ/kg 热值对应出力 6.85t/h),单侧运行的磨煤机出力不得超过30t/h(通过节流单侧运行磨煤机热风调节门,维持单侧运行磨煤机总风压偏低正常双侧运行磨煤机0.7~1.0kPa,调整容量风门偏置来实现),在此原则基础上,及时减少煤粉燃烧器运行层数或对角停运燃烧器,一方面,可发挥低氮燃烧器自身的稳定能力,另一方面,较高的煤粉浓度有利于在低氧环境中,集中煤粉挥发分中的含氮基团将NO还原为N2,此外,运行下层燃烧器增加了煤粉到燃尽区(富氧区)的停留时间,可充分利用含氮基团将NO还原为N2,从而降低SCR

入口NOx。 2、锅炉氧量保持:(1)供热期,负荷150~180MW氧量 3.0~5.0%;负荷180~210MW氧量 2.5~ 4.0%;负荷大于210MW氧量2.0~3.2%。(2)非供热期,负荷150~200MW氧量3.2~ 5.5%;负荷200~250MW氧量2.7~4.0%;负荷大于250MW氧量2.0~3.5%。(3)正常情况下,锅炉氧量按不低于2.5%保持,不能超出以上规定区间;环保参数超限,异常处理时,氧量最低不低于1.5%,异常处理结束后应及时恢复正常氧量。通过以上原则保证锅炉不出现高、低温硫腐蚀、受热面壁温超限、空预器差压增大,同时为降低飞灰含碳量、再热器减温水量、排烟温度、引送风机耗电率提供保障。 3、运行中保持二次风与炉膛差压不低于0.3kPa,掺烧贫瘦煤较多时,周界风风门开度在锅炉蒸发量500t/h以下可关至10%(周界风量太大时,相当于二次风过早混入一次风,因而对着火不利),大负荷时周界风风门开度不超过35%,除保持托底二次风至少70%以上开度,其余二次风采用倒塔配风方式。 4、燃尽风量占总风量的20~30%(燃尽风量之和与锅炉总风量的比值),低负荷压低限,优先使用下层燃尽风,锅炉蒸发量600t/h以下最多使用两层燃尽风(燃尽风使用原则:锅炉蒸发量430t/h以上燃尽风A层开50~80%;锅炉蒸发量500t/h以上燃尽风B层逐渐开启至全开;锅炉蒸发

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

实验三受控源特性的研究

实验三受控源特性的研究 一、实验目的 (1)通过测试受控源的控制特性和负载特性,加深对受控源特性的认识; (2)通过实验初步掌握含有受控源线性网络的分析方法; (3)掌握直流稳压源正、负电源(±Ucc)的供电方式。 二、实验仪器 三、实验原理 受控源是一种非独立电源,这种电源的电压或电流是电路中其他部分的电压或电流的函数,或者说它的电压或电流受到电路中其他部分的电压或电流的控制。根据控制量和受控量的不同组合,受控源可分为电压控制电压源(VCVS)、电流控制电压源(CCVS)、电压控制电流源(VCCS)和电流控制电流源(CCCS)四种。如图: (a)电压控制电压源(VCVS)(b)电压控制电流源(VCCS) (c)电流控制电压源(CCVS)(d)电流控制电流源(CCCS) 图1-3-1 受控源的类型

实际的受控源,控制量与被控制量之间不是线性关系,它们可用一条曲线来表示。通常,曲线在某一范围内比较接近直线,即在直线范围内,受控量的大小与控制量称正比,其斜率(如图1-3-1中的μ,g,γ,β)为常数。若超过直线范围就不能保持这一关系了。 四、实验内容 1.电压控制电压源(VCVS) 双路直流稳压源±12V电源的供电方式: 1)控制特性U o=f (U i) 的测试 测量电路如图1-3-4所示。调节1kΩ电位器,按表1-3-3内容进行测量和计算,并求出放大器输入电压的线性工作范围。 图1-3-4 反相比例放大器的实验电路图 表1-3-3 VCVS控制特性的测试 Ui Uo 超出反相比例放大器线性放大范围。而数据(0.5,-2.4)、(2,-9.6)等,虽然与其他测量点斜率不一致,但其在误差范围之内,依然为有效数据。由算得的斜率可知,输出电压与输入电压反相,且放大5倍。(应该把线性范围标出,即测出转折点)图画否?

