文档库 最新最全的文档下载
当前位置:文档库 › 利用空间向量证明平行关系

利用空间向量证明平行关系

利用空间向量证明平行关系
利用空间向量证明平行关系

D 1

C 1

B 1

A 1

D

C

B

A

利用空间向量证明平行关系

主讲教师:巫宇霞

【知识概述】

一、平面的法向量

(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.

(2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一 确定的.

二、利用空间向量证明平行关系

设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则 线线平行l //m ?a // b ?a = k b ; 线面平行l //α?a ⊥ u ?a ·u = 0; 面面平行α//β?u //v ?u =k v .

【学前诊断】

1. [难度]中

已知正方体ABCD —A 1B 1C 1D 1中,E 、F 分别在DB 、D 1C 上,且DE =D 1F =2

3

a ,其中a 为正方体棱长.

求证:EF ∥平面BB 1C 1C .

2. [难度]中

如图,在长方体1111D C B A ABCD -中,AB = 4,BC = 3,1CC = 2. 求证:平面11A BC //平面1ACD .

3. [难度]中

如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB //CD ,AB =4, BC =CD =2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点. 证明:直线EE 1//平面FCC 1.

【经典例题】

例1.如图,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.

求证:DE ∥平面ABC .

例2. 如图,平面P AC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O

分别是P A ,PB ,AC 的中点,AC =16,P A =PC =10. 设G 是OC 的中点,证明FG ∥平面BOE

.

例3. 如图,两个全等的正方形ABCD 和ABEF 所在平面交于AB ,AM =FN ,

求证:MN //面BCE .

E

A

B C

F

E 1

A 1

B 1

C 1

D 1

D

例4. 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,

求证:平面ADE ∥平面B 1C 1F .

例 5. 如图在底面是菱形的四棱锥P ABCD -中,60,,A B C P A A C a

∠===

2PB PD a ==,点E 在PD 上,且:2:1PE ED =,在棱PC 上是否存在一点

F ,使//BF AEC 平面?证明你的结论.

【本课总结】

1.求一个平面的法向量的坐标,首先要建立空间直角坐标系,然后用待定系数法求解,步骤如下:

①设平面的法向量为n =(x,y,z );

②找出(求出)平面内的两个不贡献的向量的坐标a =(a 1,b 1,c 1),b =(a 2,b 2,c 2) ; ③根据法向量的定义建立关于x,y,z 的方程组0,

0;

n a n b ?=??

?=?

④解方程组,取其中的一个解,即得法向量的坐标.

2.证明两条直线平行,只需证明这两条直线的方向向量是共线向量.

3.证明线面平行的方法:

①证明直线的方向向量与平面的法向量垂直;

②证明能够在平面内找到一个向量与已知直线的方向向量共线;

③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量. 4.证明面面平行的方法:

①转化为线线平行、线面平行的处理; ②证明这两个平面的法向量是共线向量. 5.向量法解决立体几何问题的三个步骤:

①建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;

②通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题;

③把向量运算的结果“翻译”成相应的几何意义,即回归到图形问题.

【活学活用】

1. [难度]中

如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE ?是等腰

直角三 角形,,,45AB AE FA FE AEF ==∠=?. (I )求证:EF BCE ⊥平面;

(II )设线段CD AE 、的中点分别为P M 、,

求证:PM ∥BCE 平面.

E

F

M

P

D C

B

A

2. [难度]中

如图,PAC ABC ⊥平面平面,ABC ?是以AC 为斜边的等腰直角三角形,,,E F O 分

别为,,PA PB AC 的中点,1610AC PA PC ===,.设G 是OC 的中点, 证明:FG ∥BOE 平面;

3. [难度]中

正方体1111ABCD A BC D -中,求证:平面1A BD ∥平面11CB D .

