文档库 最新最全的文档下载
当前位置:文档库 › 实验三-PLC步进电机控制实验

实验三-PLC步进电机控制实验

实验三-PLC步进电机控制实验
实验三-PLC步进电机控制实验

实验三 PLC步进电机控制实验

一、实验目的

1、掌握步进电机工作原理;

2、用PLC构成五相步进电机控制系统。

二、实验要求

1、通过实验,加深并验证学过的理论知识,掌握实验的基本方法和实验原理;

2、正确使用仪器设备;

3、认真观察仪器设备的运动方式,独立编写控制程序并进行操作。

4、学生在实验过程中,应学会独立思考,应用所学专业理论知识分析和解决实验中遇到的具体问题;

三、实验原理

步进电机工作原理

步进电机按工作原理可分为电磁式、磁阻式、永磁式、混合式四类。其中混合式步进电机从定子或转子的导磁体来看,它如反应式步进电机,所不同的是它的转子上置有磁钢,反应式转子则无磁钢。从它的磁路内含有永久磁钢这一点来说,又可以说它是永磁式,但因其结构不同,使其作用原理及性能方面,都与永磁式步进电机有明显区别。它好像是反应式和永磁式的结合,所以常称为混合式。混合式步进电机具有驱动电流小,效率高,过载能力强、控制精度高等特点,是目前市面上应用最为广泛的一种步进电机。

四、实验所用仪器

1、三菱FX1N-60MR一台;

2、计算机一台;

五、实验步骤和方法

1、熟悉编程环境,输入所编制的程序;

2、接通实验箱电源、串口通讯线;

3、将程序下载至PLC并运行。

六、实验注意事项

经指导教师检查同意后,方可接通电源进行实验操作。

七、实验预习要求

1、预习PLC编程环境,上机前预先将控制程序编制完成;

2、预习步进电机工作原理。

八、实验报告要求

实验报告的主要内容

1、实验目的

2、实验所用仪器

3、实验原理方法简要说明

4、程序清单。

实验报告册样式

步进电机工作和控制原理

步进电机工作和控制原理 一、综述 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有 0.1N·M~40N·M。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て

西门子S 系列PLC控制步进电机进行正反转的方法

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

步进电机的控制原理及其单片机控制实现

步进电机的控制原理及其单片机控制实现 一前言 步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统和精密机械等领域。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。 步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。 二 1.步进电机的控制原理 步进电机2个相邻磁极之间的夹角为60°。线圈绕过相对的2个磁极,构成一相(A-A′,B-B′,C-C′)。磁极上有5个均匀分布的矩形小齿,转子上没有绕组,而有40个小齿均匀分布在其圆周上,且相邻2个齿之间的夹角为9°当某组绕组通电时,相应的2个磁极就分别形成N-S极,产生磁场,并与转子形成磁路。如果这时定子的小齿与转子没有对齐,则在磁场的作用下转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机向前“走”一步。 2. 步进电机的控制方式 如果通过单片机按顺序给绕组施加有序的脉冲电流,就可以控制电机的转动,从而实现数字→角度的转换。转动的角度大小与施加的脉冲数成正比,转动的速度与脉冲频率成正比,而转动方向则与脉冲的顺序有关。以三相步进电机为例,电流脉冲的施加共有3种方式。(1)单相三拍方式(按单相绕组施加电流脉冲):→A→B→C→正转;→A→C→B→反转。(2)双相三拍方式(按双相绕组施加电流脉冲):→AB→BC→CA→正转;→AC→CB→AB→反转。(3)三相六拍方式(单相绕组和双相绕组交替施加电流脉冲):→A→AB→B→BC→C→CA→正转;→A→AC→C→CB→B→BA→反转。单相三拍方式的每一拍步进角为3°,三相六拍的步进角则为1.5°,因此,在三相六拍下,步进电机的运行反转平稳柔和,但在同样的运行角度与速度下,三相六拍驱动脉冲的频率需提高1倍,对驱动开关管的开关特性要求较高。 3. 步进电机的驱动方式 步进电机常用的驱动方式是全电压驱动,即在电机移步与锁步时都加载额定电压。为了防止电机过流及改善驱动特性,需加限流电阻。由于步进电机锁步时,限流电阻要消耗掉大量的功率,故限流电阻要有较大的功率容量,并且开关管也要有较高的负载能力。步进电机的另一种驱动方式是高低压驱动,即在电机移步时,加额定或超过额定值的电压,以便在较大的电流驱动下,使电机快速移步;而在锁步时,则加低于额定值的电压,只让电机绕组流过锁步所需的电流值。这样,既可以减少限流电阻的功率消耗,又可以提高电机的运行速度,但这种驱动方式的电路要复杂一些。驱动脉冲的分配可以使用硬件方法,即用脉冲分配器实现。现在,脉冲分配器已经标准化、芯片化,市场上可以买到。但硬件方法结构复杂,成本也较高。步进电机控制(包括控制脉冲的产生和分配)也可以使用软件方法,即用单片机实现,下面给出具体的使用单片机以软件方式驱动步进电机的实现方法。 三步进电机的单片机控制 1. 双相三拍控制

