文档库 最新最全的文档下载
当前位置:文档库 › 冶金过程模型与仿真

冶金过程模型与仿真

冶金过程模型与仿真
冶金过程模型与仿真

实验四 SIMULINK仿真模型的建立及仿真(完整资料).doc

【最新整理,下载后即可编辑】 实验四SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中

找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示: 图三:已构建完成的新模型窗 6、根据理论数学模型设置模块参数: ①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

物流系统flexsim仿真实验报告

物流系统f l e x s i m仿真 实验报告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101

目录

一、企业简介 二、通达企业立体仓库模型仿真 1.模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运 输到分类输送机上,根据设定的分拣系统将A,B,C,D分拣到 1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理 器检验合格的产品被放在暂存区,不合格的产品则直接吸收掉; 每个操作工则将暂存区的那些合格产品搬运到货架上;其中,A, C产品将被送到同一货架上,而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个 暂存区上;此时,在另一传送带上送来包装材料,当产品和包装 材料都到达时,就可以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2.模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端:

A:normal(400,50)B:normal(400,50)C:uniform(500,100)D:uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣 装置将其推入到四个不同的分拣道口,经各自的分拣道到达操作 台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检 验器旁的暂存区;不合格的吸收器直接吸收;A的合格率为95%, B为96%,C的合格率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将 货物送至货架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间 为返回60的常值),储存货物的容器容积各为1000单位,暂存 区17,18,21容量为10; ⑦.分拣后A、C存放在同一货架,B、D同一货架,之后由 叉车送往合成器。合成器比例A/C : B/D : 包装物 = 1: 1 :4 整个流程图如下: 3.模型实体设计

几个简单的simulink仿真模型

一频分复用和超外差接收机仿真 目的 1熟悉Simulink模型仿真设计方法 2掌握频分复用技术在实际通信系统中的应用 3理解超外差收音机的接收原理 内容 设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz 的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。 原理 超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:

图1-1超外差收音机基本原理框图 从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下: 混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。其频谱搬移过程如下图所示: 图1-2 超外差接收机混频器输入输出频谱 中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。 解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。 步骤 1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:

Flexsim实验报告实验二:流水作业线的仿真讲解

Flexsinm实验报告

实验目的 通过此实验掌握Flexsim 软件的基本用法,了解系统仿真的基本原理,运用Flexsim 进行模型的建立和仿真分析,通过实际建立仿真模型深刻认识仿真的基本概念。在学会运用Flexsim 进行几个模型的建立和仿真的基础之上进行自主分析,完成一定的探究过程,更好地将Flexsim 软件和现实紧密联系起来,以此为基础将更好地在物流中心的设计与运作方面进行统筹计划。其中包括: ? 掌握离散系统仿真的基本原理。 ? 掌握Flexsim 软件的基本操作和常用实体的参数设置等。 ? 掌握分析流程,建立模型的方法。 ? 掌握模型运行的基本统计分析方法。 ? 统计对象的选择和模型运行过程中被选择对象统计数据的输出和分析。 ? 通过实际建立仿真模型认识仿真的基本概念、感受仿真的情境。 ? 通过实际建立仿真模型认识仿真的基本概念、感受仿真的情境。 1、 实验内容 本次实验中,我们利用flexsim4.0软件平台,来仿真一个流水加工生产线系统,不考虑其流程间的工件运输,对其各道工序流程进行建模。 建立一个如下描述的流水加工生产线系统: 两种工件L_a 、L_b ,分别以正态分布(10,2)和均匀分布(20,10)min 的时间间隔进入系统,首先进入队列Q_in 由操作工人进行检验,每件检验用时2min 。不合格的废弃,离开系统,合格的送往后续加工工序,合格率为95%; L_a 送往机器M1加工,如需等待,则在Q_m1队列中等待;L_b 送往机器M2加工,如需等待,则在Q_m2队列中等待; L_a 在机器M1上加工时间为均匀分布(5,1)min ,加工后的工件为L_a2;L_b 在机器M2上的加工时间为正态分布(8,1)min ,加工后的工件叫做L_b2; 一个L_a2和一个L_b2在机器Massm 上装配成L_product ,需时为正态分布(5,1)min ,然后离开系统。 如装配机器忙则L_a2在队列Q_out1中等待;L_b2在队列Q_out2中等待; 并且让该系统运行一个月,直到流水线中的某个生产资料暂存区达到了其最大容量,则系统停滞加工。 该系统的运行效率指标由生产线的最长加工时间和最 M2 M1 Q_out2 Massm