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

PID_控制特性的实验研究

2010-2011学年1学期 院别:控制工程学院 课程名称:自动控制原理 实验名称:P I D控制特性的实验研究 实验教室:6111 指导教师: 小组成员(姓名,学号): 实验日期:2011年11月14日 评分:

一、实验目的 1、学习并掌握利用MATLAB编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选 择系统参数的方法; 3、通过仿真实验研究,总结PID控制规律及参数变化对系统性能影响的规 律。 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数 (Kp、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID控制 规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验 内容如下: 1、比例(P)控制,设计参数Kp使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp的变化情况。总结比例(P)控制的规律。 2、比例积分(PI)控制,设计参数Kp、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参 数Kp和K I 的变化情况。总结比例积分(PI)控制的规律。 3、比例微分(PD)控制,设计参数Kp、K D 使得由控制器引入的开环零点分

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 萨拉齐电厂的2×300MW CFB锅炉是采用哈尔滨锅炉股份有限公司具有自主知识产权的CFB锅炉技术设计和制造的,锅炉型号HG-1065/17.6-L.MG,是亚临界参数、一次中间再热自然循环汽包炉、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构的循环流化床锅炉,燃用混合煤质,锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1065t/h。循环物料的分离采用高温绝热旋风分离器,锅炉采用支吊结合的固定方式,受热面采用全悬吊方式,空气预热器、分离器采用支撑结构;锅炉启动采用床下和床上联合点火启动方式。 萨拉齐电厂锅炉主要技术参数: 一、优化燃烧调整机构

为了积极响应公司号召,使我厂锅炉燃烧优化调整工作有序进行,做到调整后锅炉更加安全、经济运行,我厂成立了锅炉优化燃烧调整小组: 1、组织机构: 组长: 杨彦卿 副组长:冀树芳、贺建平 成员:刘玉俊、蔚志刚、李京荣、范海水、谷威、孔凡林、薛文祥、于斌 2、工作职责: 1)负责制定锅炉优化燃烧调整的工作计划; 2)负责编制锅炉优化燃烧调整方案及锅炉运行中问题的检查汇总; 3)负责组织实施锅炉优化燃烧调整工作,保证锅炉长周期连续稳定运行。 二、优化燃烧调整工作内容: 1、入炉煤粒度调整: 1)CFB锅炉对入炉煤粒径分布要求很高,合理的粒径分布是影响锅炉燃烧安全稳定和经济的最重要因素之一,入炉煤粒径对锅炉的影响有以下几点:a)入炉煤细粒径比例较少,粗颗粒比例多,阻力相应增加锅炉流化所需一次风量增大,细颗粒逃逸出炉内的几率增高,锅炉飞灰含碳量上升;b)入炉煤细颗粒比例多,粗颗粒比例少,在相同的一次风量下锅炉床层上移,床温升高,

实验二_PID控制特性的实验研究

实验二、PID控制特性的实验研究 一、实验目的: 1.学习并掌握利用MATLAB编程平台进行控制系统复数域和频率域仿真的方法。 2.通过仿真实验研究并总结PID控制规律及参数对系统特性影响的规律。 3.实验研究并总结PID控制规律及参数对系统根轨迹、频率特性影响的规律,并总结 系统特定性能指标下根据根轨迹图、频率响应图选择PID控制规律和参数的规则。 二、实验任务及要求: (一)实验任务: 自行选择被控对象模型及参数,设计实验程序及步骤仿真研究分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制参数(Kp、K I、K D)不同变化时控制系统根轨迹、频率特性和时域阶跃响应的变化,总结PID控制规律及参数对系统特性、系统根轨迹、系统频率特性影响的规律。 在此基础上总结在一定控制系统性能指标要求下,根据系统根轨迹图、频率响应图选择PID控制规律和参数的规则。 (二)实验要求: 1.分别选择P、PI、PD、PID控制规律并给定不同的控制参数,求取系统根轨 迹、频率特性、时域阶跃响应。通过绘图展示不同控制规律和参数系统响应 的影响。按照不同控制规律、不同参数将根轨迹图、频率响应图和时域响应 图绘制同一幅面中。 2.通过根轨迹图、频率响应图和时域响应图分别计算系统性能指标并列表进行 比较,总结PID控制规律及参数对系统特性、系统根轨迹、系统频率特性 影响的规律。 3.总结在一定控制系统性能指标要求下,根据系统根轨迹图、频率响应图选择 PID控制规律和参数的规则。 4.全部采用MATLAB平台编程完成。 三、实验报告编写要求: (一)报告内容: 1.实验目的。 2.实验内容及要求。 3.实验方案设计。 4.实验结果。 5.实验规律分析与总结。 6.实验仿真程序清单。 (二)实验报告提交: 1.实验报告以电子文档形式书写并自行打印(A4幅面)并提交,图文并茂。 2.提交时间与方式要求: (1) 实验后一周内提交,过期提交不予受理。 (2) 两人一组提交一份纸质实验报告。

