文档库 最新最全的文档下载
当前位置:文档库 › 含壳聚糖纳米羟基磷灰石纳米银生物复合材料骨组织工程支架的制备、表征及抗菌性能研究

含壳聚糖纳米羟基磷灰石纳米银生物复合材料骨组织工程支架的制备、表征及抗菌性能研究

含壳聚糖纳米羟基磷灰石纳米银生物复合材料骨组织工程支架的制备、表征及抗菌性能研究
含壳聚糖纳米羟基磷灰石纳米银生物复合材料骨组织工程支架的制备、表征及抗菌性能研究

International Journal of Biological Macromolecules 49 (2011) 188–193

Contents lists available at ScienceDirect

International Journal of Biological

Macromolecules

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /i j b i o m a

c

Preparation,characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering

Sekaran Saravanan 1,Sricharan Nethala 1,Soumitri Pattnaik ,Anjali Tripathi ,Ambigapathi Moorthi ,Nagarajan Selvamurugan ?

Department of Biotechnology,School of Bioengineering,SRM University,Kattankulathur 603203,Tamil Nadu,India

a r t i c l e i n f o Article history:

Received 21February 2011

Received in revised form 15April 2011Accepted 18April 2011

Available online 28 April 2011Keywords:Chitosan

Hydroxyapatite Silver

Antibacterial activity Cytotoxicity Bone

a b s t r a c t

In this study,a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg)was developed by freeze drying technique,followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan.The scaffolds were characterized using SEM,FT-IR,XRD,swelling,and biodegradation studies.The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity.The scaf-fold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line.Thus,these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.

? 2011 Elsevier B.V. All rights reserved.

1.Introduction

The successful scaffold for bone tissue engineering should accomplish several criteria.First,the scaffold should be osteocon-ductive and it should serve as a 3D-template to provide structural support to the newly formed bone.It should consist of intercon-necting porous structures with pores of >100?m supporting cell penetration,new tissue ingrowths,nutrient diffusion and neo-vasculariation [1].The scaffold or implant materials should have mechanical properties matching that of the host bone and should bond to it without the formation of scar tissue and should pro-vide a stable support for new bone formation.As far as orthopedic implants are considered,bacterial infection is a predicament issue and bacterial resistance may increase the risk of infections leading to implant failure,hospitalization and sometimes to the mortality of the patient.Hence,the scaffold materials having antimicrobial properties would be more ideal for successful bone regeneration.

In bone tissue engineering,natural polymers and calcium phos-phate composites are widely used biomaterials [2,3].Chitosan,

?Corresponding author.Tel.:+919940632335.

E-mail addresses:selvamurugann@ktr.srmuniv.ac.in ,selvamn2@https://www.wendangku.net/doc/4d13383725.html, (N.Selvamurugan).1

These authors equally contributed to this work.a natural polymer is a cationic crystalline polysaccharide com-posed of linear chain of d -glucosamine and N -acetyl-d -glucosamine residues linked by ?-[1–4]bonds and obtained by deacetylation of chitin.It possesses the biodegradable characteristics,non-toxicity,biocompatibility,wound-healing [4],antimicrobial properties [5],and potential ability of various chemical modi?cations and com-binations to generate desired speci?c properties with ease [6].Chitosan has a high metal binding ef?cacy,especially with silver [7].In addition,the derivatives of chitosan have a wide range of tis-sue engineering applications [8].The biological activity of chitosan can be increased by complexing it with hydroxyapatite,gelatin or collagen.

Hydroxyapatite,Ca 10[PO 4]5[OH]2,(HA)crystallochemical ana-logue of the mineral component of bone has been used as a chief inorganic component of synthetic materials for orthope-dics’for decades.HA can promote the formation of bone-like apatite on its surface [9].Polymers combined with HA are capa-ble of promoting osteoblast adhesion,migration,differentiation and proliferation [10],especially useful for potential applications in bone repair and regeneration.The geometrical dimension of HA could play a vital role in cell attachment and viability.There are reports indicating that nanosized HA particles (nHAp)increased protein adsorption and cell adhesion to the internal surfaces of the scaffold and improved the mechanical and biological properties [11,12].

