文档库 最新最全的文档下载
当前位置:文档库 › 什么是功率半导体

什么是功率半导体

什么是功率半导体
什么是功率半导体

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。

从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。

20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。

这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。

功率半导体器件市场

受到市场需求减缓以及库存调整等问题的影响,2007年,中国功率器件市场增长率较2006年出现较大幅度的下降,市场销售额为762.3亿元,比2006年增长了13.3%。

在中国功率器件市场中,电源管理IC仍旧占据市场首要位置,MOSFET位于第二位,大功率晶体管位于第三位,此三大产品销售额占到整体市场的80%以上。IGBT销售额虽然不大,但随着其在工业控制、消费电子领域中应用的不断增多,其市场销售额保持着较快的增长,是中国功率器件市场中的新兴产品。

从应用领域上看,消费电子领域销售额位列第一位,工业控制居于第二,计算机领域销售额位于第三位。这三大领域销售额占整体市场的68.9%,是功率器件的重要应用市场。同时,凭借笔记本电脑在2007年产量的快速增长,计算机领域对于功率器件的需求额增长率位于各领域之首。

MOSFET成为市场发展亮点

2007年,中国市场上对于电源管理IC的需求有所放缓。这主要是受到下游整机产量以及库存调整的影响。而随着中国厂商不断进入LDO、DC/DC等产品市场,低端电源管理IC 产品价格出现一定程度的下滑。在市场需求量增速放缓以及产品价格下滑的双重影响下,2007年中国电源管理IC市场销售额增长14.8%,比2006年23.2%的增长率有较大幅度的下滑。但即使2007年中国电源管理IC市场增长有所放缓,中国电源管理IC市场的增长率依旧高于全球3.8%的水平。

在功率分立器件中,相较于大功率晶体管、达林顿管以及晶闸管的低增长率,MOSFET

和IGBT依旧保持了较快的发展。其中MOSFET已经广泛应用在主板、Ballast、NB、计算机类电源适配器、LCDTV等产品中,凭借着较快的市场增长率以及广阔的市场发展空间,MOSFET成为中国分立功率器件市场发展亮点。

2007年,中国笔记本电脑产量增长率超过40%,LCDTV产量增长率也超过了70%,快速增长的整机产量带动了中国MOSFET的市场需求,但由于整体整机产量增长趋于平稳,MOSFET市场需求量增长率较2006年有所下降。2007年中国MOSFET市场需求量达到171.2亿个,市场需求额为220.5亿元。

凭借着在消费类电源适配器、Ballast等产品中的庞大用量,消费电子领域对于MOSFET 产品的需求量位列各领域之首,而MOSFET在计算机主板、NB、计算机类适配器、LCD显示器等产品中的广泛使用则使得计算机领域仅次于消费电子位于市场需求量的第二位。网络通信、工业控制、汽车电子以及电力设备领域对于MOSFET的需求量位于第三至六位。由于主板应用中主要使用低压大电流MOSFET产品,其产品单价比较高。而相对于计算机产品应用,消费电子领域中低压小电流产品所占比重比较大,其产品价格相对较低。受此影响,计算机领域MOSFET需求额超过消费电子领域位于第一位,消费电子领域位于其后,而工业控制领域需求额则位于第三位。

本土生产企业竞争力有待提升

在中国功率器件市场中,欧美厂商占有比较大的优势地位,2007年排名前10位的功率器件生产企业中,欧美厂商占据九席。在前10位的厂商中,TI和NS主要专注于电源管理IC 产品的生产,而Vishay则在MOSFET细分产品市场中拥有较强的市场竞争力。Fairchild、ST、On Semiconductor等企业产品线涵盖广泛,产品包括功率分立器件、电源管理IC。目前来看,这些企业产品质量好,技术实力强,在功率器件市场中处于领先地位。

近年来,中国台湾企业逐步导入电源管理IC和功率器件产品的生产,这些企业凭借着较低的产品价格在中低端市场得到了比较快速的发展。立锜、富鼎先进、茂达、安茂、致新、沛亨、崇贸是中国台湾地区具有代表性的厂商。

在本土企业中,近年来出现了一批从事电源管理IC生产的企业,但这些企业多以设计企业为主,产品主要集中在LDO、DC-DC。对于MOSFET、IGBT等高端功率分立器件产品,现阶段国内还缺乏有实力的IDM企业。但随着Fairchild等功率器件生产企业把一部分MOSFET的代工生产放到国内来做,国内MOSFET代工服务取得了一定的发展。目前,无锡华润上华、吉林麦吉柯、上海先进、华虹NEC都在进行MOSFET产品的代工服务。在这些企业中华虹NEC和先进半导体主要是用8寸线进行MOSFET产能代工服务,华润上华则采用6寸线进行MOSFET的代工服务,吉林麦吉柯则采用5寸线进行MOSFET产品代工服务。而未来几年,吉林华微、天津中环也将进入MOSFET市场。

