文档库 最新最全的文档下载
当前位置:文档库 › 台达DVPLC用电位器的电压模拟传感器DVPSL模拟量输入成功程序

台达DVPLC用电位器的电压模拟传感器DVPSL模拟量输入成功程序

台达DVPLC用电位器的电压模拟传感器DVPSL模拟量输入成功程序
台达DVPLC用电位器的电压模拟传感器DVPSL模拟量输入成功程序

台达D V P L C用电位器的电压模拟传感器

D V P S L模拟量输入成

功程序

集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

***编程可参考

1、DVP04AD-SL为左侧模块,所设置的编号从100开始,左侧第二个模块为101;

2、对于右侧模块,编号从0开始,第二个为1;

3、可用电位器模拟模拟量输入;

4、DVP04AD-SL可耐24V直流电压;

5、D0的精度需要调试;

接线不在赘述,具体程序如文件夹中的PDF文档。

6、PLC接线,1),UP0接24V,ZP0接0V,Y0-Y7输出24V;

2),PNP接法:S/S接0V,X0-X7接24V;

NPN接法:S/S接24V,X0-X7接0V;

7、编程时,需要先点击”扩充模块图标”

8、进入编程界面

9、控制器CR的地址需要对照使用说明书,其中CH1输入模式设定应为m2=#2,即梯形图

10、CH1平均次数设定梯形图为

11、CH1输入信号平均值为

12、CH1输入信号现在值为:

13、DVP04AD-SL接线方式为:相当于电压表,V1+接正极,V1-接负极,FG接屏蔽线;

若为电流输入,V1+与I1+短接,再接入,相当于电流表

1)V1+接电位器+极,V1-接电位器负极,并联在两端,相当于电压表测电压。

14、整个电路图如下图所示

15、

16、

数字电位器程序

sbit X_CS_1=P1^0; // sbit X_INC=P1^1;// sbit X_UD=P1^2; // sbit X_CS_2=P1^4; // //有关电位器的宏定义 #define SETB_X9C103_CS1 X_CS_1=1 #define CLRB_X9C103_CS1 X_CS_1=0 #define SETB_X9C103_INC X_INC=1 #define CLRB_X9C103_INC X_INC=0 #define SETB_X9C103_UD X_UD=1 #define CLRB_X9C103_UD X_UD=0 #define SETB_X9C103_CS2 X_CS_2=1 #define CLRB_X9C103_CS2 X_CS_2=0 void X9C103_Inc_N_Step(unsigned char Sel,unsigned char N); void X9C103_Dec_N_Step(unsigned char Sel,unsigned char N); void Delay(unsigned int t) ; void X9C103_Init(unsigned char Sel);//初始化至中间位置 //延时us子程序 void Delay(unsigned int t) { unsigned int i; for(i=0;i<t;i++) ; } //************************************************************************ // 数字电位器向上调一步 // 数字电位器100个抽头,相当于99步 //************************************************************************ void X9C103_Inc_N_Step(unsigned char Sel,unsigned char N) { unsigned char i=0; SETB_X9C103_UD; // U/D 拉高则下面的INC下沿,执行UP操作 Delay(3); // 延时大约2us

H009 AHKC-BS系列20A-500A闭口式霍尔电流传感器参数说明书V1.0

H009AHKC-BS系列闭口式霍尔电流传感器V1.0 1.产品概述 AHKC-BS系列电流传感器的初、次级之间是绝缘的,可用于测量直流、交流和脉冲电流。 2.技术参数及外形尺寸 参数指标 额定输入电流±50~±500A 额定输出电压±5V/±4V 准确级 1.0 电源电压DC±15V(允许波动±20%) 零点失调电压±20mV 失调电压漂移≤±1.0mV/℃ 线性度≤0.2%FS 响应时间≤5us 频宽0~20kHz 绝缘电压 2.5kV/50Hz/1min 工作温度-40℃~85℃ 储存温度-40℃~85℃ 功耗≤0.5W

3.安装方式 4.接线方式 +15V——电源+15V -15V——电源-15V(注意电源正极与负极不可接反) M ——信号输出端正极G ——电源地与信号输出端负极 注:具体接线按实物外壳上的端子编号为准。 5.注意事项 1、霍尔传感器在使用时,为了得到较好的动态特性和灵敏度,必须注意原边线圈和副边线圈之间的耦合,建议使用单根导线且导线完全填满霍尔传感器模块过线孔; 2、霍尔传感器在使用时,在额定输入电流值下才能得到最佳的测量精度,当被测电流远低于额定值时,若要获得最佳精度,原边可使用多匝,即:IpNp=额定安匝数。另外,原边馈线温度不应超过80℃; 3、霍尔电流传感器正常工作时的辅助电源不应超过标定值的±20%; 底板螺钉M4(垫片)安装+15V -15V M G +15V GND -15V 辅助电源信号输出 AO GND