频分多址技术的建模设计及仿真

《电子信息系统仿真》课程设计届电子信息工程专业班级 题目频分多址技术的建模设计与仿真 姓名学号 指导教师职称 二О一年月日

引言频分多址是将通信的频段划分成若干等间隔的信道频率,每对通信的设备工作在某个分配(或者是指定)的信道上,即不同的通信用户是靠不同的频率划分来实现通信的,称为频分多址。早期的无线通信系统,包括现在的无线电广播、短波、大多数专用通信网都是采用频分多址技术来完成的。频分多址通信设备的主要技术要求是:频率准确、稳定,信号占用的频带宽度在信道范围以内。 频分多址技术FDMA是数据通信中的一种技术,即不同的用户分配在时隙相同而频率不同的信道上。按照这种技术,把在频分多路传输系统中集中控制的频段根据要求分配给用户。同固定分配系统相比,频分多址使通道容量可根据要求动态地进行交换。 在FDMA系统中,分配给用户一个信道,即一对频谱,一个频谱用作前向信道即基站向移动台方向的信道,另一个则用作反向信道即移动台向基站方向的信道。这种通信系统的基站必须同时发射和接收多个不同频率的信号,任意两个移动用户之间进行通信都必须经过基站的中转,因而必须同时占用2个信道(2对频谱)才能实现双工通信。关键字:通信系统频分多址滤波器解调 一《频分多址系统建模与仿真》课程设计的目的通过对频分多址系统的建模与仿真,实现了3路信号的频分复用并得到了仿真结果。综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导出相应的结果,并用MATLAB作为编程工具进行计算机实现,从而复习巩固课堂所学的论知识,提高了对所学知

识的综合应用能力,并从实践上实现了对数字信号的处理。 二课程设计内容及要求 2.1设计内容: 在Matlab 环境中,利用编程方法对FDMA通信模型进行仿真研究。 2.2 设计要求 用麦克风进行声音的录制,录制3路不同人的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图接着画出复用信号的频谱图。设计合适数字滤波器,并画出带通滤波器的频率响应。再进行解调,画出解调后3路信号各自的频谱图。最后通过选择合适的低通滤波器恢复出各原始语音信号,从而实现FDMA通信传输。画出低通滤波器的频率响应,恢复信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化。回放语音信号。2.3 模型分析

实验四-SIMULINK仿真模型建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统 仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

员工激励经典案例

如何用艺术的方法激励 引言:激励是经理人的基本职责和必备能力,能不能充分调动员工的积极性是衡量经理人是否成熟、是否称职的重要标志。我们庆幸的发现,不少有作为的经理人已经在实践中创造性地总结了不少行之有效的低成本甚至零成本的软性激励方法,本期将与您分享这些艺术性的激励方法。 一、激励下属的前提和原则 所谓的激励就是经理人对员工的激发和鼓励,促进员工发挥其才能,释放其潜能,最大限度地、自觉地发挥积极性和创造性,在工作中做出更大的成绩。它是一名经理人的基本职责和必备能力,能不能充分调动员工的积极性是衡量一名经理人是否成熟、是否称职的重要标志。 为了更好的激励下属,下面这些激励原则我们需要了解并遵守,这也是激励下属的前提条件。 1、摸清“家底”。激励理论揭示,有效激励的前提:摸清每个员工的现实需求、对未来的期望和效价、对公平现状的评价。 2、率先垂范。欲激励别人,先激励自己;要求员工争先创优,领导者必须先有争先创优的决心和信心。这样,领导者就可以一种无形的人格魅力感染大家,激励大家。 3、公道。公道就公平、合理,它要求领导者对员工一视同仁,不能有亲疏、有厚薄。领导者是否公道,对员工的积极性有着根本性的影响。 4、信任。一个组织缺乏信任到头来是会致命的。任何一种激励措施依赖中的信任表现为领导者对下属的信任,以及下属对领导者的信任。信任是双方,单位的信任是不会长久的。在一个相互信任的环境中,每个员工都会成为重要的工作者。 5、物质激励与精神激励的辩证原则。从管理学的激励理论中可以看到,物质激励是基础,精神激励是关键。在我国现有经济状况下,保健需求基本已解决,激励措施更多更重要的应是精神吸引。同时,我们也不应忽视公平理论关于激励措施的论述,领导者应关注物质利益和精神待遇上的公平,否则就会影响员工的积极性。 6、综合运用原则。任何两种激励措施之间不存在孰优孰劣,只存在是否因地制