综上所述,欧美日企业在中国功率器件市场上凭借着出色的产品质量处于领先地位,中国台湾企业则凭借着良好的产品性价比在市场中得到了较快的发展,而本土企业在中国功率器件市场上的竞争力还很弱,企业实力有待提升。

MOSFET产品发展趋势

随着消费电子、计算机等领域的快速发展,对于功率器件产品的需求也呈现快速增长的

趋势。而产品的小型化也使得高可靠性、节能、高性能、小尺寸、符合RoHs指令成为功率器件未来的发展趋势。封装工艺的提升则是提高MOSFET性能以及稳定性的有效途径。随着市场上对更小巧轻薄、更快速、散热更好及性能更可靠的便携式应用MOSFET器件的需求的快速增加,全球主要MOSFET生产企业IR、On-Semiconductor、Infineon等都在不断通过提升封装工艺来改善器件散热水平。

MOSFET可大致分成Planar和Trench两大类技术。对于低压MOSFET产品,Trench MOSFET技术已被市场所接受,并将成为市场的发展趋势。在高压MOSFET市场上,Planar 技术仍具有一定的发展潜力。未来,含有高端工艺的平面技术将会是高压MOSFET的发展趋势之一。

功率半导体器件在我国的发展现状

功率半导体器件在我国的发展现状 MOSFET是由P极、N极、G栅极、S源极和D漏级组成。它的导通跟阻断都由电压控制,电流可以双向流过,其优点是开关速度很高,通常在几十纳秒到几百纳秒,开关损耗小,适用于各类开关电源。但它也有缺点,那就是在高压环境下压降很高,随着电压的上升,电阻变大,传导损耗很高。 随着电子电力领域的发展,IGBT出现了。它是由BJT和MOS组成的复合式半导体,兼具二者的优点,都是通过电压驱动进行导通的。IGBT克服了MOS的缺点,拥有高输入阻抗和低导通压降的特点。因此,其广泛应用于开关电源、电车、交流电机等领域。 如今,各个行业的发展几乎电子化,对功率半导体器件的需求越来越大,不过现在功率半导体器件主要由欧美国家和地区提供。我国又是全球需求量最大的国家,自给率仅有10%,严重依赖进口。功率半导体器件的生产制造要求特别严格,需要具备完整的晶圆厂、芯片制造厂、封装厂等产业链环节。国内企业的技术跟资金条件暂时还无法满足。 从市场格局来看,全球功率半导体市场中,海外龙头企业占据主导地位。我国功率半导体器件的生产制造还需要付出很大的努力。制造功率半导体器件有着严格的要求,每一道工序都需要精心控制。最后的成品仍需要经过专业仪器的测试才能上市。这也是为半导体器件生产厂家降低生产成本,提高经济效益的体现。没有经过测试的半导体器件一旦哪方面不及格,则需要重新返工制造,将会增加了企业的生产成本。

深圳威宇佳公司是国内知名的功率半导体检测专家,专门生产制造简便易用、高精度的设备,让操作人员轻松上手操作,省力更省心。如生产的IGBT动态参数测试设备、PIM&单管IGBT 专用动态设备、IGBT静态参数测试设备、功率半导体测试平台等,均是经过经验丰富的技术人员精心打磨出来的,设备高可靠性、高效率,已在市场上应用超过10年,历经了超过500万只模块/DBC的测试考验。

功率器件的发展历程

功率器件的发展历程 IGBT、GTR、GTO、MOSFET、IGBT、IGCT…… 2009-12-08 08:49 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是: 漏电流小、通态压降较高(1 0~1 8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1 6~4 0V)。它主要用于斩波、逆变等电路中充当旁路

功率半导体器件 LDMOS VDMOS

关于功率MOSFET(VDMOS & LDMOS)的报告 ---时间日期:2009.11.12 ---报告完成人:祝靖1.报告概况与思路 报告目的:让研一新同学从广度认识功率器件、了解功率器件的工作原理,起到一个启蒙的作用,重点在“面”,更深层次的知识需要自己完善充实。 报告内容:1)从耐压结构入手,说明耐压原理; 2)从普通MOS结构到功率MOS结构的发展;(功率MOS其实就是普通MOS结构和耐 压结构的结合); 3)纵向功率MOS(VDMOS)的工作原理; 4)横向功率MOS(LDMOS)的工作原理; 5)功率MOSFET中的其它关键内容;(LDMOS和VDMOS共有的,如输出特性曲线)报告方式:口头兼顾板书,点到即止,如遇到问题、疑惑之处或感兴趣的地方,可以随时打断提问。 2.耐压结构(硅半导体材料) 目前在我们的研究学习中涉及到的常见耐压结构主要有两种:①反向PN结②超结结构(包括); 2.1 反向PN结(以突变结为例) 图2.1所示的是普通PN结的耐压原理示意图,当这个PN结工作在一定的反向电压下,在PN结内部就会产生耗尽层,P区一侧失去空穴会剩下固定不动的负电中心,N区一侧会失去电子留下固定不动的正电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图2.1a所示,A区就是所谓耗尽区。 图2.1b所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em称为峰值电场长度(它的位置在PN,阴影部分的面积就是此时所加在PN P区和N区共同耐压。图2.2所示的是P+N结的情况,耐压原理和图1中的相同,但是在这种情况中我们常说N负区是耐压区域(常说的漂移区) (a) (b) 图2.1 普通PN结耐压示意图(N浓度=P浓度)图2.2 P+N结耐压示意图(N浓度<