4、霍尔电流传感器在安装使用过程中严禁从高处摔落(≥1m); 5、不能调节零点、满度调节电位器; 6、辅助电源需要自行配置; 7、电源正负极不能接反。 6.订货范例(0510-********) 例1:AHKC-BS霍尔电流传感器 辅助电源:DC±15V 输入:200A 输出:5V 精度:1级 7、霍尔电流传感器适用场合 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。

索尔SOR压力传感器选型资料(中文版)

聆听机械 微米级专业的判断 一个帕斯卡的反应,我们也会告诉您我们一直在努力追求 微帕自控的力量

SOR索尔压力开关 SOR公司(中文名称索尔公司)成立于1946年,是世界上唯一一家集生产各类机械及电子压力、差压、温度、流量、液位开关及变送器于一体的专业化国际公司,总部位于美国肯萨斯州州府,现有员工300人,其压力开关类产品产量位居世界第一。 压力开关产品主要采用静态O型圈密封的活塞-弹簧-膜片组合式结构,具有抗震、抗过压能力强,测量范围广且回差小、使用寿命长等特点。其生产的高静压低差压开关是世界上独一无二的。其核级压力及差压开关是世界上不多的取得IEEE认证的产品。 SOR的机械液位开关全部满足ANSIB31.1和B31.3国际电力和石化行业压力容器标准,包括机械式浮球及沉筒两类,其独特的分级冷凝球降温措施能够很好地保证液位开关的开关单元部分免受高温蒸汽的影响,可以可靠地应用于高温工况,越来越受到客户的青睐。 除机械类产品外,SOR的电子产品种类也是非常丰富的,包括热差式流量开关、非接触式超声波变送器、接触式超声波开关,射频导纳开关及变送器、以及集开关、变送器、实时显示三位一体的SGT,该仪表不仅有实时压力显示、独立的开关量输出,而且有4~20毫安模拟量输出。非接触式超声波变送器具有高能量、低频率、自动增益调节三大特点使其能够应用于诸如碳黑、干灰、啤酒、石膏等高粉尘、高泡沫及高雾气的复杂环境中,帮助很多用户解决了多年来用其他超声波产品甚至是雷达产品都解决不了的难题。

压力控制器(压力计) NN 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE 2NEMA 4, 4X, IP65 RN 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC> 2CSA, CE NEMA 4, 4X, IP65 L 2最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE UL: Class I, Group C, Div. 1 B32最大工作压力30 inHg 到 7000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC 2CSA, CE UL/CSA: Class I, Group B, Div. 1; ATEX: Eex d IIC T6 V12双设定点 2最大工作压力30 inHg 到 4000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC CSA, CE V22双设定点 2最大工作压力30 inHg 到 4000 psig 20.25mm活塞行程,使用寿命长 2设定点可调 210amps@250VAC UL/CSA: Class I, Group A, Div. 1; SnapSw: UL/CSA, ATEX, SAA

详解数字电位器的原理与应用

详解数字电位器的原理与应用数字电位器(DigitalPotenTIometer)亦称数控可编程电阻器,是一种代替传统机械电位器(模拟电位器)的新型CMOS数字、模拟混合信号处理的集成电路。数字电位器采用数控方式调节电阻值的,具有使用灵活、调节精度高、无触点、低噪声、不易污损、抗振动、抗干扰、体积小、寿命长等显著优点,可在许多领域取代机械电位器。 数字电位器一般带有总线接口,可通过单片机或逻辑电路进行编程。它适合构成各种可编程模拟器件,如可编程增益放大器、可编程滤波器、可编程线性稳压电源及音调/音量控制电路,真正实现了“把模拟器件放到总线上”(即单片机通过总线控制系统的模拟功能块)这一全新设计理念。 目前,数字电位器正在国内外迅速推广,并大量应用于检测仪器、PC、手机、家用电器、现代办公设备、工业控制、医疗设备等领域。 1.基本工作原理 由于数字电位器可代替机械式电位器,所以二者在原理上有相似之处。数字电位器属于集成化的三端可变电阻器件其等效电路,如图l所示。当数字电位器用作分压器时,其高端、低端、滑动端分别用VH、VL、VW表示;而用作可调电阻器时,分别用RH、RL和RW表示。 图2所示为数字电位器的内部简化电路,将n个阻值相同的电阻串联,每只电阻的两端经过一个由MOS管构成的模拟开关相连,作为数字电位器的抽头。这种模拟开关等效于单刀单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将串联电阻的每一个节点连接到滑动端。