创建基于DLL的Proteus仿真模型

创建基于DLL的Proteus VSM仿真模型 作者:silingsong 一、Proteus VSM仿真模型简介 在使用Proteus仿真单片机系统的过程中,经常找不到所需的元件,这就需要自己编写。Proteus VSM 的一个主要特色是使用基于DLL组件模型的可扩展性。这些模型分为两类:电气模型(Electrical Model)和绘图模型(Graphical Model)。电气模型实现元件的电气特性,按规定的时序接收数据和输出数据;绘图模型实现仿真时与用户的交互,例如LCD的显示。一个元件可以只实现电气模型,也可以都实现电气和绘图模型。 Proteus为VSM模型提供了一些C++抽象类接口,用户创建元件时需要在DLL中实现相应的抽象类。VSM模型和Proteus系统通信的原理如下图: 绘图模型接口抽象类: ICOMPONENT――ISIS内部一个活动组件对象,为VSM模型提供在原理图上绘图和用户交互的服务。 IACTIVEMODEL――用户实现的VSM绘图模型要继承此类,并实现相应的绘图和键盘鼠标事件处理。 电气模型接口抽象类: IINSTANCE――一个PROSPICE仿真原始模型,为VSM模型提供访问属性、模拟节点和数据引脚的服务,还允许模型通过仿真日志发出警告和错误信息。 ISPICECKT(模拟)――SPICE拥有的模拟元件,提供的服务:访问、创建和删除节点,在稀疏矩阵上分配空间,同时还允许模型在给定时刻强制仿真时刻点的发生和挂起仿真。 ISPICEMODEL(模拟)――用户实现的VSM模拟元件要继承此类,并实现相应的载入数据,在完成的时间点处理数据等。 IDSIMCKT(数字)――DSIM拥有的数字元件,提供的服务:访问数字系统的变量,创建回调函数和挂起仿真。

六种激励方法

学习导航 通过学习本课程,你将能够: ●了解管理激励的原理; ●明白激励的作用及其发生的途径; ●正确区分保健因素和激励因素; ●学会如何有效利用公平理论和期望理论。 管理激励的六大原理 一、管理人性假设 在管理学理论中,激励离不开基本的人性假设。在实践中,管理者之所以更多地采用关怀和严格控制的方式,与最基本的人性假设有紧密关系。 1.不同的人性假设理论 著名管理心理学家雪恩(Edgar·H·Schein)把人划分为四种类型:经济人、社会人、自我复杂的人和自我实现的人。美国管理心理学家麦格雷戈(Douglas McGregor)提出的X 理论和Y理论,如图1所示。中国在传统儒家文化的熏陶下,也对人性作了早期假设。 图1 人性假设的X理论和Y理论 X理论 该理论的人性假设包括三个方面: 第一,一般人均对工作具有天性的厌恶,只要可能,便会规避工作。