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

2015年功率半导体器件行业简析

2015年功率半导体器件行业简析 一、行业的定义与分类 (2) 二、行业的发展历史和现状 (3) 三、行业规模 (4) 四、行业的周期性 (6) 五、进入本行业的壁垒 (6) 1、技术壁垒 (6) 2、客户服务壁垒 (7) 六、行业风险因素 (7) 1、投入不足 (7) 2、质量意识差 (8) 七、影响行业未来发展趋势的因素 (8) 1、电子元器件微型化 (8) 2、电子元器件集成化 (9) 3、产业政策大力支持 (9)

一、行业的定义与分类 功率半导体器件是进行电能(功率)处理的半导体产品,典型的功率处理功能包括变频、变压、变流、功率放大和功率管理等,是弱电控制与强电运行间的桥梁,其中大部分是既能耐高压也能承受大电流。半导体产业的发展始于分立器件,所谓“分立”,一般是指被封装的半导体器件仅含单一元件(为了产品应用需要,部分分立器件封装实际上包含二个或多个元件或器件),它必须和其它类型的元件相结合,才能提供类似放大或开关等基本电学功能。 从产品结构来分,功率半导体分立器件可分为二极管、三极管、功率晶体管、功率集成电路等几大类产品,其中功率晶体管包括有MOSFET和IGBT等。从功率处理能力来分,功率半导体分立器件可分为四大类,包括低压小功率分立器件(电压低于200V,电流小于200mA)、中功率分立器件(电压低于200V,电流小于5A)、大功率分立器件(电压低于500V,电流小于40A)、高压特大功率分立器件(电压低于2,000V,电流小于40A)。 每个电子产品均离不开功率半导体技术。功率半导体的目的是使电能更高效、更节能、更环保并给使用者提供更多方便。如通过变频来调速,使变频空调在节能50-70%的同时,更环保、更安静、让人更舒适。人们希望便携式电子产品一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体能将“粗电”变为“精电”,因此它是

18_功率半导体器件应用教学大纲

《功率半导体器件应用》课程教学大纲 课程编号: 课程名称:功率半导体器件应用/ Applications of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时) 适用专业:电子科学与技术专业 一、教学目的和任务 功率半导体器件应用是电子科学与技术本科专业必修的一门专业核心课程。 功率半导体器件应用讲述功率器件(分立的和集成)的结构、功能、特性和特征,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括功率晶体管、晶闸管、各类晶闸管及其应用、静电感应功率器件、双极-MOS功率器件,并包含了可靠工作条件,更进一步讲述其重要应用。根据电子科学与技术本科专业的特点和应用需要,在掌握功率半导体器件基本原理的基础上,使学生对功率半导体器件的应用有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。 二、教学基本要求 通过对计算机控制技术课程的学习,要求学生: (1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件可靠工作的条件。 (2)熟悉功率器件的可靠工作条件以及在电力电子中的应用。 (3)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 (4)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 三、教学内容与学时分配 第一章(知识领域1):功率半导体器件应用概述(2学时)。 (1)知识点:轨道交通系统中的应用;新能源技术中的应用;智能电网中的应用。 (2)重点与难点:重点是轨道交通系统中的应用、新能源技术中的应用和智能电网中的应用。 第二章(知识领域2):双极结型功率晶体管(2学时)。 (1)知识点:双极结型晶体管结构的基本特性;功率晶体管的基本特性;功率晶体管