数字电位器的数字控制部分包括加减计数器、译码电路、保存与恢复控制电路和不挥发存储器等4个数字电路模块。利用串入、并出的加/减计数器在输入脉冲和控制信号的控制下可实现加/减计数,计数器把累计的数据直接提供给译码电路控制开关阵列,同时也将数据传送给内部存储器保存。当外部计数脉冲信号停止或片选信号无效后,译码电路的输出端只有一个有效,于是只选择一个MOS管导通。 数字控制部分的存储器是一种掉电不挥发存储器,当电路掉电后再次上电时,数字电位器中仍保存着原有的控制数据,其中间抽头到两端点之间的电阻值仍是上一次的调整结果。因此,数字电位器与机械式电位器的使用效果基本相同。但是由于开关的工作采用“先连接后断开”的方式,所以在输入计数有效期间,数字电位器的电阻值与期望值可能会有一定的差别,只有在调整结束后才能达到期望值。 从图2可以看出,数字电位器与机械式电位器有2个重要区别:1)调整过程中,数字电位器的电阻值不是连续变化的,而是在调整结束后才具有所希望的输出。这是因为数字电位器采用MOS管作为开关电路,并且采用“先开后关”的控制方法:2)数字电位器无法实现电阻的连续调整,而只能按数字电位器中电

歧管绝对压力(MAP)传感器.

8-1 MAP 歧管绝对压力(MAP)传感器 歧管绝对压力(MAP)传感器为三线传感器,与进气歧管压力(真空)相接触(图8-1)。MAP 传感器测量进气歧管中空气压力的变化。PCM 自MAP 传感器获取信息,指示发动机负荷,以便计算燃油和点火正时要求。歧管绝对压力与歧管真空度相反。即歧管绝对压力高时,真空度低(如节气门全开时)。当发动机停止运行时,歧管处于大气压力,MAP 传感器记录的是大气压。气压读数用于发动机起动时供油的计算。也用于发动机工作时燃油和点火正时的计算。 图8-1 MAP 传感器 压变电阻MAP 传感器 目前通用汽车公司生产的车型中使用压敏电阻型MAP 传感器。该传感器包括硅片,尺寸为3平方毫米。密封件与歧管相接。硅片以上为真空密封,而硅片以下为歧管(大气)压力。发动机工作时产生歧管真空,硅片以下的压力下降,产生硅片两端压力差的变化,从而引起变形,引起阻值的变化。 在操作中,来自进气歧管的不断变化的真空度施加于传感器壳体。真空度的变化引起传感器阻值的相应变化。从电气角度来看,当歧管压力低时,如处于怠速状态时,传感器的输出电压低,大约1V 。当歧管压力高,如节气门全开时,传感器的输出电压高,大约4.4 - 5V 。 进气歧管 进气压力 ECT 传感器 MAP, ECT 传感器接地 PCM PCM MAP 传感器 信号

8-2 图8-2 MAP 传感器线路图 如图8-2所示,PCM 通过电路2704向歧管绝对压力传感器的C 脚提供5V 工作电压,传感器A 脚通过PCM 接地,其B 脚输出信号电压给PCM 。 图8-3 MAP 传感器测量进气岐管压力的变化,此压力由发动机负荷和速度变化决定。当怠速岐管的压力很低时(高真空状态),电压在近似0.5V 到1V 之间变化,在节气门大开时,电压在4V 到5V 之间。(见图8-4) 如果MAP 传感器失效,控制模块将用TPS 信号和其他传感器来控制燃油输送和火花塞正时,以替代失效的MAP 值。如果MAP 发生开路或短路时,PCM 会设定故障码“DTC P0105: MAP SENSOR CIRCUIT ”。 图8-4 歧管绝对压力传感器输出电压曲线 赛欧的MAP 传感器与在Regal 、凯越和GL8中使用的相同。MAP 传感器提供非常重要的信息用来计算空气质量进而来控制燃油喷射时间。(见图8-3)

智能压力传感器的研究与开发定稿

智能压力传感器的研究与开发 摘要 为了提高压力传感器的精度,解决功能单一的问题设计了一种新型的智能压力传感器。该压力传感器以MSP430单片机为控制核心,通过A/D转换接口实现对压力传感器的温度和压力信号的采集,利用BP网络算法实现了对采集信号的数据拟合,利用LED显示,利用RS485串口通讯实现数据交换及压力值输出,完成功能要求。 详细叙述了压力传感器的温度补偿方法,重点讨论了人工神经网络中的BP网络算法。BP网络算法主要包括BP网络的结构,基于MATLAB神经网络工具箱的BP网络仿真。根据BP网络的数据连接关系实现了BP网络的C语言表示,根据BP网络的权值、阈值由数组连接实现了向MSP430单片机的程序移植,完成信号的控制。提出了基于遗传模拟退火BP网络算法的压力传感器温度补偿系统。 设计了压力传感器的硬件电路。利用MPM280压力传感器测量压力,通过放大器实现温度和压力信号的放大,利用MSP430自带A/D转换的12位MSP430单片机实现信号处理,通过RS485实现输出,设计了显示功能,设计了丰富的电源电路,并且通过相应的电压转换芯片实现对各个模块的不同电压供电。 实现了压力传感器的软件设计,在MSP430编译软件IAR上利用C语言实现了初始化子程序,温度和压力A/D采样程序,BP网络信号处理子程序,显示子程序和RS485通讯子程序。设计了基于MATLAB GUI的串行通讯压力传感器标定软件,在GUI上实现了对单片机的信号采集,BP网络训练以及对单片机的串行通信实现的在线标定的功能。 研究设计的智能压力传感器具有体积小、精度高,并实现了基于MATLAB的BP网络在线标定。通过仿真对软、硬件进行了充分的调试,效果良好,在工业现场已经应用实现,在众多压力测控系统中有着广阔的应用前景。 关键词:压力传感器,MSP430单片机,温度补偿,BP网络算法