空间中的平行关系练习题

1.2.2空间中的平行关系 【目标要求】 1.理解并掌握公理4,能应用其证明简单的几何问题. 2.理解并掌握直线与平面平行的判定定理和性质定理,明确线线平行与面面平行的关系. 3.能够熟练的应用线面平行的性质定理和判定定理. 1.以下说法中正确的个数是(其中a,b表示直线,表示平面α) ( ) ①若a∥b,b∥α,则a∥α②若a∥α,b∥α,则a∥b ③若a∥b,b∥α,则a∥α④若a∥α,b∥α,则a∥b A. 0个 B. 1个 C. 2个 D. 3个 2.a∥α,b∥β,a∥b,则α与β的位置关系是() A.平行 B.相交 C.平行或相交 D.一定垂直 3.如果平面α外有两点A、B,它们到平面α的距离都是d,则直线AB和平面α的位置关系一定是() A.平行 B.相交 C.平行或相交 D. AB?α 4.当α∥β时,必须满足的条件() A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线 C.平面α内有两条直线平行于平面β D.平面α内有两条相交直线与β平面平行 5.已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且 不相交.;其中可能成立的有() A.2个 B.3个 C.4个 D.5个 6.直线a∥平面α,点A∈α,则过点A且平行于直线a的直线() A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 7.已知直线a∥平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是 () A.空集 B.两条平行直线 C.一条直线 D.一个平面 8. A、B是直线l外的两点,过A、B且和l平行的平面的个数是() A.0个 B.1个 C.无数个 D.以上都有可能 9.设α,β是不重合的两个平面,l和m是不重合的两条直线,则能得出α∥β的是() A.l?α,m?α,且l∥β,m∥β B.l?α,m?β,且l∥m C.l⊥α,m⊥β,且l∥m D.l∥α,m∥β,且l∥m 10.已知直线a、b,平面α、β,以下条件中能推出α∥β的是() ①a?α,b?β,a∥b;②a?α,b?α,a∥β,b∥β;③a∥b,a⊥α,b⊥β. A.① B.② C.③ D.均不能 11.若平面α∥平面β,直线a?α,直线b?β,那么直线a,b的位置关系是() A.垂直 B.平行 C.相交 D.不相交 12.梯形ABCD中AB∥CD,AB?平面α,则直线CD与平面α的位置关系是() A.平行 B.平行或相交 C.相交 D. CD平行平面α或CD?α 13.正方体AC1中,E、F、G分别为B1C1、A1D1、A1B1的中点 求证:平面EBD//平面FGA.

空间位置关系的判断与证明

. . 空间中的线面关系 要求层次 重难点 空间线、面的位置关系 B ① 理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点 在一个平面,那么这条直线上所有的点 在此平面. ◆公理2:过不在同一条直线上的 三点,有且只有一个平面. ◆公理3:如果两个不重合的平面 有一个公共点,那么它们有且只有一条 过该点的公共直线. ◆公理4:平行于同一条直线的两 条直线互相平行. ◆定理:空间中如果一个角的两边 与另一个角的两边分别平行,那么这两 个角相等或互补. ② 以立体几何的上述定义、公理和 定理为出发点,认识和理解空间中线面 平行、垂直的有关性质与判定. 公理1,公理2,公理3,公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

. . 理解以下判定定理. ◆如果平面外一条直线与此平面的 一条直线平行,那么该直线与此平面平 行. ◆如果一个平面的两条相交直线与 另一个平面都平行,那么这两个平面平 行. ◆如果一条直线与一个平面的两条 相交直线都垂直,那么该直线与此平面 垂直. ◆如果一个平面经过另一个平面的 垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行, 经过该直线的任一个平面与此平面相 交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个 平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平 行. ◆如果两个平面垂直,那么一个平 面垂直于它们交线的直线与另一个平面 垂直. ③ 能运用公理、定理和已获得的结 论证明一些空间位置关系的简单命题. *公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 1.集合的语言: 我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α,记作:A α∈;点A 不在平面α,记作A α?; 直线l 在平面α(即直线上每一个点都在平面α),记作l α?; 直线l 不在平面α(即直线上存在不在平面α的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 知识内容

条据书信 如何证明是向量空间

如何证明是向量空间 向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关点的坐标值,求出相关向量的坐标; 4)求解给定问题 证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。 证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解: 因为x+y+z=0 x=-y-z y=y+0xz z=0xy+z (x,y,z)=(-1,1,0)xy+(-1,0,1)xz y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2) 步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。篇二:《空间向量在几何证明题解法》 空间向量在几何体中例题 1如图,在四棱椎P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点。 (1)求证:EF⊥CD; (2)证明:PA//平面DEF 3.已知四棱锥P ABCD的底面为直角梯形,AB//DC, DAB90,PA底面ABCD,且PA AD DC 1 2

