文档库 最新最全的文档下载
当前位置:文档库 › 花青素含量测定方法

花青素含量测定方法

花青素含量测定方法

花青素含量测定方法

1.仪器和试剂

采用760CRT型双光束紫外可见光分光光度计。

试剂选用2%盐酸甲醇溶液:浓盐酸:99%甲醇(2:98)。

2. 方法

2.1 样品处理

将含有花青素的树木鲜叶片去脉剪成1~2 mm碎片,随机取样,准确称量0.2 g,置于50 mL烧杯中,加人10 mL 2%盐酸甲醇溶液浸泡,杯口用封口膜扎紧以防挥发,置室温避光处浸提2小时,至肉眼观察叶组织完全变白取出过滤,用2%盐酸甲醇溶液定容至50 mL容量瓶中,于紫外可见分光光度计上分析。

2.2 测定

在紫外可见光分光光度计上全波段扫描2%盐酸甲醇溶液浸提叶片的浸提溶液吸收光谱,结果表明,紫外区最大吸收波长在280砌附近,可见光区域最大吸收波长在500~550砌内[引。其最大吸收波长在530~535 I]/n处,在此采用波长530 nm条件下定量测定。用2%盐酸甲醇溶液作为空白对照,在紫外可见光分光光度计上,用1 em厚比色皿,在波长530 nln处测定其吸光度(A)。

花青素的作用 花青素含量高的水果

花青素的作用花青素含量高的水果花青素是一种对人体健康可以带来很多好处的营养成分,这种物质在生活中的很多食物中存在,可以食用食用这些食物来为人体补充花青素,那么在生活中有哪些水果中的花青素含量高呢?下面就来为你详细解答花青素含量高的水果吧,可以选择自己喜欢的水果食用哦。 1、葡萄 部分葡萄中含有很高的花青素,但不是所有的葡萄都含有,仅仅局限于颜色比较深的葡萄,比如:红葡萄,紫葡萄和黑葡萄这三种葡萄的皮中含有大量的花青素,是目前商业提取花青素的主要原料。 2、桑葚 花青素在不同的PH环境中呈现出不同的颜色,桑葚在生时是青色,在成熟之后呈紫红色或紫黑色,成熟之后的桑葚中也含有大量的花青素。 3、蓝莓 蓝莓味道酸甜,成熟之后的蓝莓蓝色很深,有的甚至偏向紫色。蓝莓中花青素的含量很高,并且口感也比较好。 4、杨梅 杨梅味道很酸,含有很多的植物酸,PH也比较低,花青素在这种环境中呈现出紫黑色,杨梅在成熟之后花青素的含量也很高。 5、无花果 无花果的外皮也是紫黑色,而且靠近外皮的那层果肉也带有紫

色,无花果中也含有很高的花青素,但是主要集中在无花果外皮上,果肉中含量比较低。 6、血橙 橙子和柚子都有黄色果肉和红色果肉两种,血橙中含有一定量的花青素,在维生素C和柠檬酸的作用下,花青素呈红色,因此,被称为血橙,这类水果中花青素的含量不是很高。 7、山楂 山楂在成熟之后果皮也呈紫红色,外皮中含有一定量的花青素,含量不如紫色和黑色的水果高。 8、小贴士 1.花青素在酸性环境中呈紫色或红色,在碱性环境中呈蓝色,因此,平时在选择水果时选择颜色较深的都含有一定量的花青素。 2.在目前所知道的食物中黑枸杞中的花青素的含量最高,并且也是最好吸收的一种,需大量补充花青素的人可选用黑枸杞。 9、花青素的功效价值 1.有助于预防多种与自由基有关的疾病,包括癌症、心脏病、过早衰老和关节炎 2.通过防止应激反应和吸烟引起的血小板凝集来减少心脏病和中风的发生; 3.增强免疫系统能力来抵御致癌物质 4.降低感冒的次数和缩短持续时间; 5.具有抗突变的功能从而减少致癌因子的形成

花青素和原花青素相关资料

花青素和原花青素 一、区别 (一)定义 1、花青素:又称花色素,是自然界一类广泛存在于植物中的水溶性天然素,属黄酮类化合物。也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等颜色大部分与之有关。在植物细胞液泡不同的pH 值条件下,使花瓣呈现五彩缤纷的颜色。在酸性条件下呈红色,其颜色的深浅与花青素的含量呈正相关性,可用分光光度计快速测定,在碱性条件下呈蓝色。花青素的基本结构单元是2一苯基苯并吡喃型阳离子,即花色基元。现已知的花青素有20多种。 2、原花青素:也叫前花青素,英文名是Oligomeric Proantho Cyanidins 简称 OPC,是一种在热酸处理下能产生花色素的多酚化合物,是目前国际上公认的清除人体内自由基有效的天然抗氧化剂。一般为红棕色粉末,气微、味涩,溶于水和大多有机溶剂。原花青素属于植物多酚类物质,分子由儿茶素,表儿茶素(没食子酸)分子相互缩合而成,根据缩合数量及连接的位置而构成不同类型的聚合物,如二聚体、三聚体、四聚体……十聚体等,其中二到四聚体称为低聚体原花青素(Oligomeric Proanthocyanidins,缩写为OPC),五以上聚体称为高聚体。在各聚合体原花青素中功能活性最强的部分是低聚体原花青素(OPC)。部分二聚体、三聚体、四聚体的结构式。通常把聚合度小于6的组分称为低聚原花青素,如儿茶素、表儿茶素、原花青素B1和B2等,而把聚合度大于6的组分称为多聚体.一般认为,药用植物提取物中存在的低聚原花青素是有效成分,它们具有抗氧化、捕捉自由基等多种生物活性。 (二)化学结构 从化学结构来看,花青素与原花青素是两种完全不同的物质,原花青素属多酚类物质,花青素属类黄酮类物质。原花青素也叫前花青素,在酸性介质中加热均可产生花青素,故将这类多酚类物质命名为原花青素。 (三)颜色 花青素是一种水溶性色素,是构成花瓣和果实颜色的主要色素之一,可以随着细胞液的酸碱改变颜色。细胞液呈酸性则偏红,细胞液呈碱性则偏蓝。原花青素是无色的,是由不同数量的儿茶素或表儿茶素结合而成。 (四)存在区域 原花青素广泛存在于植物的皮、壳、籽中,比如葡萄籽、苹果皮、花生皮、蔓越莓中;花青素广泛存在于如蓝莓、樱桃、草莓、葡萄、黑醋栗、山桑子等,其中以紫红色的矢车菊色素,橘红色的天竺葵色素,及蓝紫色的飞燕草色素等三种为自然界常见。 (五)功效 虽然花青素与原花青素都有抗氧化去除自由基的作用,但是原花青素抗氧化的作用比花青素要大得多。OPC具有强大的抗氧化和清除自由基能力和对人体微循环具有特殊改善的双重功效,以高效、高生物利用而著称。数据表明,原花青素具有很强的清除氧离子的能力,其抑制邻苯三酚自氧化率可高达91.5%。