数字电位器的应用操作分析

数字电位器的应用 数字电位器介绍 简单的讲,数字电位器由数字输入操纵,产生一个模拟量的输出。那个定义类似于数模转换器(DAC),所不同的是:DAC具有一个缓冲输出,大多数数字电位器没有输出缓冲器,因而不能驱动低阻负载。依据数字电位器的不同,抽头电流最大值能够从几百微安到几个毫安。因此,不论是一般电位器依旧数字电位器,假如与低阻负载连接,都应保证在最恶劣的条件下,抽头电流不超出所同意的IWIPER 范围。所谓“最恶劣的条件”发生在抽头电压VW接近于端电压VH,而且线路中没有足够限流电阻的情况下。有些应用中,抽头流过较大的电流,这时应该考虑电流流经抽头时产生的压降,那个压降会限制数字电位器的输出动态范围。数字电位器的应用 数字电位器的应用特不广泛,某些特定情况下可能需要增加元件以配合电路调整。例如,数字电位器的端到端电阻一般为10~200K ,

而调整LED亮度时通常需要特不低的阻值。针对那个问题,能够选用DS3906。当DS3906外部并联一个固定105 的电阻时,能够提供70~102 的等效电阻,这种结构能够按照0.5 的步进值精确调节LED的亮度。 有些情况下还会需要专门性能的数字电位器,例如对电压或电流进行温度补偿,光纤模块中对激光驱动器偏置的调节确实是一个典型范例(见图1),温度补偿数字电位器MAX1858内部带有一个用EEPROM保存的查找表,校准值在查找表内按温度顺序排列。数字电位器内部的温度传感器对温度进行检测,然后依照检测的温度值从查找表里得到对应的校准电阻。

非易失性是数字电位器常见的一个附加功能。基于EEPROM 的非易失数字电位器在上电复位时能够保持在某个已知状态。现有的EEPROM 技术能够专门容易保证50000次的擦写次数,相关于机械式电位器,非易失数字电位器的可靠性更高。一次性编程(OTP)数字电位器(如MAX5427-MAX5429),能够在编程后永久保存缺省的抽头位置。与基于EEPROM的数字电位器一样,上电复位后,OTP数字电位器初始化到已知状态。然而一经编程,OTP数字电位器的上电复位状态不能够再更改。 数字电位器能够协助自动完成电源系统中电压或电流的校准,或用

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

汽车进气绝对压力传感器

对空燃比控制起决定性作用的传感器是空气计量系统。空气计量系统告诉ECU进多少空气ECU就配多少燃油,喷多少油作重要依据。所以说能导致汽车混合器漂移量过大非常大的就是空气计量系统问题。如果车喷油量偏差非常多一般就是空气流量传感器问题,因为一般其它传感器只是辅助没有权限控制那么大的喷油量,偏差也只是稍稍进行一些错误修正产生的。其它传感器做不到那么大的控制范围。控制程序中的喷油计算公式,进气量是主要决定因子,其它的只是修正因子。 全世界的所有发动机对混合器的需求都是一样的,区别不会太大。但是到故障诊断的时候要区分控制系统。 目前的汽车发动机电控系统主要分为两大类,即以空气流量计为代表的L型系统和以进气压力传感器为代表的D型系统。这两种系统的工作方式不同,故障现象不同。 空气流量计(L型)和进气压力传感器(D型)都属于空气计量装置,但是空气流量计属于直接测量进气量。进气压力传感器属于间接测量进气量。 空气流量计种类:(翼板式-基本淘汰)、(卡门涡旋式-使用率1%)、(热线热膜式-使用率99%)。 流量计和压力传感器的区别: 1、安装位置不同:空气流量计安装在空滤后面节气门前的管道中,进入进气管的空气都要 经过空气流量计。进气压力传感器安装在节气门后进气门前,靠检测进气管道中的气压力(负压、真空度检测为负值)间接判断空气流量。 2、反应速度不同:空气流量计响应速度快,因空气流量计的安装位置比较靠前。当空气进 入进气管后马上就能得出空气量。进气压力传感器反应相对较慢,因为当空气流量计得出测量结果的时候相对于进气压力传感器空气都还没有进入到节气门后面。 空气流量计 流量传感器优缺点:响应快,测量准。收油门时对进气量的测量没有进气压力传感器准确。价格昂贵一般400-20000.一般用在中高端车。 压力传感器优缺点:加油门的时候测量不准,反应较慢。但优点是收油门的时候测量节气门后的压力,判断空气流量比较准。价格相对便宜最多400,一般用在低端车。 有的车也有空气流量计和进气压力传感器同时安装的。如别克。但应该还是归为L型为主。因为L型控制精度更高。但有进气压力传感器的优点。 进气压力传感器 影响车在怠速时节气门后进气门前的进气管内的真空度的原因:点火时间,漏气,缸压,,,,,气门关闭不严,正时,排气背压,怠速电机,负荷,