什么是功率半导体

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。 从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。 20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。 这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。 功率半导体器件市场 受到市场需求减缓以及库存调整等问题的影响,2007年,中国功率器件市场增长率较2006年出现较大幅度的下降,市场销售额为762.3亿元,比2006年增长了13.3%。 在中国功率器件市场中,电源管理IC仍旧占据市场首要位置,MOSFET位于第二位,大功率晶体管位于第三位,此三大产品销售额占到整体市场的80%以上。IGBT销售额虽然不大,但随着其在工业控制、消费电子领域中应用的不断增多,其市场销售额保持着较快的增长,是中国功率器件市场中的新兴产品。 从应用领域上看,消费电子领域销售额位列第一位,工业控制居于第二,计算机领域销售额位于第三位。这三大领域销售额占整体市场的68.9%,是功率器件的重要应用市场。同时,凭借笔记本电脑在2007年产量的快速增长,计算机领域对于功率器件的需求额增长率位于各领域之首。 MOSFET成为市场发展亮点 2007年,中国市场上对于电源管理IC的需求有所放缓。这主要是受到下游整机产量以及库存调整的影响。而随着中国厂商不断进入LDO、DC/DC等产品市场,低端电源管理IC 产品价格出现一定程度的下滑。在市场需求量增速放缓以及产品价格下滑的双重影响下,2007年中国电源管理IC市场销售额增长14.8%,比2006年23.2%的增长率有较大幅度的下滑。但即使2007年中国电源管理IC市场增长有所放缓,中国电源管理IC市场的增长率依旧高于全球3.8%的水平。 在功率分立器件中,相较于大功率晶体管、达林顿管以及晶闸管的低增长率,MOSFET

功率器件知识

功率器件知识 功率器件的主要功能是进行电能的处理与变换(比如变压、变流、变频、功放等)。主要应用领域是开关电源、电机驱动与调速、UPS 等等,这些装置都需输出一定的功率给予电器,所以电路中必须使用功率半导体。另一重要应用领域是发电、变电与输电,这就是原本意义上的电力电子。 功率器件的应用领域:消费电子24%,工业控制23.4%,计算机21.8%,网络通信20.5%,汽车电子5.2%。 任何电器设备都需要电源,任何用电机的设备都需要电机驱动。作为目前国际上主流的功率半导体器件,包括VD-MOSFET和IGBT,克服了以前功率半导体器件工业频率低、所需要的配套电感、电容、变压器等体积大、能耗高等缺点,制备工艺使用的设备和工艺线的要求与集成电路基本相同,完全不同于用台面技术和粗放光刻的晶闸管、台面二极管、功率BJT的制造。 全球能源需求的不断增长以及环境保护意识的逐步提升使得高效、节能产品成为市场发展的新趋势。MOSFET等功率器件越来越多地应用到整机产品中。我国用于电机的电能占我国总发电量的60%多。如果全国电机的驱动都采用功率半导体进行变频调速就可以节能大约 1/4 到 1/3,也就是说可节约全国总发电量的15%至20%。功率半导体还是信息产品、计算机、消费电子和汽车这4C产业的基础产品,当前用于4C产业的功率半导体已占功率半导体总量的70%多。

功率器件包括功率IC(半导体元件产品统称)和功率分立器件。 功率分立器件主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件。功率IC和MOSFET的市场份额较大,分别占40.4%和26.0%市场份额,是中国功率半导体市场上最重要两个产品,此外大功率晶体管、达林顿管、IGBT和晶闸管也占有一定市场份额。 功率器件的中国市场结构:电源管理IC 40.4%,MOSFET26.0%,大功率晶体管13.7%,达林顿管5.3%,IGBT4.2%,晶闸管1.8%。 由于下游终端产品很多已向国内转移,其上游的功率器件市场也一直保持较快的发展速度。02-06年中国功率器件市场复合增长率29.4%,未来5年复合增长率19.1%,2011年达1680.4亿元。 国外厂商处于主导地位,国内厂商奋起直追。从功率半导体厂商的类型来看,多数功率芯片厂商是IDM(智能分销管理系统)厂商,Fabless(无生产线的IC设计公司)也占据了一定比例。美国、日本和欧洲功率芯片厂商大部分属于IDM 厂商,而中国台湾厂商则绝大多数属于Fabless厂商。 其中MOSFET在中国目前的市场规模为174.8亿元。MOSFET根据不同的耐压程度,有着不同的应用:耐压20v-应用领域手机、数码相机,30v-计算机主板、显卡,40v-机顶盒和电动自行车,60v-UPS、汽车雨刷、汽车音响、马达控制,80v-LCD TV、LCD 显示器和其他仪器仪表,150-400v-照明、CRT 电视、背投电视、电热水器和洗衣机等,400-800v-发动机启动器、车灯控制、电机控制,嵌入式电源和电源适配器,500-1000v-高压变频器、发电和变电设备。