红米原花青素的测定方法

红米原花青素的提取及测定方法 1、标准曲线的配置 标准溶液的配制,用甲醇配制原花青素母液2mg/mL 标准液配制: 母液:2ml 3ml 4ml 5ml 6ml 7ml 8ml 甲醇:8ml 7ml 6ml 5ml 4ml 3ml 2ml 2、试剂 试剂a:10g/L香草醛甲醇溶液,10g香草醛溶于1L甲醇溶液 试剂b:245ml浓硫酸(18.4mol/L)溶于500ml甲醇溶液,并用甲醇定容直1L。 3、提取方法 将红米磨粉后称0.5g,放入15ml试管中,加入8ml的80%甲醇溶液,至于黑暗的地方,每隔2h左右振荡一次,一直浸泡提取8小时。 4、测定方法 吸取1ml提取液或标准液,加入10ml离心管中,然后依次加入2.5ml试剂a和2.5ml试剂b,混匀后35℃下水浴20min,水浴结束后

8000rm离心10min,用移液器取上清液测定其在500nm下的吸光值。 5、参考文献: 1、Sun B, Ricardo-da-Silva JM, Spranger I Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 1998, 46: 4267-4274 2、Gunaratne A, Wu K, Li D, et al. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 2013, 138: 1153-1161

葡萄籽原花青素液相检测方法

原花青素原花青素原花青素原花青素HPLC初步方案初步方案初步方案初步方案 一.实验目的:分析样品原花青素纯度,了解其中杂质成分。 二.实验方案: 1. 方案一:Waters 公司高效液相色谱,C18柱(4.6 ×250 mm) , 检测波长为280 nm,进样量10μL ,柱温为室温。待测液均经0.45μm 孔径的滤膜过滤。流动相及流速见下表(A —10 %乙酸,B —重蒸水): 2. 方案二:(间接法定量)(原理类似铁盐催化比色法) (1) 标准曲线:称取前花青素标准品10mg 溶于10ml甲醇中,吸取该溶液0、0.1、0.25、0.5、 1.0、1.5ml 置于10ml 容量瓶中,加甲醇至刻度,摇匀。各取1ml 测定。 (2) 试样测定: 将正丁醇与盐酸按95 :5的体积比混合后,取出6.0ml 置于具塞锥瓶中,再加入0.2ml硫酸铁铵[NH4Fe(SO4) 2·12H2O]溶液(用浓度为2mol/L 盐酸配成2%(w/v)的溶液)和1.0ml 经0.45μm滤膜过滤的试样溶液,混匀,置沸水浴回流,精确加热40min后,立即置冰水中冷却,待进行高效液相色谱分析。 (3)液相色谱参考分析条件: 色谱柱Shimadzu Shim –pak CLC –ODS 4.6 ×150mm;柱温35 ℃; 检测器:紫外检测器,检测波长525nm 流动相: 水:甲醇:异丙醇:10 %甲酸= 73 :13 :6 :8 流速0.9ml/min。注:该方法使用的水解方法与我们当前使用的铁盐催化水解原花青素方法稍有差异,哪种效果更好,可进行预实验加以比较。 3.方案三:(反相高效液相色谱)标样:原花青素标准品 色谱柱:Hypersi ODS-2 ,150 × 4.6mm 5μm; 流动相:A:0 . 2%(V/V) 乙酸;B:乙腈; 流量:1ml /min; 进样量:5μl; 柱温:30℃; 检测波长:280nm. 洗脱梯度:以乙腈的百分比浓度表示(B液溶于A液) 0 ~5 % ,10min; 5%~20%,10~20min; 20%~40%,20~40min; 40%~50%,40~50min; 50%~5%,45~50min; 5%~0,50~60min。 稳定液配制:取0.5g 抗坏血酸置于1L 容量瓶中,加约500mL 双蒸水,混合,溶解 抗坏血酸。加入100mL 乙腈,用双蒸水稀释至刻度。标准品溶液液的配制与稀释均使 用稳定液做溶剂。

花青素含量测定

花青素含量测定 实验目的:掌握花青素含量测定的简单方法。 实验原理:花青素又称花色素,是苯并吡喃衍生物,属于多酚类化合物,常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键形成花色苷,是自然界一类广泛存在于植物中的水溶性天然色素,也是树木叶片中的主要呈色物质,在植物细胞液泡不同的pH 条件下,呈现不同的颜色。大量研究表明:花色苷具有很强的抗氧化作用,可以清除体内的自由基;降低氧化酶的活性;可以降低高血脂大鼠的甘油脂水平,改善高甘油脂脂蛋白的分解代谢;抑制胆固醇吸收,降低低密度脂蛋白胆固醇含量;抗变异、抗肿瘤、抗过敏、保护胃粘膜等多种功能J。苹果花青素主要存在于果皮中,是果皮颜色形成的重要物质。苹果中的花青素由植物次生代谢重要途径一苯丙烷类代谢形成,同位素示踪揭示花青素的碳原子分别来自苯丙氨酸和乙。苹果中的花青素由矢车菊素的三种糖苷组成,分别是矢车菊素-3一半乳糖苷、矢车菊素-3-阿拉伯糖苷和矢车菊素一7·阿拉伯糖苷J。苹果中花青素的含量主要受温度、日照等因素影响,特别是紫外光可以明显提高花青素的合成效率,因此苹果的向阳面较背阳面红L4J。Jerneja等研究表明富士苹果成熟前期是其花青素形成的重要阶段,其中矢车菊素一3一半乳糖苷占总花青素92 %~98%J。 器材与试剂: 实验仪器:分光光度计,电子天平,恒温箱,剪刀,烧杯,量筒,移液管 实验试剂:0.1mol/L HCL, 矢车菊素一3一半乳糖苷,甲醇,蒸馏水 实验材料:苹果 实验内容: 1、作标准曲线:采用l %盐酸甲醇配置矢车菊素-3-半乳糖苷标准系列溶液,浓度分别为100、20.0、10.0、5.0、2.5、1.0 ~g/m L 。用分光光度计测出OD值(波长530nm),计算出标准曲线。 2、选2个苹果,把苹果皮削出,称取5g的果皮加入10m L l %盐酸甲醇溶液匀浆,在40 ℃下提取1h,离心后取上清液在波长530nm测出OD值。 3、计算出苹果中花青素的含量。