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

_单片机控制步进电机驱动原理___驱动图

单片机控制步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.AT89C2051 步进电机驱动器系统电路原理如图3:

步进电机的控制1

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告 设计题目: 单位(二级学院):自动化学院 学生姓名: 专业:自动化 班级: 学号: 指导教师: 设计时间:2010 年 6 月 重庆邮电大学自动化学院制

目录 目录 (2) 一、设计题目 (3) 1题目内容 (3) 2实现目标 (3) 3设计要求 (3) 4 设计安排 (3) 二、设计报告正文 (3) 1步进电机的概论 (4) 2步进电机的驱动控制系统 (6) 3系统设计思路 (10) 4步进电机的控制电路 (13) 三、设计总结 (15) 四、参考文献 (16)

一、设计题目 1题目内容 基于51单片机的步进电机调速设计 2实现目标 1)具有与PC机串口通信的功能; 2)具有与数码管显示或者LED指示灯显示状态(数码管显示的速度并不代表电 机实际速度,只是一个感性的认识) 3设计要求 1)绘制原理图,PCB; 2)完成单片机所有代码编写; 3)设计PC机简易显示界面; 4设计安排 三个人一组,为期一周,小组成员合作,共同完成设计要求。 二、设计报告正文 摘要:步进电机是一种将电脉冲转换成相应角位移或者线位移的电磁机械装置。在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。它具有快速启停能力,在电机的负荷不超过它能提供的动态转矩时,可以通过输入脉冲来控制它在一瞬间的启动或者停止。由于其精确性以及其良好的性能在实际当中得到了广泛的应用。 本文首先介绍了步进电机的分类、技术指标、步进电机的工作原理以及步进电机

步进电机驱动器工作原理

步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、

B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:

图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理

步进电机控制电路

北京工业大学电子课程设计报告 (数电部分) 题目:步进电机

目录 一、设计题目------------------------------------------------------------------------------------------------3 二、设计任务和设计要求 1.设计题目------------------------------------------------------------------------------------------------3 2.设计技术指标及设计要求----------------------------------------------------------------------------3 三、电路设计------------------------------------------------------------------------------------------------4 1.脉冲发生电路-------------------------------------------------------------------------------------------4 2.环形脉冲分配电路-------------------------------------------------------------------------------------5 3.控制电路-------------------------------------------------------------------------------------------------6 4.驱动电路-----------------------------------------------------------------------------------------------10 5.步进电机-----------------------------------------------------------------------------------------------11 四、电路的组装和调试------------------------------------------------------------------------------------12 1.电路的组装----------------------------------------------------------------------------------------------12 2.电路的调试----------------------------------------------------------------------------------------------13 五、收获和体会---------------------------------------------------------------------------------------------14 六、附录------------------------------------------------------------------------------------------------------15 1.列表-------------------------------------------------------------------------------------------------------15 2.参考资料-------------------------------------------------------------------------------------------------15 3.部分芯片管脚图----------------------------------------------------------------------------------------16

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

步进电机控制

步进电机控制 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

杭州电子科技大学 电子系统设计综合实验 设计报告 实验名称: 步进电机控制 实验序号: 4 小组号: 4A 姓名学号: 指导教师: 黄继业 2015年1月4日 一.引言: 步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)。实验中使用的是永磁式步进电机24BY 型,下图是该电机的接线图,从图中可以看出,电机共有四组线圈,四组线圈的一个端点连在一起引出,这样一共有5 根引出线。要使用步进电机转动,只要轮流给各引出端通电即可。将COM 端标识为C,只要AC、A C、BC、B C,轮流加电就能驱动步进电机运转,加电的方式可以有多种,如果将COM 端接正电源,那么只要用开关元件

(如三极管),将A、A 、B、B 轮流接地。 二.实验要求: 1.(基本):控制四相六线式步进电机的转动(四相八拍方式) 2.(基本):显示步进电机的转动圈数、角度和方向 三.(扩展):用非接触的方式实时监测步进电机的工作状态 四.实验器材清单: 名称型号数量 驱动芯片L2981片 霍尔元件cs31441个 二极管80508个 电容100uf、各2个 电阻2K1个 四:实验电路原理图 1:驱动电路原理图: 2:驱动电路工作原理: L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准