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

功率半导体器件的直接均流技术

功率半导体器件的直接均流技术 高占成(1)矫健(1)(2)揣荣岩(2)潘福泉(1)(2) (1)北京东菱宏博电气科技发展有限公司北京 100054 (2)沈阳工业大学信息科学与工程学院沈阳 110870 摘要:在认真研究双极注入型功率半导体器件通态特性的基础上,结合装置整机厂的并联技术经验,从器件角度,提出了功率半导体器件的直接均流技术,这一技术已得到了成功验证。 关键词:功率半导体器件、双极注入型、通态特性、门槛电压、直接均流技术 0 引言 无论是基础功率半导体器件如:整流二极管(Rectifier diodes简称RD,含快恢复整流二极管FRD)、晶闸管(SCR,含快速、高频晶闸管)、双向晶闸管(Triac)、逆导晶闸管(RCT)等,还是新型功率半导体器件如:门极关断晶闸管(GTO)、门极换流晶闸管(GCT)、集成门极换流晶闸管(IGCT)等,甚至是绝缘栅双极晶体管(IGBT),由于这些器件都属于双极注入器件,故其通态特性最后都归结到PiN功率二极管的通态特性上来。 在实际应用中,往往有多个器件的并联问题,而并联的核心就是均流,说到底是一个PiN功率二极管的通态特性问题。将PiN功率二极管的通态特性认真研究清楚了,不用任何特殊均流措施的直接均流问题就解决好了。PiN 功率二极管的通态特性研究清楚了,直接均流问题解决好了,就不难推广到FRD、SCR甚至是GTO、GCT、IGCT等的直接并联均流。届时将着眼点仅仅集中到些微差别上也就足够了。然而国内的许多现实令人遗憾:在一些人的眼里连晶闸管都早已研究过了,,哪里还谈得上最简单的PiN功率二极管的

再研究呢? 国际上先进的半导体厂家都投入巨大资金重新研究新型功率二极管【1】,其道理在哪里呢?。①前期的蓬勃发展的高频自关断器件的研究(即所谓安全运行区的问题)已解决得很有成果(如成功开发并大规模应用了IGBT和IGCT等),然而所有这些新型功率半导体器件的应用又是绝对离不开PiN功率二极管的进步的(如超快软恢复功率二极管的研发和应用等),这是国际上先进的半导体厂家投入巨大资金重新研究新型功率二极管的主要原因;②其次,许多新型功率二极管器件又独自踏入当前的先进科学技术中,极大地推动了现代基础工业的进程(如电阻型电焊机专用超大电流密度整流二极管对电焊机行业、高频电镀专用高频整流二极管对电化学行业、车用雪崩整流二极管对汽车行业等等)。 国际电力电子科学技术发展的实践表明,花大气力出重拳跟上当前国际先进科学技术的步伐,重新开展基础功率半导体新器件的研究是多么必要。我们的功率半导体器件的直接均流技术的研究,就是在PiN功率二极管的直接均流技术研究的基础上展开的,也是这个研究洪流中的有实际意义的一部分。 1,并联均流中问题的回顾 以往功率半导体器件并联均流技术的研究多半是由整机装置厂进行的。要么是电流容量太大,要么是装置可靠性高,不允许中途停电等,因此都必须要多个器件并联【2】。 并联均流技术主要解决的是电流平衡度的问题,既【3】【5】: ①并联器件同时触发开通; ②电流上升或下降时的电流平衡度;

功率半导体的发展

功率半导体的发展 摘要:回顾了现代电力电子器件的发展历史,涉及的器件包括晶闸管、GTO、IGCT、MTO、IGBT、各种改进型的IGBT 以及CoolMOS。叙述了采用新型材料的电力电子器件的发展和前景,应用碳化硅和氮化镓材料的功率器件正在迅速地发展,一些器件有望在不远的将来实现商品化,进入电力电子技术市场。 关键词:电力电子器件;碳化硅;氮化镓;发展;展望 Development of Power Semiconductor Device Abstract:The developing history of modern power electronic device is reviewed, which includes thyristor, GTO, IGCT, MTO, IGBT,improved IGBT and CoolMOS. The development and perspective of power electronic device with novel materials are proposed. The powerdevice applying SiC and GaN is in a speedy growing, some of which will realize commercialization in the near future and enter into thetechnology market of power electronics. Key words: power electronic device; SiC; GaN; development; prospective 率半导体器件是进行功率处理的半导体器件,它包括功率二极管、功率开关器件与功率集成电路。功率半导体器件技术是电力电子技术的基础与核心,它是微电子技术与电力电子技术的结合。新型电力电子器件的主要代表是场型控功率器件和智能功率集成电路(Smart Power IC-SPIC)。最早的功率器件是由少数载流子(少子)参与输运的电流控制型器件。由于少子存储效应,工作频率一般小于1MHZ,且其输入阻抗低、驱动电流大。而且由于是正电流温度系数,故有二次击穿现象;随着多晶硅和平面工艺的发展,出现多数载流子(多子)参与输运的电压控制型器件,即场控功率器件。它可以分为两大类:主要的一类是MOS型功率器件,如垂直扩散MOS(VDMOS),绝缘栅双极晶体管(IGBT)和MOS控制晶闸管(MCT)等;另一类是静电感应器件,如静电感应晶体管(SIT),双极型静电感应晶体管(BSIT)和静电感应晶闸管(SITH)等。功率集成电路(PIC)是指将高压功率器件与信号处理系统及外围接口电路、保护电路、检测诊断电路等集成在同一芯片的集成电路。一般将其分为智能功率集成电路(SPIC)和高压集成电路(HVIC)两类。但随着PIC的不断发展,两者在工作电压和器件结构上(垂直或横向)都难以严格区分,已习惯于将它们统称为智能功率集成电路。智能功率集成电路是集成电路的重要分支,是功率SoC(System on Chip)的核心技术,它将信息采集、处理与功率控制合一,是引发第二次电子革命的关键技术[1]。 1、功率半导体器件的简介 20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。 各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件