蓝莓花青素含量是不是最多的

蓝莓花青素含量是不是最多的关于蓝莓相信大家一定不会觉得陌生,在生活中是很常见到的。尤其是对于一些饮料,什么蓝莓味道的水果或者一些护肤品也是很常见的材料。而在蓝莓中所含的花青素就是对于人的身体有些很大的帮助的,很多的人并不是很了解什么蓝莓中所含的花青素是不是最多的都是大家想要了解得,下面一起去看下蓝莓花青素含量是不是最多? 蓝莓所含有的花青素是所有的水果与蔬菜之中含量最高的,它含有15種以上的花青素,花青素是強效抗氧化劑,在水果中含量不單 是第一位,而且比第二位的含量高出3-4倍,在日本藍莓被稱為『視力果』 花青素的作用: 花青素还能够增强血管弹性,改善循环系统和增进皮肤的光滑度,抑制炎症和过敏,改善关节的柔韧性。具体来说,花青素有如下几种作用: 1.有助于预防多种与自由基有关的疾病,包括癌症、心脏病、过早衰老和关节炎 2.通过防止应激反应和吸烟引起的血小板凝集来减少心脏病和中风的发生; 3.增强免疫系统能力来抵御致癌物质 4.降低感冒的次数和缩短持续时间;

5.具有抗突变的功能从而减少致癌因子的形成 6.具有抗炎功效,因而可以预防包括关节炎和肿胀在内的炎症; 7.缓解花粉病和其它过敏症 8.增强动脉、静脉和毛细血管弹性; 9.保护动脉血管内壁 10.保持血细胞正常的柔韧性从而帮助血红细胞通过细小的毛细血管,因此增强了全身的血液循环、为身体各个部分的器官和系统带来直接的益处,并增强细胞活力。 11.松弛血管从而促进血流和防上高血压(降血压功效)。 13.防止肾脏释放出的血管紧张素转化酶所造成的血压升高(另一个降血压功效)。 14.作为保护脑细胞的一道屏障,防止淀粉样β蛋白的形成、谷氨酸盐的毒性和自由基的攻击,从而预防阿尔茨海默氏病。 15.通过对弹性蛋白酶和胶原蛋白酶的抑制使皮肤变得光滑而富有弹性,从内部和外部同时防止由于过度日晒所导致的皮肤损伤等等。 16花青素还具有抗辐射的作用,花青素颜色因pH值不同会发生变化,大部分花青素具有良好的光、热、pH值稳定性,对于白领或是长期处于日晒、电辐射环境中的人群,花青素的功效可是不可或缺的。 17.花青素可以促进视网膜细胞中的视紫质再生,预防近视,增进视力。 关于蓝莓花青素含量是不是最多的上文中都做了详细的解释

原花青素基本信息

原花青素 1外观 葡萄籽原花青素提取物外观一般为深玫瑰红至浅棕红色精制粉末,低聚物无色至 浅棕色,但因为葡萄籽种类、来源不同,所以在外观、色泽上都存在一定的差异。 2鞣性 原花青素能与蛋白质发生结合。一般情况下,结合是可逆的。原花青素一一蛋白 质结合反应是其最具特征性的反应之一。 3溶解性 低聚原花青素易溶于水、醇、酮、冰醋酸、乙酸乙酷等极性溶剂,不溶于石油醚、 氯仿、苯等弱极性溶剂中。高聚原花青素不溶于热水但溶于醇或亚硫酸盐水溶液, 这一点相当于水不溶性单宁,习惯上称为“红粉”。聚合度更大的聚合原花青素不 溶于中性溶剂,但溶于碱性溶液,习惯上又称为“酚酸”。 4紫外吸收特性 葡萄籽提取物原花青素水溶液的紫外最大吸收波长为278nm。因其分子中所含的 苯环结构,在紫外光区有很强的吸收。可起到“紫外光过滤器”的作用,在化妆品 中可开发研制防晒剂。 图1为原花青素分子结构

现在发现多种植物中含有原花青素,被提取的植物包括葡萄、英国山楂、花生、银杏、日本罗汉柏、北美崖柏、蓝莓和黑豆等。葡萄籽是葡萄酿酒的主要副产品,且它在葡萄皮渣中占65%,其多酚类物质含量可达5%~8%,在这些多酚物质中,原花青素含量最高,可达80%~85%。花青素广泛存在于各种植物的核、皮或种籽等部 位。 图2为原花青素常见来源植物蓝莓。