IATF16949特殊特性管理程序 (2)

1?目的? 规定了公司汽车产品和过程的特殊特性识别的原则、内容、要求、职责及表示方法。? 2?适用范围? 适用于公司所有汽车产品的产品特殊特性和过程特殊特性的管理。 3?术语? 3.1 特殊特性:可能影响产品的安全性或法规符合性、可装配性、功能、性能、要求或产品的后续处理的产品特性或制造过程参数。 3.2产品特性:在图纸或其他的工程技术资料中所描述的零部件或总成的特点与性能,如尺寸、材质、外观、性能、强度、寿命等特性。 3.3过程特性:被识别与产品特性具有因果关系的过程变量,也称为过程(工艺)参数。过程特性仅能在它发生时才能测量出,对于每一个产品特性,可能有一个或者多个过程特性。在某些过程中,一个过程特性可能影响到多个产品特性。常见的过程的特殊特性如:温度、压力、时间、电流、电压、速率等。 4 职责 4.1 技术部是特殊特性归口管理部门,负责组织对产品特殊特性的识别和确定,并负责对产品特殊特性在各类文件中的标识(产品图纸、控制计划、FMEA、过程流程图、工艺规程、作业指导书、检验指导书等)。 4.2 APQP小组负责在工艺过程设计、控制计划中对产品及过程的特殊特性通过技术文件加以明确,并在过程FMEA中对特殊特性进行重点分析。 4.3 各有关部门负责对产品特殊特性直接相关的特殊工序、特殊特性参数进行控制。 4.4 质量部负责对产品在开发、试生产及生产全过程的特殊特性的检测、监控。 5 工作程序? 5.1 初始特殊特性的识别? 在APQP第一阶段,技术部根据顾客提供的图纸或其他工程技术资料确定顾客对产品特殊特性的要求(如适用,可以使用质量功能展开QFD和特性矩阵图),或根据公司以往类似产品的经验识别产品和过程的初始特殊特性,建立初始《特殊特性清单》。? 5.1.1?若该质量特性的数值发生变化后将会显着影响产品的安全特性或政府法规的符合性,则确定该质量特性为安全特性或者法规特性。? 5.1.2?若该质量特性的数值发生变化后将会显着影响顾客对产品的满意程度(非安全或法规方面),例如配合、功能、安装或外观,则确定该质量特性为重要特性。 5.1.3 特殊特性包括顾客指定的特殊特性和公司内部识别的特殊特性。一般包括: a)法律、法规要求 b)性能、结构的使用要求 c)可靠性、使用寿命及互换性要求 d)材料性能及处理规定 e)尺寸、配合、形状和位置公差及表面粗糙度等要求 f) 外形、外观要求(外观件)

循环流化床技术

循环流化床燃烧技术 循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。 循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃 烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石受热分解为氧化钙和 二氧化碳。气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接 触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧 室参与循环利用。钙硫比达到2~2.5左右时,脱硫率可达90%以上。流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NO x排放可减少50%;2.燃料适应性强,特 别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。负荷调节范围30%~100%。 循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。 循环流化床锅炉属低温燃烧。燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

提高电站锅炉燃烧效率的优化技术(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 提高电站锅炉燃烧效率的优化技 术(标准版)