步进电机的常见故障及工作原理

步进电机的常见故障及工作原理 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 识。 步进电机的分类: 步进电机分永磁式(PM)、反应式(VR)、混合式(HR)三种。永磁式一般为二相,转矩和体积都很小,步距角一般为7.5°或15°;反应式一般为三相,实现大转矩输出,步距角为1.5°;混合式兼具永磁式和反应式的优点,分二相和五相,二相步距角为1.8°,无相步距角为0.72°。 步进电机的工作原理: 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 步进电机的主要特性 1 步进电机必须加驱动才可以运转,驱动信号必须为脉冲信号,没有脉冲的时候,步进电机静止,如果加入适当的脉冲信号,就会以一定的角度(称为步角)转动。转动的速度和脉冲的频率成正比。 2 腾龙版步进电机的步进角度为7.5 度,一圈360 度,需要48 个脉冲完成。 3 步进电机具有瞬间启动和急速停止的优越特性。 4 改变脉冲的顺序,可以方便的改变转动的方向。 因此,目前打印机,绘图仪,机器人,等等设备都以步进电机为动力核心。 一、步进电机的基本特点 1、步进电动机工作时每相绕组不是恒定地通电,而是按一定的规律轮流通电。 2、每输入一个脉冲电信号转子转过的角度称为步距角。 3、步进电机可以按特定指令进行角度控制,也可以进行速度控制。角度控制时,每输入一个脉冲,定子绕组就换接一次,输出轴就转过一个角度,其步数与脉冲数一致,输出轴转动的角位移量与输入脉冲成正比。速度控制时,步进电机绕组中送入的是连续脉冲,各相绕组不断地轮流通电,步进电机连续动转,它的转速与脉冲频率成正比。改变通电顺序,即改变定子磁场旋转方向,就可以控制电机正转或是反转。 4、步进电机具有自锁能力。当控制脉冲停止输入,而让最后一个脉冲控制的绕组继续通直流电时,则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电机可以实现停车时转子定位。 二、步进电动机为什么会失步?

步进电机结构及工作原理简介

步进电机结构简介 按照励磁方式分类,步进电机可分为反应式、永磁式和感应子式。其中反应式步进电机用的比较普遍,结构也较简单。本课题采用的也是此类电机。 反应式步进电机又称为磁阻式步进电机,其典型结构如图1所示。这是一台三相电机,定子铁心由硅钢片叠成,定子上有6个磁极,每个磁极上又各有5个均匀分布的矩形小齿。三相电机共有三套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相。转子也是由叠片铁心构成,转子上没有绕组,而是由40个矩形小齿均匀分布在圆周上,相邻两齿之间的夹角为9度。 下面简述其工作原理。 当某相绕组通电时,对应的 磁极就会产生磁场,并与转 子形成磁路。若此时定子的 小齿与转子的小齿没有对 齐,则在磁场的作用下,转 子转动一定的角度使转子齿 与定子齿对应。由此可见, 错齿是促使步进电机旋转的 根本原因。例如,在单三拍 运行方式中,当A相控制绕组通电,而B、C相都不通电时,由于磁通具有力图走磁阻最小路径的特点,所以转子齿与A相定子齿对齐。若以 此作为初始状态,设与A相磁极中心磁极的图1 步进电机剖面结构转子齿为0号齿,由于B相磁极与A相磁极相差120度,且120度/9度=13.333不为整数,所以,此时13号转子齿不能与B 相定子齿对齐,只是靠近B相磁极的中心线,与中心线相差3度。如果此时突然变为B相通电,而A、C 相都不通电,则B相磁极迫使13号小齿与之对齐,整个转子就转动3度。此时称电机走了一步。 同理,我们按照A→B→C→A顺序通电一周,则转

子转动9度。转速取决于各控制绕组通电和断电的频率(即输入脉冲频率),旋转方向取决于控制绕组轮流通电的顺序。如上述绕组通电顺序改为A →C →B →A ······则电机转向相反。 这种按A →B →C →A ······方式运行的称为三相单三拍,“三相”是指步进电机具有三相定子绕组,“单”是指每次只有一相绕组通电,“三拍”是指三次换接为一个循环。 此外,三相步进电机还可以以三相双三拍和三相六拍方式运行。三相双三拍就是按AB →BC →CA →AB ······方式供电。与单三拍运行时一样,每一循环也是换接3次,共有3种通电状态,不同的是每次换接都同时有两相绕组通电。三相六拍的供电方式是A →AB →B →BC →C →CA →A ······每一循环换接六次,共有六种通电状态,有时只有一相绕组通电,有时有两相绕组通电。 磁阻式步进电机的步距角可由下边公式求得 r McCZ Q 360 ⑴ 式中Mc 为控制绕组相数,C 为状态系数,三相单三拍或双三拍时C =1,三相六拍时C =2。Zr 为转子齿数,本课题使用的36BF003型步进电机转子齿数为40。