第二,由于人类具有不喜欢工作的本性,故大多数人必须予以强制、控制、监督,给以惩罚的威胁,促使向着达成组织目标的方向努力。 第三,一般人都宁愿受人监督,喜规避责任,志向不大,但求生活安全。 麦格雷戈认为所提出的人性假定,既有肯定的一面,也有相当的保留态度,是一种平凡大众的基本假定。 Y理论 该理论的人性假定包括六个方面: 第一,每个人都愿意勤奋向上,因此在工作中消耗体力与智力是极其自然的事情。 第二,外力的控制及惩罚的威胁并非是促使人朝向组织目标努力的唯一方法,人为了达成其本身已经承诺的目标,会自觉进行“自我督导”和“自我控制”。 第三,人对于目标的承诺,只是针对于达成目标后产生一定的报酬。 第四,只要情况适当,一般人不但能学会承担责任,而且能争取责任。 第五,以高度的想象力、智力和创造力解决组织上各项问题的能力,是大多数人均拥有的能力,而非少数人所独具的能力。 第六,在现代产业生活中,常人的智慧潜能仅有一部分可以得到利用。 X理论和Y理论的假定都是动态的,指出了人的成长和发展的可能。 中国传统理论 人之初,性本善。在孔孟文化的影响下,中国在很早就有了对人性的界定:人之初,性本善,性相近,习相远。由此可以看出,古人对于人性的假定是性本善的,之所以有圣人和庸人之分,就在于社会的教化,教育和社会的熏陶,使得每个人成长的轨迹有所不同。儒家学派非常强调教育,认为教育方式的不同使人最终获得的成就有很大差异。 人之初,性本恶。荀子认为,人之初,性本恶,要经过严格的控制制度进行管理,压制人性恶的一面,将善良的一面表现出来。韩非子也认为应当讲究严格的法制,通过制度和军队控制人的恶性。 人之初,善恶两端有。西汉的杨雄认为,人的本性既不是善也不是恶,而是善恶两端都有。随着人的不断成长,善恶两端会同时发展。因此,人在不同的情境会表现出不一样的本性,此时应当像顺水推舟一样,抑恶扬善,让人的善性表现出来。 2.管理方式的选择 无论是性善论、性恶论,还是善恶各执一端,不管是X理论还是Y理论,都没有形成人性假设的定论,但是并不影响对管理方法的运用。 “胡萝卜加大棒”的管理方法 无论是治国还是管理企业,最常用的都是“胡萝卜加大棒”的简单方法。根据Y理论,人性本善,用胡萝卜加以引导即可;X理论又认为,人性本恶,需要采取“大棒”的方式加强管理。之所以不同领导者的管理方式达到的效果相去甚远,根本区别就在于在把握使用管理方式的时机有差别,管理者应该选择在适当的时间、适当的地点、对适合的对象采取合适的方法。

基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真 实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 电力系统工具箱的使用; 3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型 实验内容 输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=, F C C μ967.021==。 图1 简单电力系统仿真示意图 1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压; 2) 结合理论知识分析上述观测信号变化的原因; 3) 比较不同功率因数,如cos φ=1、cos φ=0.8(感性)、cos φ=0.8(容性)负载条件下的仿真结果 实验原理与方法 1、系统的仿真电路图 实验步骤 根据所得建立模型,给定参数,得到仿真结果 cos φ=1 cos φ=0.8(感性) cos φ=0.8(容性)

实验结果与分析 cosφ=1 cosφ=0.8(感性) cosφ=0.8(容性) 仿真结果分析 (1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量。 (2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。 (3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。 (4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。 总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大。 感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。Simulink的仿真电路简洁、参数调整方便。仿真结果直观。 通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