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

最新空间中的平行关系教案

课题:空间中的平行关系 授课人:杜仙梅 教学目标:1.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化。 2.掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化. 教学重点、难点:线面平行的判定定理和性质定理的证明及运用;两个平面平行的判定和性质及其灵活运用. 教学方法:探究、引导、讲练相结合 教学过程: 基础知识梳理 1.直线与平面平行的判定与性质 (1)判定定理: 平面外一条直线与_______________平行,则该直线与此平面平行.(此平面内的一条直线) (2)性质定理: 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线.(平行)2.平面与平面平行的判定与性质 (1)判定定理: 一个平面内的与另一个平面平行,则这两个平面平行.(两条相交直线) (2)性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线.(平行) 思考:能否由线线平行得到面面平行? 【思考·提示】可以.只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行. 三基能力强化 1.两条直线a、b满足a∥b,b?α,则a与平面α的关系是(C) A.a∥α B.a与α相交 C.a与α不相交 D.a?α 2.正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为_____.(平行) 课堂互动讲练 考点一 直线与平面平行的判定: 判定直线与平面平行,主要有三种方法: (1)利用定义(常用反证法). (2)利用判定定理:关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.(3)利用面面平行的性质定理:当两平面平行时,其中一个平面内的任一直线平行于另一平面. 特别提醒:线面平行关系没有传递性,即平行线中的一条平行于一平面,另一条不一定平行于该平面.例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 点P、Q,且AP=DQ. 求证:PQ∥平面BCE. 【证明】法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N, 连结MN、PQ.

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

用向量法证明直线与直线平行

用向量法证明直线与直线平行、直线与平面平行、 平面与平面平行导学案 一、知识梳理 1、设直线l 1和l 2的方向向量分别是为1v 和2v ,由向量共线条件得l 1∥l 2或l 1与l 2重合?1 v ∥2v 。 2、直线与平面平行的条件 已知两个不共线向量1v 、2v 与平面a 共面(图(2)), 一条直线l 的一个方向向量为1v ,则由共面向量定理, 可得l ∥a 或l 在平面a 内?存在两个实数x 、y ,使 1v =x 1v +y 2v 。 3、平面与平面平行的条件 已知两个不共线的向量1v 、2v 与平面a 共面,则由两个平面平行的判定定理与性质得 a ∥β或a 与β重合?1v ∥β且2v ∥β 4、点M 在平面ABC 内的充要条件 由共面向量定理,我们还可得到:如果A 、B 、C 三点不共线,则点M 在平面ABC 内的充分 必要条件是,存在一对实数x 、y ,使向量表达式AM x AB y AC =+ 成立。 对于空间任意一点O ,由上式可得(1)O M x y O A xO B yO C =--++ ,这也是点M 位于平 面ABC 面内的充要条件。 知识点睛 用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意: (1)若l 1、l 2的方向向量平行,则包括l 1与l 2平行和l 1与l 2重合两种情况。 (2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。 例1:如图3-28,已知正方体ABCD -A ′B ′C ′D ′,点M ,N 分别是面对角线A ′B 与面对角线A ′C ′的中点。 求证:MN ∥侧面AD ′;MN ∥AD ′,并且MN =12 AD ′。

利用空间向量证明面面平行垂直

利用空间向量证明面面平行垂直 1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证 明:平面ADE⊥平面A1D1F. 2.如图,在直三棱柱ABC?A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1 上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD 3.如图,在四棱锥P?ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD, PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD

4.如图,四边形是矩形,平面,,为中点. 证明:平面平面 5.如图,在底面是矩形的四棱锥P?ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4, E是PD的中点.求证:平面PDC⊥平面PAD 6.如图,在正方体ABCD?A1B1C1D1中,E为棱DD1的中点. 求证:平面EAC⊥平面AB1C

7.如图,正三棱柱ABC?A1B1C1的所有棱长都为2,D为CC1中点. 求证:平面ABB1A1⊥平面A1BD PD。 8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=1 2证明:平面PQC⊥平面DCQ