1.1提取 目前,普遍采用的工艺是先脱脂的方法包括压榨法、溶剂法、超临界CO2萃取 法,其中,超临界CO2萃取法最佳,不仅油脂提取率高,而且对原花青素的破 坏作用最小,质量较好。 1.2分离 纯化原花青素单体物质通常采用柱色谱进行分离,其中,聚酰胺、SephadexLH-20 和ToyopealHW-40是最有效的填料。对于较难分离或需要量较小的化合物,可 用半制备反相高效液相色谱法(RP-HPLC)和正相高效液相色谱法(NP-HPLC)制 备。随聚合度的增加,原花青素的同分异构体数目呈几何级数递增,分离纯化这 类大分子的单体物质非常困难。对于多聚体,可将其按分子量(聚合度)大小分段。 目前,已建立起来的分级方法有溶剂沉淀法和多种色谱法,如薄层色谱法、正相 高效液相色谱、凝胶排阻色谱、逆流色谱法等。 2.生物合成法 由硼氢化钠作为还原剂还原(2R,3R)-二氢-3′,4′,3,5,7-五羟黄烷的主要产物 是白矢车菊素(Leucocyanidin)的2,3-反-3,4-反异构体,而酶的还原产物是2, 3-反-3,4-顺异构体。在微酸的条件下,3,4-反异构体可能部分地转化为3,4- 顺异构体。3,4-顺异构体相对于3,4-反异构体较偏酸性,并且易于同硫醇和二 醇还原酶反应。酶合成要求的条件比较苛刻,同时也存在一个顺反异构体的问题, 目前,此法还不太成熟。 药理活性 1.抗氧化活性 原花青素具有极强的抗氧化活性,是迄今为止人类所发现的最强、最有效的自由 基清除剂之一,尤其是其体活性,原花青素的抗氧化活性呈现剂量-效应关系,但 如果超出一定的浓度,其抗氧化活性将随着浓度的升高而降低。 抗氧化特点及机理:①有效地清除超氧阴离子自由基和羟基自由基等,也可中断 自由基链式反应;②参与磷脂、花生四烯酸的新代和蛋白质磷酸化,保护脂质不 发生过氧化损伤;③为强有力的金属螯合剂,可螯合金属离子,在体形成惰性化 合物;④保护和稳定维生素C,有助于维生素C的吸收。 2.抗肿瘤活性 原花青素对于多种肿瘤细胞都具有显著的杀伤作用,对于多种致癌剂在启动及促 癌阶段都具有显著的抑制作用。原花青素能抑制癌细胞生长及诱导细胞凋亡。此 外,对于肝癌、前列腺癌、皮肤癌等,均表现出较好的抗癌活性,随着研究的深 入,原花青素将会在癌症的预防和治疗中发挥更大的作用,为癌症的治疗带来福 音。 3.抗炎、抗过敏、抗水肿活性 原花青素可降低由炎性介质组胺、缓激肽等引起的毛细血管通透性增高,减少毛 细血管壁的脆性,使毛细血管的力和通透性减小,保护毛细血管的物质转运能力, 从而起到抗炎的活性。此外,原花青素还可抑制组胺脱羧酶的活性,限制透明质 酸酶的作用,对各种关节炎及胃、十二指肠溃疡效果显著。 4.其它 原花青素还具有免疫调节活性、抗辐射作用、抗突变、抗腹泻、抗菌抗病毒、抗 龋齿、改善视觉功能、预防老年性痴呆、治疗运动损伤等功效。 保护心血管作用 1.抗心肌缺血再灌注损伤

原花青素含量检测的概述

原花青素含量检测的概述 【摘要】对目前原花青素常用的检测方法进行了对比并阐述了各种方法的优缺点,为探索更好的原花青素的测定方法奠定基础。 【关键词】原花青素;检测;含量 原花青素是一类广泛存在于植物中的黄烷醇单体及其聚合体的多酚类混合物,具有抗氧化和自由基清除能力等生物活性。自20世纪60年代以来,在保健品、医药和化妆品领域获得了广泛应用。研究表明[1],儿茶素和表儿茶素是构成原花青素的结构基础,继而形成缩合成二聚体、三聚体至高聚体。且单体具有旋光性,因此要想测定每一种成分的含量非常困难。目前国内外对原花青素含量的测定方法尚未统一,现介绍几种常用的方法。 1.可见分光光度法[2] 原花青素最常用的测定方法是可见分光光度法,它分为KMnO4法[3]、正丁醇-盐酸法、香草醛-强酸法、铁盐催化比色法、和pH示差法等。正丁醇-盐酸法、香草醛-强酸法两种方法是目前普遍采用的相对专一、灵敏的、简单迅速测定原花青素的方法。 1.1 Porter法(Bate-smith法) 又叫盐酸-正丁醇法,是依据原花青素在无机酸和加热的条件下被降解,产生红色花青素,在546nm处有最大吸收,原花青素的含量与吸光度值符合朗伯-比尔定律[4]。 在强酸作用下,聚合原花青素单元间的连接键易被打开,上部单元生成黄烷-3-醇,下部单元生成花色素。而对于黄烷3,4-二醇单体原花青素来说,C-4位有极强的亲电性,其醇羟基与C-5,C-7上的酚羟基形成了一个苄醇系统,使得4位碳易于生成正离子。在强酸作用下,正碳离子失去质子,生成花色素[5]。对于黄烷-3-醇单体,不会有正离子形成,因此与儿茶素和表儿茶素的单体不发生显色反应。此法对原花青素具有专一选择性,儿茶素、黄酮类、棓酸类及水解单宁类化合物皆不具备此反应,不适宜于低聚原花青素的测定,它与原花青素的高聚体反应也不完全。 随后,Porter等对该法的反应条件进行了探索,并认为Fe3+、Co2+、Cu2+等金属离子可催化加速自氧化过程,提高转化率,其中以Fe3+的催化效果最好。 1.2香草醛-强酸法 常用的酸有盐酸和硫酸,目前的观点认为浓H2SO4更合适,可以提高吸光度值和灵敏性,褪色也较慢[6]。

原花青素的含量正丁醇测定方法

原花青素含量 1.材料和仪器 主要试剂:提取液,原花青素标样,盐酸正丁醇溶液、NH4Fe(SO4)2、95% 乙醇。 主要仪器:UV2100 型紫外分光光度计、恒温水浴锅。 溶液配制: 2%NH4Fe(SO4)2 称取3.66g七水合硫酸亚铁固体,溶于100ml水中后即得 95%乙醇移取5ml的蒸馏水至100ml容量瓶中用无水乙醇定容 盐酸正丁醇移5ml浓HCL 至100ml容量瓶正丁醇定容 2.实验步骤 a.标准曲线的制备:准确称取原花青素标准样品0.010g,用95% 乙醇溶 解并定容于10mL 容量瓶中,所得浓度为1mg/mL 作标样。吸取标样溶液0mL、0.5mL、1.0mL、1.5mL、2.0mL、2.5mL、3mL分别于25mL 具塞试管中,加95%乙醇定容为3mL, 然后分别加入0.2mL 2%NH4Fe(SO4)2 溶液和6mL盐酸正丁醇(5:95)溶液,盖塞,摇匀,于微沸的水浴中加热反应40min 取出,于冷水中迅速冷却,溶液显红色,以0mL 溶液作为空白对照,于546nm 处测定其吸光度。采用最小二乘法作原花青素浓度(C)与吸光度( A ) 线性回归方程。 结果见表 取得标样体 0 0.5 1.0 1.5 2.0 2.5 3.0 积(/ml) 对应标样浓 度(mg/ml) 测的吸光度 值A b.样品测定 分别精确吸取10mL 样品,用95%乙醇定容于50mL 容量瓶。吸取上述样品待测液3mL 于25mL 具塞试管中,按标准曲线制作项下的操作步骤,依次分别加入0.2mL 2%NH4Fe(SO4)2 溶液、6mL 盐酸正丁醇溶液。根据标准曲线计算出结果,按其稀释倍数求得各样品中原花青素含量。