压力传感器原理

目录 1 概述 2 工作原理 1. 2.1 电阻应变片 2. 2.2 陶瓷型 3 选型要点 4 常见故障 5 四个无法避免的误差 6 抗干扰措施 7 八大发展趋势 将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。 压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变 电阻应变片内部结构 片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变, 使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 惠斯通原理

256抽头精密数字电位器AD5160测试程序

/********* STC12C5A60S2平台AD5160数字电位器程序时钟:外部12M晶振 电位器串联外部电阻连接为可变电阻模式,若不串外部电阻直接接参考电压源即工作为数字电位计模式 *NOTE:作为可变电阻模式与外部电阻串联时存在一定程度容差,若所串电阻大于AD5160本身满量程电阻(型号有5K\10K\50K\100K)10倍以上则此容差才可忽略*****/ /*AD5160.H*/ #ifndef _AD5160_H_ #define _AD5160_H_ #include #include typedef unsigned char uchar; typedef unsigned int uint; sbit CPCS = P3^2; //数字电位器AD5160的片选CS,低电平有效 sbit SDI = P3^4; //数字电位器AD5160的数据SDI sbit SCK = P3^5; //数字电位器AD5160的时钟SCLK void AD5160_init() //AD5160初始化 { CPCS = 1; SCK = 0 SDI = 1; } void set_AD5160(uchar dat) //设定从W抽头到B端的抽头数,以10K版本的为{ //例电阻为R w B = 60+39*rdac 其中W抽头接触电阻为60Ω uchar i,rdac=0; CPCS = 1; rdac = dat; //RDAC为写入AD5160 内部8位radc寄存器数据 SCK = 0; _nop_();_nop_();_nop_();_nop_(); SCK = 1; //SCK在CS拉低前触发一个时钟

进气歧管绝对压力传感器的检测

进气歧管绝对压力传感器的检测 进气歧管绝对压力传感器用于D型汽油喷射系统。它在汽油喷射系统中所起的作用和空气流量传感器相似。进气歧管绝对压力传感器根据发动机的负荷状态测出进气歧管内绝对压力(真空度)的变化,并转换成电压信号,与转速信号一起输送到电控单元(ECU),作为确定喷油器基本喷油量的依据。在当今发动机电子控制系统中,应用较为广泛的有半导体压敏电阻式、真空膜盒传动式两种。 一、半导体压敏电阻式进气歧管绝对压力传感器的检测 1、结构原理 半导体压敏电阻式进气歧管绝对压力传感器(图1)由压力转换元件(硅膜片)和把转换元件输出信号进行放大的混合集成电路组成。压力转换元件是利用半导体的压阻效应制成的硅膜片。硅膜片的一侧是真空室,另一侧导入进气歧管压力,所以进歧管内绝对压力越高,硅膜片的变形越大,其变形量与压力成正比。附着在薄膜上的应变电阻的阻值则产生与其变形量成正比的变化。利用这种原理,可把进气歧管内压力的变化变换成电信号。 2、半导体压敏电阻式进气歧管压力传感器的检测 (1)皇冠3.0轿车2JZ-GE发动机用半导体压敏电阻式进气歧管绝对压力传感器的检测。 皇冠3.O轿车2JZ-GE发动机用半导体压敏电阻式进气歧管绝对压力传感器与ECU的连接电路如图2所示。

A、传感器电源电压的检测 点火开关置于“OFF”位置,拔下进气歧管绝对压力传感器的导线连接器,然后将点火开关置于“ON”位置(不起动发动机),用万用表电压档测量导线连接器中电源端VCC和接地端E2之间的电压如图3,其电压值应为4.5-5.5V。如有异常,应检查进气歧管绝对压力传感器与ECU之间的线路是否导通。若断路,应更换或修理线束。 B、传感器输出电压的检测将点火开关置于“ON”位置(不起动发动机),拆下连接进

DIT系列高精度数字电流传感器使用说明书

DIT系列 高精度数字电流传感器 使用说明书 V1.5 成立于2017年的航智精密,坐落于最具创新精神的深圳。凭借强大的研发团队,秉承以技术创新为动力,以市场结果为导向的理念,航智精密立足高精度直流传感器领域,打破国外企业该领域市场垄断的现状,力争发展成为国际领先的直流系统领域精密电子的领军企业。 基于技术集成与创新,航智精密研发了业界第一款高精度数字电流传感器及高精度、低成本、全量程为主要特点的模拟电流传感器。该产品在降低行业成本、提高行业效率和增强用户体验体验上具备行业领先定位,并在创新创业赛事中屡获佳绩,赢得社会各界广泛关注和支持。 航天品质,匠心制造。让高精度直流传感器进入普及时代,这是航智精密人孜孜以求的梦想。作为一家有强烈责任感、使命感的企业,航智精密正在以服务型的品牌营销及定制化的产品理念发力市场,并成功通过资本融资助力运营质量,为建设一个不断创新的分享型企业而奋斗!