提高电站锅炉燃烧效率的优化技术(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 燃料在锅炉的炉膛中燃烧释放热能,经过金属壁面传热使锅炉中的水转化成具有一定压力和温度的过热蒸汽,随后把蒸汽送入汽轮机,由汽轮驱动进行发电。燃烧优化技术能够有效提高锅炉燃烧的效率并减少污染。本文重点分析能够提高电站锅炉燃烧效率的优化技术。 电站锅炉燃烧优化技术发展 我国经济发展逐渐从粗放型转入集约型,对电站锅炉的燃烧不仅要追求经济效益还要实现安全性及环保性。目前,我国电站锅炉燃烧优化技术取得了长足的进步但还存在一些比较严重的问题。为了保证电能的及时供应,燃煤机组及燃煤技术得到迅速的发展,但电站锅炉的自动化水平仍然非常低。20世纪70年代测量技术的改进有效促进煤炭燃烧效率的提高。氧化锆氧量计大大提高了锅炉燃烧后释放的烟气内氧气含量检测的准确性,在我国各个电站得到普遍应用,另外风速监测技术也是诞生在20世纪70年代的优化技术。 我国在20世纪80年代进行了技术改进,平均煤炭消耗大大降低,

汽车主动转向系统设计及控制特性研究

汽车主动转向系统设计及控制特性研究 摘要:随着汽车性能的逐渐提升,人们对汽车驾驶过程中的稳定性、安全性和 操作灵活性提出了更高的要求,因此,在汽车研究的过程中,必须要保证汽车的 相关性能满足人们对汽车越来越高的要求,而汽车主动转向系统的应用不仅能够 保证汽车具备一定的操作灵活性,还能够保证汽车在驾驶的过程中具备良好的稳 定性和安全性,所以探究汽车主动转向系统的设计流程,如何能够更好的对汽车 主动转向系统进行控制,是当前汽车转向系统设计相关负责人员的主要责任和义务。基于此,本文通过分析汽车主动转向系统的相关概念,探究如何进行更好的 设计和控制,从而提高人们驾车过程中的安全性和稳定性。 关键词:汽车;主动;转向系统;设计;控制特性 引言:汽车主动转向系统的设计是基于智能化技术和机械技术应用下发展出来 的汽车智能化系统,通过这一系统的设置,可以保证驾车的舒适性,在一定程度 上提升了车辆的整体实用性能。由于传统的转向系统不具备主动性,汽车在速度 较低进行转向的过程中,需要驾驶人员转向的幅度相对较大,而在高速进行转向 的过程中,由于转向的灵敏度增加,所以导致驾驶员给予很小的转动动作,就可 以保证转动的角度相对较大,从而使整个汽车的安全性得不到良好的保障,因此 传统的汽车转向系统使汽车的使用性能大大降低,并且也不能够保证驾驶人员和 车内其他乘客的安全,所以,在汽车中设置主动转向系统是当前改善汽车性能的 重要措施。 一、主动转向系统与传统转向系统相比具备的优点 与传统的转向系统相比,智能主动转向系统具备的优点主要体现在以下几个 方面,第1个方面是由于传统的转向系统必须驾驶人员实施一定的操作,但是可 能会由于驾驶人员出现疲劳驾驶或者分神的现象,在应该转向时没有进行转向操作,从而引起交通事故以及危害人身安全。而主动转向系统可以根据驾驶的实际 情况保证转向系统在应该转向时进行转向操作,从而在一定程度上增加了驾车的 安全性。同时两种转向系统在转动角度方面的对比也体现出了主动转向系统的优势,例如在低速行驶的过程中,传统转向系统的转动方向与方向盘的转动方向不 一致会增大转动的角度,而主动传动系统中方向盘的转动方向和转动电机的转动 方向基本一致,所以,可以在一定程度上减小转动的角度。在高速行驶时,由于 传统转动电机的方向和方向盘的方向一致,所以方向盘转动的幅度较小时,汽车 转动的角度也相对较大,因此增加了危险性,而主动转动系统中,转动电机的方 向在高速行驶时会和方向盘的转动方向不一致,从而在一定程度上增加了操作人员,转动方向盘的转动角度,因此也间接的提升了汽车的行驶安全性。第2个方 面是主动式转向系统和传统的转向系统相比在纠正转动方向时也有一定的优势, 例如主动式转向系统,能够保证汽车在直线行驶的过程中可以更加稳定,并且通 过计算的方式计算出相应的车速,以及通过车轮上的传感器可以监测到车辆上的 转向轮是否具备一定的稳定性,而传统的转向系统必须人为设置相应的传动方向,并且还需要根据行车经验判断车辆的转动角度,从而在一定程度上降低了车辆行 驶的安全性。总而言之,主动转向系统与传统转向系统相比,不仅能够保证汽车 具备一定的安全性和稳定性,还能够帮助驾驶人员进行危险的判定,从而保证驾 驶人员的安全。 二、汽车主动转向系统的设计 要想明确汽车主动转向系统的实际设计方案,必须要了解汽车主动转向系统