花青素详细资料

花青素 什么是花青素 花青素(Anthocyanin),又称花色素,一种水溶性色素,是自然界一类广泛存在于植物中的水溶性天然色素,属类黄酮化合物。花青素可以随着细胞液的酸碱改变颜色,细胞液呈酸性则偏红,细胞液呈碱性则偏蓝。花青素是构成花瓣和果实颜色的主要色素之一。常见于花、果实的组织中及茎叶的表皮细胞与下表皮层。花青素存在于植物细胞的液泡中,可由叶绿素转化而来。 花青素结构 花青素的基本结构单元是2一苯基苯并吡 喃型阳离子,即花色基元。现已知的花青素有 20多种,主要存在于植物中的有:天竺葵色素 (Pelargonidin)、矢车菊色素或芙蓉花色素 (Cyanidin)、翠雀素或飞燕草色(Delphindin)、芍 药色素(Peonidin)、牵牛花色素(Petunidin)及锦葵 色素(Malvidin)。自然条件下游离状态的花青素 极少见,主要以糖苷形式存在,花青素常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键形成花色苷,已知天然存在的花色苷有250多种。 蓝莓 葡萄 紫甘薯 黑枸杞

目前自然界已有超过300种不同的花青素。他们来源于不同种水果和蔬菜如胭脂萝卜、桑葚、紫玉淮山、紫甘薯、越橘、酸果蔓、黑枸杞、蓝莓、葡萄、接骨木红、黑加仑、紫胡萝卜和红甘蓝、颜色从红到蓝。 紫甘薯花青素 紫甘薯,是指薯肉颜色为紫色的甘薯。由于富含花青素等一类对人体营养的保健物质而在近年被认定为特用品种。紫甘薯紫皮、紫肉都可食用,味道略甜。花青素含量20—180mg/100克。有较高的食用和药用价值,是一种纯天然的保健食品。 紫甘薯含有丰富的锌、钙、镁等多种人体有益元素,特别含有最佳值的硒元素.硒元素巳被世界医学界称为超级巨星、生命火种和抗癌之王.其抗癌功能在所有食品中独占第一.长期食用,具有提高人体免疫力,抗癌防癌、软化血管、降紫甘薯,是指薯肉颜色为紫色的甘薯。由于富含花青素等一类对人体营养的保健物质而在近年被认定为特用品种。紫甘薯紫皮、紫肉都可食用,味道略甜。花青素含量20—180mg/100克。有较高的食用和药用价值,是一种纯天然的保健食品。紫薯中含有丰富的蛋白质,18种易被人体消化和吸收的氨基酸,维生素C、B、A 等8种维生素和磷、铁等10多种天然矿物质元素。其中铁和硒含量丰富。而硒和铁是人体抗疲劳、抗衰老、补血的必要元素,特别是硒被称为“抗癌大王”,易被人体吸收,可留在血清中,修补心肌,增强机体免疫力,清除体内自由基,抑制癌细胞中DNA的合成和癌细胞的分裂与生长,预防胃癌、肝癌等癌病的发生。紫薯富含纤维素,可增加粪便体积,促进肠胃蠕动,清理肠腔内滞留的粘液、积气和腐败物,排出粪便中的有毒物质和致癌物质,保持大便畅通,改善消化道环

花青素的功效与作用

花青素的功效与作用 OPC是存在于莲花、蓝莓、葡萄中的一种天然植物多酚类物质,称为原花青素(简称OPC)。其抗氧化、清除自由基的能力是维生素C的20倍、维生素E 的50倍,是国际上公认的清除人体内自由基强效的天然抗氧化剂。 国际权威专家、权威机构的临床试验证明,原花青素OPC神奇功效之发现极大地震憾了整个学术界。OPC的科学发现经过几十年的研究,20世纪末,科学已经证实OPC具有抑制并清除自由基、抗氧化、抗辐射、抗肿瘤、抗过敏、抗衰老和提高心、脑血管活性等多种生物学功效,在药品、保健品、食品、化妆品及临床治疗疾病等领域广泛的应用。原花青素OPC在世界各国被誉为自由基的克星、生命的常青素、口服的化妆品美称。 原花青素哪个好?首先要看每片花青素的含量,以及里面含原花青素(OPC)的纯度;另外还要看它的生产技术面,现在国内一般用的都是乙醇萃取技术,国外的话就比较先进一些用的是超流体萃取技术。可以从这两个方面去比较! 不过时代在发展,科技在进步,原花青素(OPC)提取原料和工艺已经有了很好的发展。由中国华中农业大学的教授和国内顶尖的原花青素(OPC)专家们十多年的科研成果,采用独特的绿色环保提取工艺(水浸提法),从莲科植物中提取的莲原花青素,其原花青素纯度为98%,低聚物原花青素的含量为80%,生物活性是葡萄籽的10倍,其纯度,吸收率、活性都是目前国际上的领先水平。 原花青素(OPC)的提取技术经历了传奇的三步,三代原花青素(OPC)的发展历程: 一、松树皮中提取的原花青素OPC,代表产品:碧萝芷。 原花青素(OPC)最初是从松树皮中提取,因此从松树皮中提取的原花青素被称为第一代原花青素产品。 二、葡萄籽、蓝莓中提取的OPC,代表产品:爱人葡萄籽,gnc葡萄籽,康力士葡萄籽,泰奥菲葡萄籽,海隆达葡萄籽,安利葡萄籽,天选葡萄籽。 后发现从葡萄籽、蓝莓中提取的原花青素纯度和低聚体物含量较高,因此从葡萄籽、蓝莓中提取的原花青素被称为第二代原花青素产品。 三、莲科植物中提取的OPC,代表产品:莲菁华原花青素 美国农业部人类营养研究中心等研究机构发现莲科植物是果蔬中原花青素含量最高、抗氧化能力最强的,是原花青素含量最丰富的资源。其纯度和清除自由基能力远远高于从葡萄籽、蓝莓中提取的原花青素(OPC),迄今为止国际上纯度高、吸收率高、活性强的原花青素(OPC)产品,因此莲科植物提取的原花青素(OPC)被称为第三代原花青素(OPC)产品。 在原花青素里,低聚体原花青素的含量和活性是决定抗氧化效果的关键。目前国际常见的原花青素分松树皮提取物﹑葡萄籽提取物﹑莲科提取物。其中莲原