13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍 电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。 1. MCT (MOS Control led Thyristor):MOS控制晶闸管 MCT 是一种新型MOS 与双极复合型器件。如上图所示。MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。实质上MCT 是一个MOS 门极控制的晶闸管。它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点: (1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2; (2)通态压降小、损耗小,通态压降约为11V; (3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s; (4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断; 2. IGCT(Intergrated Gate Commutated Thyristors) IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。 IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT 芯片在不串不并的情况下,二电平逆变器功率0.5~ 3 MW,三电平逆变器1~ 6 MW;若反向二极管分离,不与IGCT

功率半导体的发展进程

功率半导体的发展进程 功率器件本来是属于半导体产业中的分立器件子类别,但随着制造工艺的不断提升,目前有部分产品可以与集成电路复合生产,所以以功率半导体的发展来介绍行业演变。功率半导体的发展可分为以下四个阶段: 第一阶段是以整流管、晶闸管为代表的发展阶段。这一阶段的功率器件在低频、大功率变流领域中的应用占有优势,取代了早先的汞弧整流器。1947年美国著名的贝尔实验室发明了晶体管,功率二极管开始应用于电力领域,1956年贝尔实验室又发明了晶闸管,1957年美国通用电气公司开发出世界上第一只晶闸管器件,开创了传统的功率器件应用技术阶段,晶闸管属于半控型器件,即可通过信号控制其导通但无法实现关断的器件,实现了弱电对强电的控制,在工业界引起了一场技术革命。由于晶闸管具有可控的单向导电特性,被首先用于整流电路,因此也被称为可控硅整流器(Silicon Controlled Rectifier,SCR)。 SCR在体积、重量、动态电气性能和控制性能的优越性,很快就取代了水银整流器和旋转变流机组,且应用范围迅速扩大,晶闸管的迅速发展使得中大功率的各种变流装置和电动机传动系统得到了快速发展。因为属于半控型器件,通过对SCR 门极的控制,SCR仅能导通而不能关断,即该器件这一缺点使

得SCR的应用有着很大局限性,关断这些器件的控制电路存在体积大、效率低、可靠性差、工作频率低以及电网侧和负载上谐波严重等缺点。 第二阶段是20世纪70年代后期为以可关断晶闸管(Gate Turn Off Thyristor,GTO)、功率双极晶体管(Bipolar Junction Transistor,BJT,也称Giant Transistor,GTR)和功率场效应晶体管(Power-MOSFET)等全控型器件为代表的发展阶段。全控型器件的特点是,通过对门极(基极/栅极)的控制,既可使器件导通又可使器件关断。这一阶段的功率器件开关速度高于晶闸管,它们的应用使变流器的高频化得以实现。 但GTO的开关速度仍旧偏低,BJT也存在着二次击穿和不易并联的问题,驱动电流大和功耗比较大也是该阶段器件的严重缺陷。由此在20世纪70年代末,催生了以MOSFET为代表的场效应晶体管,这类器件克服了前两代的许多不足,具备开关速度快(最高工作频率可以高达几十MHz)、输入阻抗高,而且控制功率小,驱动电路简单等优点,但是他们的导通电阻却比较大,这限制了他们的电流和功率容量,在100V以下目前仍为最理想的开关器件,但是在高压领域其导通电阻仍旧是很大问题。 第三阶段是20世纪80年代后期以绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)复合型器件