锅炉燃烧调整及优化运行

民营科技 2011年第8期2MYKJ 科技论坛锅炉燃烧调整及优化运行 孙志华刘红郭亮邢立云 (内蒙古乌海市海勃湾发电厂,内蒙古乌海016034) 锅炉的运行参数主要是过热蒸汽压力,过热蒸汽和再热蒸汽温度,饱和水位和锅炉蒸发量等,其运行过程则表现为一个复杂的参数变化过程。在实际情况下,锅炉运行工况经常是不稳定的。各种各样的原因都会引起工况变化,而最后则表现为运行参数的变化。例如当单元机组汽机所需要的蒸汽流量变动时在其他条件未变的情况下,锅炉汽压、汽温、水位都随着改变。此时,必须对锅炉的燃料量、风量、给水量等作相应的调整,才能使锅炉的蒸汽量与汽机负荷相适应,使运行的参数保持在额定值或规定的范围内。另一方面,即使在外界负荷不变的情况下,锅炉机组内部某一工况或因素的改变,同样会引起运行参数的变动,因而也需要对锅炉机组进行必要的调整工作。 1对锅炉机组运行的总要求是安全、经济,这是通过对锅炉进行监视和调整来达到的 具体讲,对运行锅炉进行监视和调整的主要任务是: 1.1保证蒸汽品质,保持正常的过热汽压,过热和再热汽温; 1.2保证蒸汽产量(即蒸发量)以满足外界负荷的需要; 1.3维持汽包的正常水位; 1.4及时进行正确的调整操作,消除各种异常,障碍和隐形事故,保持锅炉机组的正常运行。 1.5维持燃料经济燃烧,尽力减少各种热损失,提高锅炉效率。 为了完成上述任务,锅炉人员必须充分的了解各种因素对锅炉工作的影响,掌握锅炉的变化规律和实际操作技能,这是正确调节的必要条件。 2锅炉运行参数最佳值的确定方法 目前电厂运行人员习惯于把设计参数作为最佳值进行调整,往往不能达到最佳的运行效果。尤其是在低负荷工况下,锅炉运行的安全性、经济性均较差。其原因主要有三个方面:一是设计参数仅对单一设备而言,未能充分考虑系统组合;二是设备在制造、安装过程中存在一定的偏差,未能达到设计要求;三是设计参数本身取用不合理。所以应该从实际系统出发,通过试验分析、比较,为运行人员提供锅炉在不同负荷下的最佳运行方式及参数控制,这些运行方式建立在现有的设备基础上,通过运行调整可以达到或基本达到,与原设计工况相比具有合理性、准确性和可操作性。锅炉运行参数最佳值应是在不同的工况下使锅炉在实际运行时煤耗达到最小值时所对应的运行方式下的各参数。它必须通过优化调整试验才能获得。所以,需进行优化试验,确定锅炉的最佳经济运行方式及最佳运行参数。 3确定锅炉最佳运行方式及最佳运行参数值的优化试验方法优化试验方法是通过对锅炉进行性能摸底试验,全面优化调整,寻找最佳方式及相应最佳运行基准值。它包括性能摸底试验、优化调整试验两部分。 3.1锅炉性能摸底试验:收集锅炉的基本情况等的相关资料,进行锅炉典型工况下的试验,通过性能计算和能耗分析,寻找引起锅炉煤耗偏高的主要原因,从而确定锅炉优化对象。也就是要找到影响锅炉经济性的主要问题,了解锅炉设备性能有待改进的地方。 3.2锅炉优化调整试验:根据锅炉优化调整试验的结果,在现场设备消缺的基础上确定优化目标,进行锅炉优化调整试验,寻找锅炉在调峰范围内合理的运行操作方式。通过试验得出在不同负荷下锅炉主辅设备的最佳运行方式。 4影响锅炉优化运行的因素 锅炉优化运行是指输入锅炉机组燃料的热量被最大有效利用,使得锅炉各项热损失达到最小。通过对各项热损失的分析,找出锅炉的优化运行的方法,并找出提高锅炉运行经济性的途径。 只有通过热平衡才能确定锅炉机组的效率,根据热平衡结果就可以判断锅炉机组的设计和运行情况,研究锅炉机组的热平衡目的在于定量计算与分析各项能量的大小,找出引起热量损失的原因,提出减少损失的措施,提高锅炉效率,降低发电成本。5优化运行的途径 5.1加强煤质管理。 