保健食品检验与评价技术规范》2003版中“保健食品中原花青素的测定

花青素的测定 保健食品检验与评价技术规范》 2003 版中“保健食品中原花青素的测定 原花青素含量测定方法 1、 原理 原花青素是含有儿茶素和表儿茶素单元的聚合物。原花青素本身无色,但经过 用 热酸处理后,可以生成深红色的花青素离子。本方法用分光光度法测定原花青素 在水解过程中生成的花青素离子。计算试样中原花青素含量。 硫酸铁铵 NH4Fe(S04)2?12HO 溶液:用浓度2mmol/l 盐酸配成2%(w/v)的 溶液。 4.1.1 片剂 取 20 片试样,研磨成粉状。 4.1.2 胶囊 挤出 20 粒胶囊内容物,研磨或搅拌均匀,如内容物含油,应将内 容物尽可能挤出。 4.1.3 口服液 摇匀后取样。 4.2 提取 保健食品检验与评价技术规范》 2003 版中 保健食品中原 2.1 甲醇 分析纯 2.2 正丁醇 分析纯 2.3 盐酸 分析纯 2 、 试剂 2.4 2.5 原花青素标准品 葡萄籽提取物,纯度 95% 3、 仪器 3.1 分光光度计 3.2 回流装置 4、 分析步骤 4.1 试样的制备

421粉状试样称取50-100mg试样置于50ml容量瓶中,加入30ml甲醇,超声处理20min,放冷至室温后,加甲醇至刻度,摇匀,离心或放置至澄清后取上清液备用。 4.2.2含油试样称取50mg试样置于小烧杯中,用20ml甲醇分数次搅拌,将 原花青素洗入50ml 容量瓶中,直至甲醇提取液无色,加甲醇至刻度,摇匀。 5.2.3 口服液吸取适量试样(取样量不超过1ml)置于50ml容量瓶中,加甲醇至刻度,摇匀。 4.3 测定 4.3.1标准曲线称取原花青素标准品10.0mg溶于10ml甲醇中,吸取该溶液 0、0.1、0.25、0.5、1.0、1.5ml置于10ml容量瓶中,加甲醇至刻度,摇匀。各 取1ml 测定。与试样测定方法相同。 4.3.2 试样测定将正丁醇与盐酸按95:5 的体积比混合后,取出6ml 置于具塞 锥瓶中,再加入0.2ml硫酸铁铵溶液和1ml试样溶液,混匀,置沸水浴回流, 精确加热40min后,立即置冰水中冷却,在加热完毕15min后,于546nm波长处测 吸光度,由标准曲线计算试样中原花青素的含量。显色在 1 小时内稳定。5、分析结果表述 试样中原花青素测定结果按(1) 式计算 5.1 计算: m1x v x 1000 m x 1000x 1000 式中:X —试样中原花青素的百分含量,g/100g; m1—反应混合物中原花青素的量,ug; v—待测样液的总体积,ml; m—试样的质量,mg 5.2 结果表示

花青素

花青素 花青素是一种水溶性色素,可以随着细胞液的酸碱改变颜色。细胞液呈酸性则偏红,细胞液呈碱性则偏蓝。花青素(anthocyanins)是构成花瓣和果实颜色的主要色素之一。花青素为植物二级代谢产物,在生理上扮演重要的角色。花瓣和果实的颜色可吸引动物进行授粉和种子传播 (Stintzing and Carle, 2004)。常见于花、果实的组织中及茎叶的表皮细胞与下表皮层。部分果实以颜色深浅决定果实市场价格 概述 花青素(Anthocyanidin),又称花色素,是自然界一类广泛存在于植物中的水溶性天然色素,属黄酮类化合物。也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等五彩缤纷的颜色大部分与之有关。在植物细胞液泡不同的pH值条件下,使花瓣呈现五彩缤纷的颜色。秋天可溶糖增多,细胞为酸性,在酸性条件下呈红色,所以叶子呈红色是花青素作用,其颜色的深浅与花青素的含量呈正相关性,可用分光光度计快速测定,在碱性条件下呈蓝色。花青素的颜色受许多因子的影响,低温、缺氧和缺磷等不良环境也会促进花青素的形成和积累。 目前食品工业上所用的色素多为合成色素,几乎都有不同程度的毒性,长期使用会危害人的健康,因此天然色素就越来越引起了科研领域的关注:由于至今国内市场上还没有花青素纯品,所以提取高纯度的花青素对花色苷类色素的深入研究与开发提供必备的表征条件和理论依据,并且有助于它的工业利用。 种类 花青素的基本结构单元是2一苯基苯并吡喃型阳离子,即花色基元。现已知的花青素有20多种,主要存在于植物中的有:天竺葵色素(Pelargonidin)、矢本菊色素或芙蓉花色素(Cyanidin)、翠雀素或飞燕草色素(Delphindin)、芍药色素(Peonidin)、牵牛花色素(Petunidin)及锦葵色素(Malvidin)。自然条件下游离状态的花青素极少见,主要以糖苷形式存在,花青素常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键形成花色苷。已知天然存在的花色苷有250多种。 化学特性 花青素属于酚类化合物中的类黄酮类(flavonoids)。基本结构包含二个苯环,并由一3碳的单位连结(C6- C3-C6)。花青素经由苯基丙酸路径和类黄酮生合成途径生成,由许多酵素调控催化。以天竺葵色素(pelargonidin)、矢车菊素(cyanid in)、花翠素(delphinidin)、芍药花苷配基(peonidin)、矮牵牛苷配基(petunidin)及锦葵色素(malvid in)六种非配醣体(aglycone)为主。花青素因所带羟基数(-OH)、甲基化(methylation)、醣基化(glycosylation)数目、醣种类和连接位置等因素而呈现不同颜色(范和邱,1998)。颜色的表现因生化环境条件的改变,如受花青素浓度、共色作用、液胞中pH値的影响(Clifford, 2000)。橙色和黄色是胡萝卜素的作用。1910年在胡萝卜中发现了β-胡萝卜素,以后共发现另外2种胡萝卜素异构体,分别是:α、β、γ三种异构体。1958年β-胡萝卜素获得专利(US2849495,1958年8月26日,专利权人:Hoffmann La Roche),目前主要从海洋中提取,也可人工合成。 自然界有超过300种不同的花青素。他们来源于不同种水果和蔬菜如紫甘薯、越橘、酸果蔓、蓝莓、葡萄、接骨木红、黑加仑、紫胡罗卜和红甘蓝、颜色从红到蓝。这些花青素主要包含飞燕草素(Delchind in)、矢车菊素(Cyanid in)、牵牛花色素(Petunid in)、芍药花色素(Peonidin). 其中蓝莓所含花青素量最大最多最有营养价值。 蓝莓花青素简介