答案和解析 1.解:以D 为原点,向量DA ????? ,DC ????? ,DD 1???????? 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图, 设正方体的棱长为1. 则D(0,0,0),A(1,0,0),E (1,1,1 2),C 1(0,1,1),M (1,0,1 2), DA ????? =(1,0,0),DE ?????? =(1,1,12),C 1M ???????? =(1,?1,?1 2 ). 设平面ADE 的法向量为m ??? =(a,b ,c), 则{DA ????? ·m ??? =0 DE ?????? ·m ??? =0?{a =0,a +b +12 c =0.令c =2,得m ??? =(0,?1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1?????????? =(1,0,0),D 1F ??????? =(0,1 2 ,?1), 设平面A 1D 1F 的法向量为n ? =(x,y ,z),则{D 1A 1?????????? ·n ? =0D 1F ??????? ·n ? =0?{x =0,12y ?z =0. 令y =2,则n ? =(0,2,1).∵m ??? ·n ? =(0,?1,2)·(0,2,1)=0?2+2=0, ∴m ??? ⊥n ? .∴平面ADE ⊥平面A 1D 1F . 2.证明:如图所示建立空间直角坐标系, 设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a 2,1,0). 所以B 1D ???????? =(0,2,2),AB ????? =(?a,0,0),BD ?????? =(0,2,?2). AB ????? =(?a,0,0),BD ?????? =(0,2,?2),GF ????? =(?a 2,0,0),EF ????? =(0,1,?1),所以AB ????? =2GF ????? ,BD ?????? =2EF ????? ,所以GF ????? //AB ????? ,EF ????? //BD ?????? ?所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .

立体几何中的向量方法 ——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 【基础检测】 1.思维辨析(在括号内打“√”或“×”). (1)直线的方向向量是唯一确定的.( ) (2)若两直线的方向向量不平行,则两直线不平行.( ) (3)若两平面的法向量平行,则两平面平行或重合.( ) (4)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C .? ?? ? - 33,-33,- 33 D .?? ?? 33,33 ,-33 3.已知直线l 的方向向量v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是__ __. 4.设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__ _;当v =(4,-4,-10)时,α与β的位置关系为_ __. 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是__ __. 题型一 利用空间向量证明平行问题 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. (2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.

空间位置关系的判断与证明

空间中的线面关系 要求层 次 重难点 空间线、面的位置关系 B ①理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点在 一个平面,那么这条直线上所有的点在 此平面. ◆公理2:过不在同一条直线上的三 点,有且只有一个平面. 公理1,公理2,公理3, 公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行,经 过该直线的任一个平面与此平面相交, 那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个 平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平 行. ◆如果两个平面垂直,那么一个平面 垂直于它们交线的直线与另一个平面垂 直. ③能运用公理、定理和已获得的结 论证明一些空间位置关系的简单命题. *公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 知识内容 1.集合的语言:

我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α,记作:A α∈;点A 不在平面α,记作A α?; 直线l 在平面α(即直线上每一个点都在平面α),记作l α?; 直线l 不在平面α(即直线上存在不在平面α的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 平面α与平面β相交于直线a ,记作a αβ=. 2.平面的三个公理: ⑴ 公理一:如果一条直线上的两点在一个平面,那么这条直线上所 有的点都在这个平面. 图形语言表述:如右图: 符号语言表述:,,,A l B l A B l ααα∈∈∈∈?? ⑵ 公理二:经过不在同一条直线上的三点,有且只有一个平面, 也可以简单地说成,不共线的三点确定一个平面. 图形语言表述:如右图, 符号语言表述:,,A B C 三点不共线?有且只有一个平面α, 使,,A B C ααα∈∈∈. ⑶ 公理三:如果不重合的两个平面有一个公共点,那么它们有且 只有一条过这个点的公共直线. 图形语言表述:如右图: 符号语言表述:,A a A a αβα β∈?=∈. 如果两个平面有一条公共直线,则称这两个平面相交,这条公共直线叫做两个平面 的交线. 3.平面基本性质的推论: 推论1:经过一条直线和直线外的一点,有且只有一个平面.

利用空间向量证明空间位置关系

利用空间向量证明立体几何中的平行与垂直问题 [考纲要求] 1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式. 2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直. 4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系. 5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理). 知识点一:空间向量及其运算 1.空间向量及其有关概念 (1)空间向量的有关概念 (2) 2. (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 3.空间向量的运算及其坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3).