企业员工激励方法及案例

企业员工激励方法及案例 荣誉激励 如发奖状、证书、记功、通令嘉奖、表扬等。在管理学看来,追求良好声誉是经营者的成就发展需要,或归于马斯洛的尊重和自我实现的需要。尊重并不是惧怕和敬畏。尊重意味着能够按照其本来面目看待其人,能够意识到他的独特秉性。尊重意味着让他自由发展其天性。 如果我们承认马斯洛的自我实现的需要是人类最高层次的需要,那声誉才是一种终极的激励手段。经济学家从追求利益最大化的理性假设出发,认为经营者追求良好声誉是为了获得长期利益。 美国著名成人教育家卡耐基曾写出享誉全球的名著《人性的弱点》、《人性的优点》、《人性的光辉》等,成为《圣经》之后人类出版史上第2大畅销书。他指出为人处世基本技巧的第一条就是“不要过分批评、指责和抱怨”。第二条是“表现真诚的赞扬和欣赏”。 美国IBM公司有一个“百分之百俱乐部”,当公司员工完成他的年度任务,他就被批准为该俱乐部会员,他和他的家人被邀请参加隆重的集会。结果,公司的雇员都将获得“百分之百俱乐部”会员资格作为第一目标,以获取那份光荣。 对于员工不要太吝啬一些头衔、名号,一些名号、头衔可以换来员工的认可感,从而激励起员工的干劲。日本电气公司在一部分管理职务中实行“自由职衔制”,就是说可以自由

加职衔,取消“代部长、代理”、“准”等一般普遍管理职务中的辅助头衔,代之以“项目专任部长”、“产品经理”等与业务内容相关的、可以自由加予的头衔。 成就激励 最重要的表现形式就是合理晋升。内部晋升与选拔的好处是: 1、当人才看到自己的工作能力与业绩能够得到肯定或报偿时,其士气与绩效都会改善。 2、内部候选人已经认同了本组织的一切,包括组织的目标、文化、缺陷,比外部候选人更不易辞职。 3、可以激发人才的献身精神,而且可以给其他人才一个同样的期望。 4、更为安全可靠,而且不需要培训,成本低。 优先从内部选拔人才,需要建立一系列制度来维持。例如索尼公司的内部招聘制度。 案例:索尼公司的内部招聘制度 有一天晚上,索尼董事长盛田昭夫按照惯例走进职工餐厅与职工一起就餐、聊天。他多年来一直保持着这个习惯,以培养员工的合作意识和与他们的良好关系。这天,盛田昭夫忽然发现一位年轻职工郁郁寡欢,满腹心事,闷头吃饭,谁也不理。于是,盛田昭夫就主动坐在这名员工对面,与他攀谈。几杯酒下肚之后,这个员工终于开口了:“我毕业于东京大学,有一份待遇十分优厚的工作。但是,进入索尼之前,对索尼公司崇拜得发狂。当时,我认为

三维模型参数化设计与数控加工仿真的实现

三维模型参数化设计与数控加工仿真的实现 作者:恽志东 随着机械制造行业自动化程度 的提高,产品生产的竞争日趋激 烈,人们借助于CAD/ CAM技术的卓越功能来实现产品的辅助设计与辅助制造功能,从而大大缩短产品的生产周期和降低产品的生产成本。SolidWorks是基于Windows平台的主流三维设计软件,被广泛应用于各行业的产品设计,它采用基于特征的参数化模型系统,为产品的设计、分析和制造的一体化提供了平台。Mastercam是美国CNC Software公司开发的CAD/CAM一体化软件,它对硬件的要求不高,操作灵活,具有良好的性价比,特别在CNC编程方面快捷方便,广泛应用于中小型制造企业。在实际工作中,设计人员采用SolidWorks软件进行零件设计,再将零件模型导入Mastercam软件编制零件刀具路径,自动生成数控代码,极大地提高了工作效率,有效保证了零件加工的精度。笔者以圆柱凸轮为例,详细阐述三维模型的参数化设计到自动编程、加工仿真的实现过程。 1 加工零件与工艺分析 图1所示为圆柱凸轮零件图,圆柱直径d=254mm,圆柱高H=203.20mm,内孔半径 r=80.8mm,滚子直径dt=30.25ram,凸轮槽深v=20.65mm。 圆柱凸轮槽是环绕在圆柱面上的等宽槽,加工时刀具沿圆柱凸轮圆周表面铣削的范围往往大于360°,宜采用四轴或带有数控回转台的三坐标立式数控铣床进行加工。圆柱凸轮槽的底部在每一个截面上通常是等深的,根据槽宽及形状选用直径为20mm圆柱立铣刀。圆柱

凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽-粗加工-半精加工-精加工等工序。 由于凸轮槽宽度值大于实际刀具直径,除粗加工外,其余工序采用非等径加工方式,刀位轨迹相对粗加工路径向两侧偏移值为±5.125mm;其中半精加工刀具步进间距2mm,2次走刀;精加工刀具步进间距1.125mm,1次走刀;共分6次走刀完成(单侧3次走刀)。 2参数化三维设计 2.1 CamTrax插件功能 CamTrax是应用于SolidWorks软件中的一个windows界面的第三方软件,用于帮助设计者精确、有效地构建各种类型的凸轮实体模型。CamTrax插件的主要功能: (1)提供直线、盘形、圆柱等多种凸轮类型及主运动方式(顺时针、逆时针),推杆与凸轮保持接触形式可选沟槽式、外廓接触、内廓接触,从动件可选对心直动推杆、偏心直动推杆、摆动推杆。 (2)可自定义从动件运动规律,载荷数据。可选的凸轮运动规律有:①凸轮不动;②筒谐运动规律;③正弦加速度;④修正正弦加速度;⑤修正梯形加速度;⑥正弦一恒速复合运动规律;⑦正弦一简谐复合运动规律;⑧八阶多项式运动规律;⑨外部数据文件(txt格式),两列:第一列为凸轮角位移,增量为0.1°,第二列为对应的从动件位移。可以输入的载荷数据有:①从动件弹性模量,凸轮弹性模量;②重量加速数据,外力作用数据;③凸轮转速;④弹簧数据。(3)运动分析结果可以输出到EXCEL文件中。 2.2凸轮实体模型的构建 在CamTrax软件中设置圆柱凸轮的基本参数及定义从动件运动规律参数后,SolidWorks 软件利用曲线功能自动绘制凸轮理论轮廓曲线及凸轮实际轮廓曲线,最后通过切除放样操作生成凸轮的三维实体。 2.3零件模型的数据交换 在SolidWorks中完成凸轮实体模型设计后,需要将实体零件导入到Mastercam中进行数控加工的刀具路径设置。通过SolidWorks工具栏中的Mastercam Direct插件,使得用户

仓储物流中心的仿真模型

目录 项目概述 (1) 1课程设计内容 (2) 2.仿真的目标 (2) 3Flexsim仿真步骤 (3) 3.1模型建立 (3) 3.2参数设置 (4) 3.3模型运行 (8) 3.4模型优化 (9) 3.5仿真模型运行及结果统计 (10) 4结论 (12)

项目概述 随着计算机信息技术的发展,现代企业生产规模的不断扩大和竞争的日益加剧,市场对企业物流系统提出了新的要求,仓储型物流中心系统也越来越受到关注并得到广泛应用,对其运行效率的研究也成为企业关注的焦点。计算机仿真软件能够进行离散系统建模仿真,是仓储物流中心仿真分析的理想选择。根据仓储型物流中心基本组成和作业流程,将仓储型物流中心剖析为入库、存取、出库三个部分。通过模拟仓储物流中心系统,对仓库物流过程进行整体分析。结合各个作业特点,对仿真的总体流程进行研究,找出其瓶颈,并对其进行优化。

1课程设计内容 ①仓储型物流中心是指将进货的商品临时保存在仓库中,然后根据需要出库的物流中心。以仓储型物流中心的模型为例,学习自动立体仓库、处理器、暂存区、传送带、机器人、运输器等设备来建立模型的方法以及关于这些设备的设定方法。 ②系统描述:具有自动立体仓库的出货传送线的模型。从2处投入口进来的2种商品沿传送带流动,在合流点合流的商品在装货中转站由机器人堆放在货架上。存储在货架的经传送带传输,在卸货中转站由机器人将商品卸下投放到分流线上去。 2.仿真的目标 在进行系统仿真时,首先要确定仿真的目标,也就是仿真要解决的问题:然后是系统调研阶段,调研的目的是为了深入了解系统的总体流程、各种建模参数,以便建立系统模型:最后进入实际建模阶段总的说来可以将仿真过程分为三个部分:①系统分析阶段:②仿真模型建立:③仿真结果输出及分析。如图1所示: 图1