花青素的提取纯化、抗氧化能力及功用方面的研究进展

花青素的提取纯化、抗氧化能力及功用方面的研究进展 花青素(Anthocyanidins)属酚类化合物中的类黄酮类,是一种水溶性色素,广泛存在于植物花瓣、果实的组织中及茎叶的表面细胞与下表皮层。其色泽随pH 不同而改变,由此赋予了自然界许多植物明亮而鲜艳的颜色。在自然状态下,花青素在植物体内常与各种单糖结合形成糖苷,称为花色苷(An—thocyanin),该命名是由Marguart(1853)命名矢车菊花朵中的蓝色提取物时提出来的,现在作为同类物质的总称。现有资料表明花青素有二十余种,在植物巾见的有六种,即天竺葵色素(Pg)、矢车菊色素(Cy)、飞燕草色素(Dp)、芍药色素(Pn)、牵牛花色素(Pt)和锦葵色素(My) 。它是由一定数量的儿茶素、表儿茶素缩合而成的聚合体,其分子结构中由于含有不对称碳原子(2位或2,3位),因此具有旋光性。花青素具有很强的极性,可溶于水,易溶于甲醇、乙醇、乙酸乙酯、丙酮,但不溶于乙醚、氯仿、苯等。另外,由于分子中有大量的酚羟基存在,因此具有弱酸性,可溶于碱性水溶液。 1 花青素的主要来源 花青素广泛存在于开花植物(被子植物)中,其在植物巾的含量随品种、季节、气候、成熟度等不同有很大差别。据初步统计:在27个科,73个属植物中均含花青素,如紫甘薯、葡萄、血橙、红球甘蓝、蓝莓、茄子、樱桃、红莓、草莓、桑葚、山楂、牵牛花等植物的组织中均有一定含量。最早最丰富的花青素是从红葡萄渣中提取的葡萄皮红色素,它于1879年在意大利上市,该色素可通过葡萄酒酒厂的废料一葡萄渣提取。接骨木浆果(Elderberries)中含大量的花青索,并且都是矢车菊素,每百克鲜重在200~1000 mg。另外,花青素在大麦、高粱、豆科植物等粮食作物中也广泛存在。研究发现,葡萄籽与松树皮的提取物中花青素的含量最高。花青素的主要作用是保护植物中易氧化的成分,它们在植物体内与其它组分共同作用,具有高度的生物利用率,Bagchi研究证实:在抗自由基能力及保护因自由基引起的脂质过氧化和抗DNA损伤能力方面花青素显著高于维生素C、维生素E和B一胡萝卜素。 2 花青素的提取、纯化工艺研究现状 2.1 花青素的提取 花青素的提取是目前花青素研究发展的热点问题,也是花青素生产、投入使用的关键性环节。近年来,在传统提取方法的基础之上,一些凭借新技术或经过改良后的提取方法也开始崭露头角。 2.1.1有机溶剂萃取法 这是目前国内外最广泛使用的提取方法。多数选择甲醇、乙酮、丙酮等混合

测定原花青素含量(硫酸香草醛法)1

香草醛法测定原花青素的含量 说明:原花青素的抗氧化性受到聚合物的影响,以乙酸为溶剂,香草只与原花青素中的末端的黄烷-3-醇发生缩合生成红色产物,由红色产物吸光度测定原花青素含量。通过正交实验和单因素实验考查了硫酸香草醛法测定原花青素含量的合适条件,比色条件为硫酸浓度30%,香草醛浓度1%,反应T为30℃,反应时间为30分钟。以儿茶素为标准品绘制标准曲线测定原花青素含量。 一、器材/试剂 紫外分光光度计恒温水浴锅电子天平 儿茶素标准品(浓度>=98%);香草醛 ( 分析纯) ;硫酸 ( 分析纯) ;冰乙酸 ( 分析纯) ;实验用水为二级反渗透去离子水。 二、实验步骤 1.配制试剂 ( 1 )配制儿茶素标准品溶液:称取一定量的儿茶素标准品,分别用去离子水定容至一定体积,配制成物质的量浓度为0.025~0.25 mm o l · mL 的儿茶素标准品溶液; ( 2 )配制香草醛乙酸溶液:称取一定量的香草醛,分别用乙酸定容至一定体积,配制成浓度为1 %; ( 3 )配制硫酸乙酸溶液:量取一定体积的浓硫酸,分别用乙酸定容至一定体积,配制成浓度为3 0 %的硫酸乙酸溶液。 (4)样品溶液:原花青素溶液

以火棘果为原料,按液固比 6:1加入 4 0 %乙醇溶液,4 5 ℃下浸提 1.5 h,问歇搅拌,连提3次,过滤,滤液旋蒸,回收溶剂。浓缩液经过预处理好的AB一8树脂吸附,用去离子水洗涤、6 0%乙醇溶液洗脱,收集洗脱液,6 0%乙醇洗脱液即为样品溶液。 2、扫描最大吸收波长 取0.5mL儿茶素标准品溶液,加入2.5mL30%的硫酸乙酸溶液,2.5mL 1%的香草醛乙酸溶液,混合均匀,30℃水浴中避光反应15min。以无水乙酸做参比,在可见光区(400~800nm)进行光谱扫描。确定最大吸收波长,以后在此波长下测定样品的含量。 3、绘制标准曲线(在最大波长吸收处测得吸光度) 浓度0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 A(儿茶 素) 0.105 0.115 0.125 0.135 0.145 0.155 0.165 0.175 A(儿茶 素) 0.185 0.195 0.205 0.215 0.225 0.235 0.245 A(儿茶 素) 测原花青素样品的吸光度,通过以上标准曲线所得的标准曲线回归线方程计算得样品浓度。 注:实验须重复4次,