[基本能力] 1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→ 等于________. 答案:13 AD ―→ 2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:1 3.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 2 4.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7 考法一 空间向量的线性运算 [例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→- 1 2PA ―→-12 PC ―→, ∴x =y =-1 2 . (2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→. 从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→ . ∴x =2,y =-2. 考法二 共线、共面向量定理的应用 [例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点, 用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH . [证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12 (BC ―→+BD ―→ ) =EB ―→+BF ―→+

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

《空间中的平行关系》教案

《空间中的平行关系》教案 教学目标 1、知识与技能 (1)认识和理解空间平行线的传递性,会证明空间等角定理. (2)通过直观感知,归纳直线和平面平行及平面和平面平行的判定定理. (3)掌握直线和平面平行,平面与平面平行的判定定理和性质定理,并能利用这些定理解决空间中的平行关系问题. 2、过程与方法 通过类比和转换的思维方法,将空间中的某些立体图形问题转化为平面图形的问题,从而化难为易,化繁为简,带未知为已知,使问题得到很好的解决(线∥线线∥面面∥面).教学重难点 重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定. 难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用. 教学过程 一、导入 看图观察,图中的关系是什么? 二、平面中的平行关系 1. 平行直线 (1)空间两条直线的位置关系 ①相交:在同一平面内,有且只有一个公共点; ②平行:在同一平面内,没有公共点. (2)初中几何中的平行公理: 过直线外一点有且只有一条直线和这条直线平行. 【说明】此结论在空间中仍成立. (3)公理4(空间平行线的传递性): 平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c. 【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行. 2. 等角定理 等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这

两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 需要说明的是:对于等角定理中的条件:“方向相同”. (1)若仅将它改成“方向相反”,则这两个角也相等. (2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补.此定理及推论是证明角相等问题的常用方法. 3. 空间图形的平移 如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移. 注意:图形平移后与原图形全等,即对应角和对应两点间的距离保持不变. 图形平移有如下性质: (1)平移前后的两个图形全等; (2)对应角的大小平移前后不变; (3)对应两点的距离平移前后不变; (4)对应两平行直线的位置关系在平移前后不变; (5)对应两垂直直线的位置关系在平移前后不变. 4. 证明空间两直线平行的方法 (1)利用定义 用定义证明两条直线平行,需证两件事:一是两直线在同一平面内;二是两直线没有公共点. (2)利用公理4 用公理4证明两条直线平行,只需证一件事:就是需找到直线c,使得a // c,同时b//c,由公理4得a // b. 5. 直线与平面平行 (1)直线和平面的位置关系有三种,用公共点的个数归纳为 (2)线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质 【典型例题】 [例1]?(1)如图,在四面体P ABC中,点D,E,F,G分别是棱 AP,AC,BC,PB的中点.求证:DE∥平面BCP . ?(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ?(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF . [例2]?(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: ①B,C,H,G四点共面; ②平面EF A1∥平面BCHG . ?(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证: ①EG∥平面BB1D1D; ②平面BDF∥平面B1D1H . 【变式训练】 1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1 的中点,则BD1与平面ACE的位置关系为______. 2.如图,四边形ABCD是平行四边形,点P是平面ABCD外 一点,M是PC的中点,在DM上取一点G,过G和AP作平 面交平面BDM于GH. 求证:AP∥GH . 3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱 A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1 相交,交点分别为F,G,求证:FG∥平面ADD1A1 . 4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G= 1,H是B1C1的中点. (1)求证:E,B,F,D1四点共面; (2)求证:平面A1GH∥平面BED1F . 题型2:直线、平面垂直的判断及性质 【典型例题】 [例1]?(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE . ?(2)如图所示,在四棱锥P-ABCD中,AB⊥平面

空间向量在几何证明题解法

空间向量在几何体中例题 1如图,在四棱椎P-ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点。 (1)求证:EF ⊥CD ; (2)证明:PA// 平面DEF 3.已知四棱锥P ABCD -的底面为直角梯形,//AB DC , ⊥=∠PA DAB ,90ο底面ABCD ,且1 2 PA AD DC ===, 1AB =,M 是PB 的中点。 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小。 F E D C B A P

16.(本题满分14分)求ax 2 +2x +1=0(a ≠0)至少有一负根的充要条件。 6.(本题满分14分)解:若方程有一正根和一负根,等价于121 0x x a = ??0<a ≤1 综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1 由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根 故a <0或0<a ≤1是方程ax 2 +2x+1=0至少有一负根的充分条件 所以ax 2 +2x+1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤1 5.如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移 (1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为 4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D , )1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则???? ?=?=?, 0, 01AD n AC n 也即???=+-=+-002c a b a ,得? ??==c a b a 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为 .3 1 3212| |||1=-+= ?= n n E D h

相关文档
相关文档 最新文档