目录 1前言 (3) 1.1装箱内容确认 (3) 1.2附件 (3) 2概述 (5) 2.1产品概要 (5) 2.2核心技术 (5) 2.3性能特点 (5) 2.4应用领域 (5) 3产品选型及技术参数 (6) 3.1产品选型表 (6) 3.2技术参数(RG-量程值) (7) 4接口说明 (8) 4.1DB9接线端子定义(DB9公头) (8) 4.2凤凰端子定义 (8) 4.3运行指示灯 (8) 5尺寸说明 (9) 5.1DIT1、DIT5、DIT60、DIT200、DIT300、DIT400型号 (9) 5.2DIT600、DIT1000型号 (10) 附录1 通信协议 (11)

智能压力传感器外文翻译文献

智能压力传感器外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 基于C8051F350的智能压力传感器的设计 摘要 为了克服传统的压力传感器的缺陷。设计一种智能压力传感器,根据组合物的应用范围的智能传感器系统中,进行温度校正,充分考虑共同的组件之间的连接参数协调,我们选择了一个良好的可用性、高可靠性和低成本元件,80C51单片机进行控制和处理,对于整个测量系统组成而言,该系统具有自动测量、放大、A / D转换的温度和压力参数、微弱信号的锁定放大、相敏检波(PSD)、共模信号抑制、采集到的信号消噪处理、交叉敏感的脱钩的功能,并能够将结果显示,它还具有自动自检、温度补偿和上侧的通信和其它功能。 关键词:压力传感器,锁-放大器;80C51F350的单片机硬件电路 手稿编号:1674-8042(2011)02-0157-04 DIO:10.3969/j.issn.1674-8042.2011.02.14

1 引言 随着时代的发展,电子计算机,自动化生产,调制解调器信息,军工,交通运输,化工,环保,能源,海洋开发,遥感,空间科学与技术,传感器的需求越来越大的发展,其应用已渗透进入该地区国民经济各个部门和人们的日常的日常文化生活。可以说,从太空到海洋,从各种复杂的工程系统的基本日常生活的必需品不能分开从各种传感器,传感器技术,为国民经济的日益发展,起着巨大的作用。然而。目前市场上销售的智能传感器有许多不足之处,如单天资讯指标和质量参差不齐。这样的设计总结了上述缺陷,以往的经验的基础上,使用锁相放大器,相敏检波,并巧妙地解决了有用信号从噪声中提取的低缺陷和问题的去耦的交叉灵敏度和使用的技术双电源供应电力,以及提高系统性能,增加新的故障诊断和使用一个共同的数字的接口技术和国际市场的通信协议等。因此,有非常广阔的应用前景。 2 系统硬件设计 智能传感器的传感器_信息的检测和处理。智能传感器包括收集,处理,交流信息的功能。它是集成传感器和微处理器的产品的组合。智能压力传感器的组合物,如图2.1所示。 图2.1 基于CS051F350的智能压力传感器框图 设计主要是提供了一个稳定的电源电压,结合单片机通过外围电路设计。然后,单RS485通信接口 电源 单片机(C8051F350) 温度传感器 锁定增强 压力传感器 传感器校正

数字电位器与控制

数字电子电路课程设计:数字电位器与控制 一、实验目的 根据时序图和真值表设计按钮控制数字电位器控制电路: 1基本要求:按住控制键,数字电位器阻值连续变化。 2扩展要求:可使用Protues等软件进行仿真设计。 3扩展电路要求:按住控制键,数字电位器阻值连续变化且变化速度递增/递减。 二、实验仪器 74LS132 2输入端与非门 NE555 X9C103 数字电位器 二极管,电容,电阻,开关等 三、实验原理 (1)、X9C103一般说明 X9C103 E2POT TM非易失性数控电位器,端电压±5V,100个抽头 X9C13是固态非易失性电位器,把它用做数字控制的微调电阻器是理想的.. X9C13是一个包含有99个电阻单元的电阻阵列.在每个单元之间和二个端点都有可以被滑动单元访问的抽头点.滑动单元的位置CS,U/D和INC三个输入端控制.滑动端的位置可以被贮存在一个非易失性存贮器中,因而在下一次上电工作时可以被重新调用. X9C103的分辨率等于最大的电阻值被99除.例如X9C503(50千欧)的每个抽头间的阻值为505欧母. 所有的Xicor非易失性存贮器都设计成并经过测试能够用于持久的保存数据的应用场合. 特点: *低功耗CMOS ——VCC=3V至5.5V ——工作电流最大3mA ——等待电流最大500μA *99个电阻单元 ——有温度补偿 ——±20%端点到端点阻值范围