flexsim仿真模型答案

实验一流水作业线的仿真 1、先将各个实体按下图顺序布置,再进行各参数设置。 2、source,OnCreation设置两种工件,两种工件L_a、L_b,分别以正态分布(10,2)和均匀分布(20,10)min的时间间隔进入系统。 3、processor定额2分钟处理工件,并使用人工运送到下一步。 第一个Processor传送到Sink与Conveyor的比例是5:95。 4、对于第二、第三个处理器也需要修改处理时间。

5、由于运行时间较长,队列的容量不够,需要修改。 6、仿真实验数据 思考题: 1、什么单元的哪些参数可以有效反映系统生产能力平衡状况? 工件B 的速度相对于工件A慢了很多,使得设备Q_m2、M2、Q_out2的闲置时间太多,不能有效利用,且暂存区Q_in 、Q_m1、Q_out1容量相对不足,所以,需要对系统的参数进行调整。 2、根据模型运行结果对系统进行调整,比较调整前后的运行结果。 ①、将暂存区Q_in 、Q_m1、Q_out1最大容量改为25; ②、将发生器1的到达时间间隔,改为正态分布(16,1)分钟,发生器2的到达时间间隔,改为均匀分布(12,20)分钟; ③、处理器2的处理时间改为均匀分布(8,11),处理器3的处理时间改

为正态分布(12,2)。 3、学习仿真建模的心得体会。 这次的Flexsim仿真软件的使用,是我第一次真正的使用仿真软件,感觉很很有意思,所以自己一直很投入的做实验,也从这个课程设计中得到了许多收获。 首先是通过这次实验,让我了解和熟悉了Flexsim仿真软件,并初步的学会了运用该软件来模拟物流系统中所要涉及的过程及步骤。 其次,在这次课程设计中使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。在此要感谢老师对我的指导和帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 总的来说,学习Flexsim的过程是比较艰辛的。虽说事前查阅了相关书籍,但实践的时候却发现远远不止于此,上机操作时还是花了很多时间。正如我们的校训所说的那样,知行结合才能成功。要想学好这门课程,理论仅仅是一个入门基础,真正的付诸于实践才能使我们真正进入这个学科,了解它的内涵。由此推及各个学科,如果真的想有实实在在的收获的话,不仅要把理论知识学精,更要敢于动手操作,勇于去实践。

永磁同步电机控制系统仿真模型的建立与实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0 =d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30 //ωψψωωω (1) 将 =d i 带入上式,有 ?? ????????-+???????????? ?? ??--=??????????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

式(1)、 (2)中, d i 是直轴电流, q i 是交轴电流, m ω是转速。由式(1)、 (2)可以看出, 实际是对电流d i 和q i 控制,将它们转化为d u 和q u ,然后经转换后实现PMSM 的 SVPWM 控制。画出PMSM 的控制系统框图如图1所示。注意电流环的PI 调节器可以同时控制两个量,在matlab 中建模时将其分开,但参数是一样的。 图1 =d i 时PMSM 的SVPWM 控制系统框图 2. 坐标变换 SVPWM 矢量控制最重要的是接收坐标变换后的信号,上述控制系统的Ipark 变换为 ??? ??????? ??-=??????d q u u u u θθ θθβαsin cos cos sin (3) 图2 Ipark 变换 Clarke 和park 变换是将abc 三相电流变为d 轴电流和q 轴电流,该公式和matlab 自带 模型幅值和角度有差别,matlab 选取的参考角度与本文相差π21,以转矩最大值为参考,其幅值为32 ,本文的公式和仿真模型将Clarke 和park 变换结合求解为 ? ???? ?????????? ????? +----+-=??????c b a q d i i i i i )32 sin()32sin(sin )32cos()32cos(cos 3/2πθπθθ πθπθθ (4)