步进电机的种类、结构及工作原理

步进电机的种类、结构及工作原理 步进式伺服驱动系统是典型的开环控制系统。在此系统中,执行元件是步进电机。它受驱动控制线路的控制,将代表进给脉冲的电平信号直接变换为具有一定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带动工作台移动。由于该系统没有反馈检测环节,它的精度较差,速度也受到步进电机性能的限制。但它的结构和控制简单、容易调整,故在速度和精度要求不太高的场合具有一定的使用价值。 1.步进电机的种类 步进电机的分类方式很多,常见的分类方式有按产生力矩的原理、按输出力矩的大小以及按定子和转子的数量进行分类等。根据不同的分类方式,可将步进电机分为多种类型,如表5-1所示。 表5-1 步进电机的分类 2.步进电机的结构

目前,我国使用的步进电机多为反应式步进电机。在反应式步进电机中,有轴向分相和径向分相两种,如表5--1所述。 图5--2是一典型的单定子、径向分相、反应式伺服步进电机的结构原理图。它与普通电机一样,分为定子和转子两部分,其中定子又分为定子铁心和定子绕组。定子铁心由电工钢片叠压而成,其形状如图中所示。定子绕组是绕置在定子铁心6个均匀分布的齿上的线圈,在直径方向上相对的两个齿上的线圈串联在一起,构成一相控制绕组。图5--2所示的步进电机可构成三相控制绕组,故也称三相步进电机。若任一相绕组通电,便形成一组定子磁极,其方向即图中所示的NS极。在定子的每个磁极上,即定子铁心上的每个齿上又开了5个小齿,齿槽等宽,齿间夹角为9°,转子上没有绕组,只有均匀分布的40个小齿,齿槽也是等宽的,齿间夹角也是9°,与磁极上的小齿一致。此外,三相定子磁极上的小齿在空间位置上依次错开1/3齿距,如图5--3所示。当A相磁极上的小齿与转子上的小齿对齐时,B相磁极上的齿刚好超前(或滞后)转子齿1/3齿距角,C相磁极齿超前(或滞后)转子齿2/3齿距角。 图5-2 单定子径向分相反应式伺服步进电机结构原理图

步进电机驱动器的工作原理

步进电机驱动器的工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产 生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极 产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向 转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图

步进电机工作原理及功能运用

步进电机工作原理及功能运用 双击自动滚屏发布者:admin 发布时间:2012-02-18 03:06:33 阅读:495次【字体:大中小】步进电机的概术: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件,是目前行业设备的主要配件,如剥线机设备就需要用到此步进电机。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转

过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 步进电机的别称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 一、步进电机的特点

步进电机基本工作原理

步进电机基本原理 电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。每个脉冲所产生的运动是精确的,并可重复,这就是步进电机为什么在定位应用中如此有效的原因。 永磁步进电机包括一个永磁转子、线圈绕组和导磁定子。激励一个线圈绕组将产生一个电磁场,分为北极和南极,见图1所示。定子产生的磁场使转子转动到与定子磁场对直。通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。 图2显示了一个两相电机的典型的步进顺序。在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。当A相关闭、B相通电时,转子顺时针旋转90°。在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90°。在第4步中,A相关闭、B相通电,极性与第2步相反。重复该顺序促使转子按90°的步距角顺时针旋转。

图2中显示的步进顺序称为“单相激励”步进。更常用的步进方法是“双相激励”,其中电机的两相一直通电。但是,一次只能转换一相的极性,见图3所示。两相步进时,转子与定子两相之间的轴线处对直。由于两相一直通电,本方法比“单相通电”步进多提供了41.1%的力

矩,但输入功率却为2倍。 半步步进 电机也可在转换相位之间插入一个关闭状态而走“半步”。这将步进电机的整个步距角一分为二。例如,一个90°的步进电机将每半步移动45°,见图4。但是,与“两相通电”相比,半步进通常导致15%~30%的力矩损失(取决于步进速率)。在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的

净损失。 双极性绕组 双相激励介绍了利用一种“双极性线圈绕组”的方法。每相用一个绕组,通过将绕组中电流反向,电磁极性被反向。典型的两相双极驱动的输出步骤在电气原理图和图5中的步进顺序中进一步阐述。按图所

相关文档
相关文档 最新文档