随着电厂进入商业化运营,煤质的管理显得越来越重要。灰分增加.就意味着热值减少,燃料量、电耗、金属单耗、受热面磨损都增加,燃烧的完全性与稳定性也受到很大影响,也会导致排烟热损失相对增加。所以管理好燃料是提高经济性、提高企业效益、提高上网竞争能力的关键环节之一。 5.2增加监视系统。 锅炉的一、二次风速以及炉膛断面热负荷、燃烧器区域热负荷、壁面热负荷等均根据燃用的煤质设计,这是由于燃烧、传热等过程不仅复杂,且影响因素的随机性也较太。目前在设计过程中,除了计算外,一般按推荐值选取。锅炉在运行过程中,能够定量掌握有关影响系统稳定与经济运行的诸因素是十分重要的。例如,一次风速的大小对整个系统的影响非常大,它不仅影响燃烧的稳定性,而且还涉及到锅炉的经济性。而目前运行人员在运行调整过程中,除对最终参数控制得比较严格外,对其过程变化却无法掌握。也就是说,没有一个好的监视系统。运行人员就无章可循,处于带有一定经验性的、盲目的操作状态。如果,一台200MW机组如果做好优化运行,每年能带来几十万元的效益,这并不夸张。所以提高燃烧系统优化运行的程度,它的经济效益和社会效益也同样不可低估。 6锅炉的燃烧调整 锅炉燃烧工况的好坏对锅炉机组和整个发电厂运行的经济性和安全性有很大的影响。燃烧调节的任务是:适应外界负荷的要求,在满足必须的蒸汽量和合格的蒸汽量的前提下,保证锅炉运行的安全性和经济性。对于一般固态排渣煤粉炉,进行燃烧调节的目的可具体归纳为以下几方面:保证正常稳定的汽压、汽温和蒸发量。着火稳定、燃烧中心适当,火焰分布均匀,不烧损燃烧器、过热器等设备,避免结渣。使机组运行保证最高的经济性。减少燃烧污染物的排放。 燃烧过程的经济性要求保持合理的风煤配合,一、二次风配合和送吸风配合,此外还要保持适当的炉膛温度。合理的风粉配合就是要保持最佳的过量空气系数;合理的一、二次风配合就是要保证着火迅速、燃烧安全;合理的送、引风配合就是要保持适当的炉膛负压、减少漏风。当运行工况改变时,这些配合比例调节恰当,就可以减少燃烧损失,提高锅炉效率。 锅炉运行中经常碰到的工况改变是负荷变化,当锅炉负荷变化时,必须及时调节送入炉内的燃料量和风量,使燃烧工况相应改变。在高负荷运行时,由于炉膛温度高,着火与混合条件比较好,故燃烧一般是稳定的,但这时排烟损失比较大。为了提高锅炉效率,可以根据煤质等具体条件,考虑适当降低过量空气系数运行,使排烟热损失降低。在低负荷运行时,由于燃烧减弱,投入的燃烧器数量少,故炉膛温度较低,火焰充满程度差,使燃烧不稳定,经济性也较差。低负荷时可以适当降低炉膛负压运行,以减少漏风,使炉膛温度相对有所提高。这样不但能稳定燃烧,也能减少不完全燃烧热损失,但这时必须注意安全,防止炉膛正压导致灭火伤人。由上所述可知,当运行工况改变时,燃烧调节的正确与否,对锅炉运行的安全性和经济性都有直接的影响。 结束语 锅炉的燃烧调整、优化运行是节能降耗、提高能源利用率的有效措施。它可以降低机组供电煤耗,降低发电成本,对电力企业参与电力市场竞争具有十分重要的作用。 参考文献 [1]岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术[M].第二版. 北京:中国电力出版社,2003. [2]黄新元.电站锅炉运行与燃烧调整[M].第二版.北京:中国电力出版社, 2003. [3]樊泉桂.锅炉原理[M].第一版.北京:中国电力出版社,2004. 摘要:锅炉燃烧调整是运行中的主要内容之一。目前,我国大部分电厂都存在混煤燃烧现象,对锅炉燃烧调整及优化运行需求十分迫切。因此开展锅炉燃烧调整研究,以指导优化运行具有非常重要的现实意义。 关键词:锅炉;燃烧调整;优化运行

相关文档