*100个滑抽头点 ——滑动端的位置取决于三线接口 ——类似于TTL升/降计数器 ——滑动端位置贮存于非易失性存贮器中。可在上电时重新调用*滑动端位置数据可保存100年 *X9C103==10K? 数控电位器控制时序图如下: CS INC U/D 图1.1引脚配置及引脚说明引脚配置如图1.1所示。

压力传感器是工业实践中最为常用的一种传感器

压力传感器是工业实践中最为常用的一种传感 器 差不多得到了广泛的应用。 在现在压电效应也应用在多晶体上,例如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。 温度传感器压力传感器 适用范畴 用于对人体有创血压如动脉压、中心静脉压、肺动脉压、左冠状动脉压多种压力进行监测,直截了当获得血压这一生理参数,为临床对疾病的诊断、治疗和预后估量提供客观依据。 结构规格 选用医用级聚碳酸脂、聚氯乙烯作为传感器主体及测压连接管的材料。 包装规格为CH-DPT-248、CH-DPT-248Ⅱ、CH-DPT-248Ⅲ。 安装程序 1)连接压力传感器系统前打开监护仪。 2)采纳消毒措施打开包装,确认所有的接口安全密封以及三通阀等辅件工作状态良好。 注意:连接接头时,不要拧得太紧。 常规/医用压力传感器FOP-M 3)旋塞阀的所有通口都应盖有孔的爱护帽,直到传感器系统内注满肝素生理盐水溶液和排尽气泡后,才更换成无孔的爱护帽。 4)把压力传感器连接到监护仪上,按照监护仪讲明把监护仪调零。 注意:管路不得有气泡残留。 6)待所有管路中填充肝素生理盐水后,将传感器系统连接到人体。 药液填充

2)打开已消毒好的传感器包,核实所有的接头均是安全的且所有的三通阀旋纽均是在所期望的位置。 4)关闭流量调剂器(滚动止流夹),将输液器放入压力护套中并悬挂在距离病人约2英尺高的挂杆上。 注意:现在不要给输液袋加压。 5)认真检查系统中所有充入液体的部分,确认所有的气泡均已被排出。 6)将输液袋加压到300mmHg,如果仍有气泡残留在系统中,挤压冲洗阀除去系统中所有的空气。 7)将系统中三通阀的所有未使用的通道上的爱护帽全部换成无孔爱护帽。 8)将传感器系统连接到病人身上,再次冲洗系统以便除去管路中的血液。 为幸免冲洗时气泡或管路中的血液凝血回到患者,要确保管路中冲入液体同时承诺少量血液通过导管回流的现象。 调零校准 1)建议将压力传感器及其三通阀置于腋中线水平,那个三通是用来通气和传感器调零的。 2)核准三通阀上的爱护帽为有孔的,将传感器与监护仪连接起来,并按照监护仪讲明,将传感器在大气条件下调零。 3)监护仪调零后,关闭三通阀与空气连通口,并盖上无孔爱护帽。 浙江辰和医疗 4)用方波检测系统的动力反应。动力反应测试应在冲洗管路、排尽气泡并与患者相连接调零和校准等一系列操作后实施。 注意:系统需要大约一分钟的平稳过程,然后施行小滴量检查冲洗阀是否良好,用肉眼观看是否有泄露。安装30分钟后要定期检查,确保输液袋压力正常、流量正常并无泄露。因任何小的泄露可能导致监护仪读数错误。

基于单片机的数字电位器设计

关键字:单片机数字电位器 人耳对声强的主观感受遵循韦伯定律(Webber's Law),在音量较小时人耳对声波振幅的改变感受灵敏,声音达到一定响度后,人耳的听觉特性开始变得迟钝。而指数型电位器的阻值变化规律为先慢后快,如果将这种衰减特性用在音量调节中,则恰好可以抵消人耳对音量感知的对数特性,保证主观听感的平滑。 与传统的机械式音量电位器相比,数字电位器(DCP)的阻值调节由内部CMOS开关控制,因而使用寿命长、可靠性高且不会产生机械噪声;如果将廉价的通用型线性数字电位器直接用于音量调节,在小音量状态下稍微调节电位器即会使输出声压陡然增加,无法保证大动态范围内音量的准确定位,因此目前将数字式电位器运用在成熟功放产品中的实例还不多。实际上,如果将低分辨率线性数字电位器与通用嵌入式系统结合起来,就能够得到运用于音量控制领域的低成本高分辨率指数式电位器。 总体设计方案 在数字电位器的扩展系统中,主控单元可选用常见的8位或16位成熟单片机。这里我们主要针对Intersil公司的低分辨率线性数字电位器X9313、X9312进行扩展,系统最终能够达到的实际分辨率为31×99=3069级;如果把32抽头的X9313全部更换为X9312,分辨率还可以进一步提高至9801级。 X9313与X9312这两种DCP均为三线制接口、带掉电自动保存功能的非易失性数字电位器,其内部分别包含31、99个电阻单元构成的电阻阵列,相邻两个电阻单元以及电阻阵列端点都设置有可以被滑动单元访问的抽头,如图1所示。滑动单元的位置由CS、U/D和INC 三个输入端控制,抽头位置值能够被存储在非易失性存储器中,供下次上电时调用置位。 图1 X931x系列DCP的内部结构 系统的每个声道的音量控制由两个X9313与一个X9312构成,图2为三个数字电位器的功能连接图。所有DCP的U/D、INC端分别连接在一起,而片选端CS各自占用一个MCU 端口。这种硬件连接方式能够很容易地实现四声道乃至更多声道的音量控制。为了与常见的数字式音量调整习惯一致,最好不要保留通用DCP的三键式控制方式,而只需设置UP/DOWN 两组按键直接控制音量的增减。UP/DOWN按键与MCU的连接应设置软件延时的去抖算法,以消除按键输入时的抖动,MCU与DCP之间则不再考虑按键抖动。