宽禁带功率MOSFET半导体器件的研究进展

宽禁带功率MOSFET半导体器件的研究进展半个世纪以来,功率半导体器件得到长足发展,极大地促进了电力电子技术的进步,而功率半导体器件的发展主要基于整个微电子领域的基石——硅材料。19世纪80年代以来,硅材料本身的物理特性对硅基功率器件性能的限制被认识得越来越清晰。 实现低导通电阻的方法是提高材料的临界击穿电场,也就是选择宽禁带的半导体材料。根据更符合实际应用,以及综合考虑功率器件的导通损耗、开关损耗和芯片面积等因素的估算,碳化硅、氮化镓和金刚石功率器件大大降低了损耗和器件面积,新型宽禁带半导体材料将引发功率器件的巨大进步。 同时,以碳化硅、氮化镓和金刚石为代表的宽禁带半导体材料具有较大的电子饱和速度,可以应用于射频器件领域。碳化硅和金刚石具有较高的热导率,适用于对需要耗散较大功率并且半导体芯片热阻是系统热阻一个重要组成部分的大功率应用领域。 基于材料的优越性能,宽禁带半导体功率器件受到广泛关注和深入研究。由于其器件性能的优势基本来源于材料本身,所以宽禁带半导体材料的研究是新型功率器件研究首先要面临的挑战。 2.碳化硅功率器件 碳化硅SiC、氮化镓GaN和金刚石是典型的宽禁带半导体材料。基于碳化硅材料的功率器件经过了长时间研究,已经具有较高的成熟度和可靠性。2004年,Cree公司成功研发微管密度低于10cm-2的高质量3英寸4H-SiC材料,并投放市场。2007年,该公司又推出了4英寸零微管密度的4H-SiC材料,可用于制作大尺寸的高功率器件。 目前Cree公司、II-VI公司、Dow Corning公司和Nippon Steel已经批量生产4英寸碳化硅晶圆。2010年业界发布了6英寸的碳化硅晶圆。150mm的晶圆毫无疑问会降低碳化硅器件制造成本,并且为4H-SiC功率器件的发展提供坚实基础。 2.1 碳化硅功率二极管

功率半导体技术与产业发展

功率半导体器件是进行电能(功率)处理的半导体产品,是弱电控制与强电运行间的桥梁。 在可预见的将来,电能将一直是人类消耗的最大能源。从手机、电视、洗衣机、到高速列车,均离不开电能。无论是水电、核电、火电还是风电,甚至各种电池提供的化学电能,大部分均无法直接使用,75%以上的电能应用需由功率半导体器件进行功率变换以后才能供设备使用。 每个电子产品均离不开功率半导体技术。功率半导体的目的是使电能更高效、更节能、更环保并给使用者提供更多方便。如通过变频来调速,使变频空调在节能50-70%的同时,更环保、更安静、让人更舒适。人们希望便携式电子产品一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体能将“粗电”变为“精电”,因此它是节能减排的基础技术和核心技术。 随着绿色环保在国际间的确立与推进,功率半导体的应用范围已从传统的工业控制和4C产业(计算机、通信、消费类电子产品和汽车),扩展到新能源(风电、太阳能)、轨道交通、智能电网等新领域。据国际市场调研机构HISISuppliResearch报告,2011年全球功率半导体市场在2010年大增37.8%以后,继续增长6.7%,达到331亿美元。中国是全球功率半导体的最大市场,占据了超过全球50%以上的份额。 与微处理器、存储器等数字集成半导体相比,功率半导体的产品寿命周期相对较长,可为几年甚至十几年;同时功率半导体不追求特征尺寸的快速缩小,不要求最先进的生产工艺,其生产线成本远低于Moore 定律制约下的超大规模集成电路。因此,功率半导体非常适合我国的产业现状以及我国能源紧张和构建和谐社会的国情。 二、功率半导体的定义与分类 功率半导体(PowerSemiconductor,PowerManagementSemiconductor)器件可定义为进行功率处理的半导体器件。典型的功率处理功能包括变频、变压、变流、功率放大和功率管理等。 功率半导体器件包括功率二极管、功率开关器件与功率集成电路,前两者也称为功率(分立)器件。国内常常将功率(分立)器件称为电力电子器件,这是因为早期的功率半导体器件如大功率二极管、晶闸管等主要应用于工业和电力系统领域。

17_功率半导体器件基础教学大纲

《功率半导体器件基础》课程教学大纲 课程编号: 课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时) 适用专业:电子科学与技术专业 一、教学目的和任务 功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。 功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。 二、教学基本要求 通过对计算机控制技术课程的学习,要求学生: (1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。 (2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。 (3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。 三、教学内容与学时分配 第一章(知识领域1):功率半导体器件概述(2学时)。 (1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。 (2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。 第二章(知识领域2):半导体的性质(2学时)。 (1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。 (2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质