不同季节四种樟科植物叶绿体色素及花青素含量比较

不同季节四种樟科植物叶绿体色素和花青素含量比较 摘要:以普陀樟、舟山新木姜子、红楠、香樟这四种樟科植物为实验材料,对其一年中的不同季节叶绿体色素中的叶绿素a、叶绿素b、叶黄素及花青素含量进行了测定分析。结果表明:(1)在1月和6月四种樟科植物叶绿体色素含量相差不多,但在5月份都有很大变化,其中以红楠和普陀樟变化较为明显,5月初香樟叶绿素含量相对高于其余几种;(2)随着季节的变化,四种樟科植物叶绿体色素含量表现出基本相同的变化趋势,各植物都表现出由缓慢上升到下降的趋势,其中5月末,即春末的含量最高;(3)该四种植物的花青素含量都呈下降到缓慢上升的趋势,其中5月初含量最低,这与花青素的缓慢积累有关,因本实验中3月份的实验材料为去年的老叶而非今年的新叶。 关键词:樟科植物;叶片;叶绿体色素;花青素 随着人们对绿化质量标准要求的提高,在道路及城市绿化树种配置上很讲究“色、香、味、形”的变化。而樟科植物作为一类无论在观赏还是在药理上都具有非常高价值的植物,更受大众的喜爱。植物光合作用是将光能转换为化学能的过程,在光能的吸收、传递和转换过程中,叶绿体色素起着关键作用。目前,国内对多种彩色植物,如李属彩叶植物等的色素含量变化都有较多研究,而对四季常绿的樟科植物的叶绿体色素及花青素含量变化的研究报道尚少。因此,本实验从植物叶片叶绿体色素和花青素这两方面测定四种樟科植物在不同季节的色素浓度,通过数据的图表比较来研究其浓度的变化及差异。 1材料与方法 1.1 材料 实验所采用的材料为舟山定海区的四种樟科(Lauraceae)植物,包括普陀樟(Cinnamomum japonicum Sieb.)、新木姜子(Neolitsea aurata Koidz)、红楠(Litsea kwangsiensis Yang et P. H. Huang)和香樟(Cinnamomum parthenoxylon Nees)。该四种植物均在同一地区内,因而影响植物生长的光照、温度等因素基本相同。本实验中,我们在2010年1月选定该四种樟科植物,并在多次实验中采用同一植株的叶片,从而避免植株间的误差问题。 1.2方法 本实验需要摘取春夏冬三季的这四种植物的新鲜叶片,研磨后用95%的乙醇提取其叶绿体色素,在3000转/min下离心5分钟,然后用722型分光光度计测定其吸光度,即可计算单位质量内叶绿体色素的含量。用0.1mol/L的盐酸在32摄氏度的恒温下提取花青素4小时,过滤并用722型分光计测得其分光度,并进行计算。 最后可根据所得到的结论比较分析不同季节同种植物叶绿体色素和花青素的变化情

野生黑果枸杞(Lycium ruthenicum)原花青素与多糖含量的比较分析研究

Botanical Research 植物学研究, 2018, 7(5), 481-489 Published Online September 2018 in Hans. https://www.wendangku.net/doc/4f13292485.html,/journal/br https://https://www.wendangku.net/doc/4f13292485.html,/10.12677/br.2018.75058 Comparative Analysis of Proanthocyanidins and Polysaccharides on Wild Lycium ruthenicum Haijun Chen1, Jiawei Liu2, Yumei Shan3, Lijun He4, Yong Yang5, Yan Zheng6, Jie Hou1, Yu Zhou4, Lixiao Ma4 1Inner Mongolia Institute of Biotechnology, Hohhot Inner Mongolia 2College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot Inner Mongolia 3Inner Mongolia Agriculture & Animal Husbandry Academy of Sciences, Hohhot Inner Mongolia 4Agricultural College, Inner Mongolia Agricultural University, Hohhot Inner Mongolia 5Inner Mongolia Institute of Grassland Survey and Planning, Hohhot Inner Mongolia 6Forestry College of Inner Mongolia Agricultural University, Hohhot Inner Mongolia Received: Aug. 10th, 2018; accepted: Aug. 24th, 2018; published: Aug. 30th, 2018 Abstract The difference and correlation analysis were analyzed on Proanthocyanidins and Polysaccharide of wild Lycium ruthenicum experimental materials from different regions including Qinghai Prov-ince, Gansu Province, Ningxia Autonomous Region & Inner Mongolia. Cluster analysis was also used to classify the experimental materials. The results showed that the order of Proanthocyani-dins absorbance in Lycium ruthenium experimental materials was No. 4 > No. 1 > No. 5 > No. 6 > No. 3 > No. 2. The Proanthocyanidins absorbance of No. 4 (2.43) was significantly higher than that of other materials (P < 0.05). That of No. 2 was the lowest, only 1.35, but there was no significant difference between No. 3 and 6 (P > 0.05). Meanwhile, there was a significant difference between the others (P < 0.05). The content of Polysaccharide was in sequence: No. 3 > No. 7 > No. 2 > No. 4 > No. 5 > No. 6 > No. 1. The difference between No. 3 and 7 was not significant (P > 0.05), and was significantly higher than that of other materials (P < 0.05). Moreover, the variation of Proantho-cyanidins and Polysaccharide content was obvious among the experimental materials, but there was no consistency about the correlation analysis between them. From the aspect of Proanthocya-nidins, the experimental materials No. 1 and No. 4 could be classified as a group. The remaining No. 2, No. 3, No. 5 and No. 6 belonged to a group. The whole results could provide theoretical basis for introduction and breeding of fine varieties in the future. Keywords Lycium ruthenicum, Proanthocyanidins, Polysaccharide, Variation Analysis, Cluster Analysis

相关文档