智能化压力传感器的设计开题报告

本科生毕业设计(论文)开题报告题目:智能化压力传感器的设计 学院:环境与化学工程学院系化工系 专业:测控技术与仪器 班级: 学号: 姓名: 指导教师:刘诚 填表日期:年月日

一、选题的依据及意义 随着计算机技术和传感器技术的发展,两者的结合也愈来愈紧密,智能化传感器作为两者结合的新兴的研究方向,越来和越受到更多人的关注。近年来,虽然取得了一定的研究和开发成果,但是实际的需求还远远得不到满足。压力测控系统正急需发展,已经开发和使用的压力传感器在无法满足需求,智能化的压力传感器系统,即将信息采集、信息处理和数字通信功能集于一身,能自主管理的开发和使用具有巨大意义。 此次选题是打算对智能压力传感器系统理论及其压力测量方面的应用进行深入研究,提出对智能压力传感器的设计开发和设计。利用集成程度高,功能强大的新型微处理器控制压力传感器,微处理器内部集成大量模拟和数字外围模块,会具有很强大的数据处理能力。 此次论文将在对智能压力传感器系统的智能化功能深入研究的基础上,设计了较为完善的智能化软件,实现了自动增益控制、温度补偿、自动校准、总线数字通讯等多种智能化特性,使传感器具有较高的智能化程度。提出了利用传感元件自身特性实现温度补偿的算法以及对系统非线性补偿的算法。并对传感器系统进行了较全面的抗干扰和系统故障自诊断设计,保证了系统的稳定性和可靠性。提出一种带有程序判断的智能数字滤波算法,它既具有较好的平滑能力,又具有较快的响应速度。 本系统在软件上运用C语言编程,系统采用与PC机通信,完成数据转换、数据处理以及实时数据显示等功能,便于实现系统集中监控。 本研究设计的智能压力传感器系统具有体积小、成本低、可靠性好、响应速度快、智能化程度高等特点,通过仿真对软、硬件进行了充分的调试,效果良好,在众多压力测控系统中有着广阔的应用前景。 二、国内外研究现状及发展趋势(含文献综述) 传感器技术是现代测量和自动化技术的重要技术之一。从宇宙探索到海洋开发,从生产过程的控制到现代文明生活,几乎每一项现代科学技术都离不开传感器。在工业、农业、国防、科技等各个领域,传感器技术都得到了广泛的应用,并展现出极其广阔的前景。因此。许多国家对传感器技术的发展十分重视。例如在日本传感器技术被列为六大核心技术(计算机、通信、激光、半导体、超导和传感器)之一?“,并且是将传感器列为十大技术之首;美国将90年代看作是传感器时代,将传感器技术列为90年代22项关键技术之一”“。我国对传感器的研究也有二十多年的历史并取得了很大的成就“?。目前,在“科学技术就是第一生产力”的思想指引下,各项科学技术取得了突飞猛进的发展,传感器技术也越来越受到各方面的重视,虽然在某些方面已赶上或者接近世晃先进水平。但是从总体来看,与国外传感器技术的发展相比,我国对传感器技术的研究和生产还比较落后,现正处于方兴未艾的阶段。 据了解,1994年世界传感器市场总的交易额高达260亿美元,并且在2000年以的前,世界传感器市场规模年增幅为7%以上,其中高档的传感器增幅可达18%以上,而那些采用微机械加工技术和微系统技术等高新技术制造的各类型新型智能传感器.其年增长率可达30%以上。从市场销售情况来看,压力传感器占第一位。利用硅材料制作的半导体传感器除具有固体传感器的一般优点以外,还可以把一些集成电路与传感器制作在一起从而构成集成化传感器。集成电路部分若制作了微处理机,则形成智能化传感器。到目前为止,高精确度、高可靠性、小型化、低成本的智能传感器已成为世界传感器市场的主流。

相关文档