中国大功率半导体器件市场前景分析

中国大功率半导体器件市场前景分析 2009-7-1 15:43:19 来源:中国自动化网 我国将节能降耗作为国家的基本国策之一,功率半导体器件的发展及推广应用是节能的重要技术手段。在此前提下,探究国内外大功率半导体的技术趋势以及各行业应用发展现状,为国内该行业的发展提供参考,最终提高国内电力电子技术应用程度的普及提升。 1大功率半导体器件的定义范围 依据中国电力电子协会主要功率半导体器件会员单位以及国际同行的主导产品结构,我们将大功率半导体拆分为三大类产品便于统计分析,即:200A以上大功率晶闸管、25A 以上晶闸管及整流模块、50A以上大功率IGBT。 2市场总体特点 大功率半导体技术已日益广泛地应用和渗透到电力、冶金、装备制造业、交通运输、国防等重点领域;并在新能源技术、激光等现代加工技术、高铁等前沿领域得到普及,总体来看,只要涉及到大功率的用电场合,以大功率半导体器件为核心的电力电子技术正逐步得到普及和提升。 近年来,我国功率半导体器件的发展十分迅速。产品的应用上,中小功率场合,晶闸管及整流模块、IGBT逐步得到较广泛的应用;大功率场合,仍以晶闸管为主。目前国内的功率器件制造,主要为晶闸管及其模块,只有几条小规模的IGBT后道封装线,还不完全具备研发、制造管芯的能力以及大功率IGBT的封装能力。 3大功率半导体器件的发展趋势 现代大功率半导体器件及其控制技术正朝以下几个方向发展: (1)大电流、高压:现代电力电子器件正向大电流高压方向发展,以适应高压领域对电力电子器件快速需求的趋势,尤其在高压直流输电、高压电力无功补偿、高压电机、变频器等领域。 (2)高频化:从高压大电流的GTO到高频多功能的IGBT、MOSFET,其频率已从数千H Z到几十KHZ、MHZ。这标志着电力电子技术已进入高频化时代。 (3)集成化、智能化:几乎所有全控型器件都由许多的单元胞管子并联而成(IGBT、GTO)。

功率器件简要介绍

一功率半导体简介 功率半导体器件种类很多,器件不同特性决定了它们不同的应用范围,常 用半导体器件的特性如下三图所示。目前来说,最常用的功率半导体器件为功 率MOSFET和IGBT。总的来说,MOSFET的输出功率小,工作频率高,但由于它导通电阻大的缘故,功耗也大。但它的功耗随工作频率增加幅度变化很小,故MOSFET更适合于高频场合,主要应用于计算机、消费电子、网络通信、 汽车电子、工业控制和电力设备领域。IGBT的输出功率一般10KW~1000KW 之间,低频时功耗小,但随着工作频率的增加,开关损耗急剧上升,使得它的 工作频率不可能高于功率MOSFET,IGBT主要应用于通信、工业、医疗、家电、照明、交通、新能源、半导体生产设备、航空航天以及国防等领域。 图1.1 功率半导体器件的工作频率范围及其功率控制容量

图1.2 功率半导体器件工作频率及电压范围 图1.3 功率半导体器件工作频率及电流范围 二不同结构的功率MOSFET特性介绍 功率MOSFET的优点主要有驱动功率小、驱动电路简单、开关速度快、工作频率高,随着工艺的日渐成熟、制造成本越来越低,功率MOSFET应用范围越来越广泛。我们下面主要介绍一些不同结构的MOSFET的特性。VVMOSFET 图2.1 VVMOS结构示意图

VVMOS采用各向异性腐蚀在硅表面制作V 形槽,V形槽穿透P与N+连续扩散的表面,槽的角度由硅的晶体结构决定,而器件沟道长度取决于连续扩散的深度。在这种结构中,表面沟道由V 形槽中的栅电压控制,电子从表面沟道出来后乡下流到漏区。由于存在这样一个轻掺杂的漂移区且电流向下流动,可以提高耐压而并不消耗表面的面积。 这种结构提高了硅片的利用率,器件的频率特性得到很大的改善。同时存在下列问题:1,V形槽面之下沟道中的电子迁移率降低;2,在V槽的顶端存在很强的电场,严重影响器件击穿电压的提高;3,器件导通电阻很大;4,V槽的腐蚀不易控制,栅氧暴露,易受离子玷污,造成阈值电压不稳定,可靠性下降。 VUMOSFET 图2.2 VUMOS结构示意图 VUMOS的结构是基于VVMOS改进得到的。这里的的U槽是通过控制腐蚀V槽的两个斜面刚进入N-漂移区但还未相交时停止腐蚀得到的,当这种结构的栅极施加正偏压时,不仅在P型沟道区中会形成反型层,而且在栅极覆盖的N-漂移区中还会产生积累层,于是源极电流均匀分配到漏极。适当选取栅极覆盖的漂移区宽度,可大大减小导通电阻,同时避免V槽顶端强电场的产生。 但是,VUMOS的U 槽同样存在难于控制腐蚀、栅氧暴露的问题。VDMOSFET

相关文档
相关文档 最新文档