案例参考如何有效应用表扬手段激励员工精

D 公司是一家从事研制开发高精密仪器的高科技公司 , 拥有员工 350名 , 最近雇用了一名刚刚获得 MBA 的贺小姐 , 她能力强 , 基础扎实 , 性格果断 , 有开拓性 , 人际关系也很好。她进入公司后工作表现令人满意,很快就被提升为部门主管,这时她才干了三个月,而其他同样的员工往往要干一年才能爬到这个位置。在贺小姐任职的第三年初, 她由于出色的工作表现, 被任命为一项尖端项目的开发负责人, 这项工作非常重要,而且正面临另一家公司的竞争。新的任命刚二个月, D 公司老总意外地接到这个项目组中 5位专家的辞呈, 他们都有可能去那一家公司服务,为竞争对手工作。老总找他们谈话,他们对贺小姐的工作没什么不满意, 甚至认为她是最勤奋的人, 但是他们不满意她居然比他们这些在公司干了七八年的人升迁得快得多, 因此, 他们要到其他公司去显示才干,与她一比高低! 根据上述资料,请回答: (1你是老总,你怎么处理这个事件? (2你是贺小姐,你该怎么办? (3你觉得 D 公司的升迁制度有没有问题? 主要答题思路有: (1你是老总,你怎么处理这个事件? 答:假如我是老总,我首先会安抚五位专家,一是充分肯定他们过去为公司所做的贡献, 明确表示公司不希望他们离开; 二是和他们共同探讨升迁得快和自我价值得到实现的关系, 使他们明白职务升迁固然是自身价值得到实现的一个方面, 但这并不能说明没有得到提拔的人就一定能力差,因为职务升迁和优秀专家的能力要求是不同的, 业务上的专家不一定都合适担任管理工作。其次, 我会找贺小姐沟通一次, 了解五位专家要求调离的原因和贺小姐在工作中有没有做得不 够的地方,再拿出具体的解决问题的办法。 (2你是贺小姐,你该怎么办?

实验一 MATLAB 中控制系统模型的建立与仿真

实验一 MATLAB 中控制系统模型的建立与仿真 一、 实验目的 (1)熟悉MATLAB 控制系统工具箱中线性控制系统传递函数模型的相关函数。 (2)熟悉SIMULINK 模块库,能够使用SIMULINK 进行控制系统模型的建立及仿真。 二、 实验仪器 PC 计算机一台,MATLAB 软件1套 三、实验内容 1. 熟悉线性控制系统传递函数模型的相关函数。 (1)tf ( )函数可用来输入系统的传递函数 该函数的调用格式为 G = tf ( num , den ); 其中num , den 分别为系统传递函数的分子和分母多项式系数向量。返回的G 为系统的传递函数形式。 但如果分子或分母多项式给出的不是完全的展开的形式,而是若干个因式的乘积,则事先需要将其变换为完全展开的形式,两个多项式的乘积在MATLAB 下借用卷积求取函数conv( )得出,其调用格式为 p=conv(p1,p2) MATLAB 还支持一种特殊的传递函数的输入格式,在这样的输入方式下,应该先用s=tf(’s ’)定义传递函数算子,然后用数学表达式直接输入系统的传递函数。 请自己通过下面两个例子来演示和掌握tf ()和s=tf(’s ’)算子这两种输入方式。 例1 设系统传递函数 1 34223523423+++++++=s s s s s s s G 输入方式一:num = [1, 5, 3, 2]; den = [1, 2, 4, 3, 1]; %分子多项式和分母多项式系数向量 G = tf ( num , den ) %这样就获得系统的数学模型G 输入方式二:s=tf(’s ’); G=( s^3 + 5* s^2 + 3* s + 2)/( s^4 + 2*s^3 + 4* s^2 + 3* s + 1) 任务一:将下列传递函数分别采用上面两种输入方式进行输入,并记录命令。 ① 432534 ++++=s s s s G

相关文档
相关文档 最新文档