0141-8130/$–see front matter ? 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.ijbiomac.2011.04.010

S.Saravanan et al./International Journal of Biological Macromolecules49 (2011) 188–193189

Metallic nanoparticles such copper,zinc,sliver have antimicro-bial properties.Silver,in its oxidized form[Ag+],is an antibacterial agent and it is used in different forms like ionic,metallic,colloidal, etc.[13–16].The antibacterial property of metals such as titanium, cobalt,nickel,copper,zinc,zirconium,molybdenum,tin,and lead varies signi?cantly and the effectiveness of metals to resist bacte-rial attachment varies with the bacterial strain[17].The nano-silver in the poly(vinyl pyrrolidone)composite has been shown to have signi?cant antibacterial ef?cacy against bacteria[18].Metallic cop-per surfaces rapidly and ef?ciently kill bacteria[19].It has shown that the surfaces covered with copper have better antimicrobial activity than silver surfaces[20].The biosynthesized gold and sil-ver nanoparticles have been shown to be effective as antimicrobial agents against some of the potential harmful pathogenic microor-ganisms[21].On considering the properties of chitosan,nHAp and silver,our work was aimed and designed to fabricate a biocom-patible scaffold containing chitosan and nHAp for bone grafts with antibacterial properties by introducing silver particles into the scaf-fold maintaining its structure and characteristics.

2.Materials and methods

2.1.Materials

Chitosan(CS)powder(low molecular weight,75–85%deacety-lated),hydroxyapatite-nanopowder(nHAp;<200nm),silver nitrate,Dulbecco’s modi?ed eagle medium(DMEM)and MTT[3-4, 5-dimethylthiazol-2yl{-2,5-diphenyl-2H-tetrazoliumbromide}] were purchased from Sigma–Aldrich,USA.Fetal bovine serum (FBS)was purchased from GIBCO,USA.NaOH and other reagents used were all of analytical grade.

2.2.Methods

2.2.1.CS/nHAp/nAg composite scaffold fabrication

The CS/nHAp/nAg(chitosan/nano-hydroxyapatite/nano-silver) bio-composite scaffold was fabricated by the following procedure. Firstly,100mg of CS was added to10ml of1%acetic acid and kept for constant stirring till a clear viscous solution was obtained.Sec-ondly,100mg of nHAp was added,and the stirring was kept till solidi?ed mixture was obtained.Then the mixture was added to 24well culture plates and they were kept at?80?C for overnight to freeze them.Finally the mixture was lyophilized in a freeze dryer until dried and a scaffold was achieved.To remove the resid-ual acetic acid,the scaffold was immersed in0.2M NaOH solution for few hours and washed in deionised water several times and lyophilized again.

On the prepared scaffold,the ion-exchange and reduction tech-nique was applied by soaking the scaffold in0.05M aqueous silver nitrate solution at37?C for8h in order to enrich the scaffold sur-face with a controlled amount of silver(Ag)ions and the obtained scaffold was dried and stored in an air tight container.

2.2.2.Characterization of CS/nHAp/nAg bio-composite scaffold

The surface morphology of CS/nHAp/nAg scaffold was exam-ined with scanning electron microscopy(HR SEM Quanta200FEG Instrument,Netherlands).

The FT-IR was used to characterize intermolecular interac-tion between components in system.The spectra of CS/nHAp and CS/nHAp/nAg bio-composite scaffolds were recorded with a FT/IR spectrophotometer[American Perkin Elmer Co.]using KBr press. The spectra were collected over the range of4000–400cm?1.

The XRD patterns of CS/nHAp and CS/nHAp/nAg scaffolds were obtained at room temperature using a(Panalytical XPERT PRO pow-der diffractometer)(Cu K?radiation)operating at a voltage of 40kV.XRD were taken at2?angle range of5–60?and scanned at a speed of2?min?1.

2.2.

3.Swelling studies

The dry weights of the scaffolds were noted as Wo.The scaffolds were immersed in PBS(phosphate buffered saline)buffer solution at pH7.4at37?C.After24h,the scaffolds were removed,blotted with a?lter paper to remove the water adsorbed and wet weight was recorded as Ww.The ratio of swelling was determined using the following formula:swelling ratio=Ww?Wo/Wo.

2.2.4.In vitro bio-degradation

The scaffolds were weighed equally and immersed in media con-taining lysozyme at concentration similar to that of the circulating levels in blood(10mg/L)and incubated at37?C for3days.Initial weight of the scaffolds were noted as Wo and after24h,48h and 72h of incubation,the scaffolds were washed in deionised water to remove ions adsorbed on surface and dried.The dry weight was noted as Wt.The degradation of the scaffold was calculated using the following formula:

Bio-degradation ratio=

Wo?Wt

Wo

2.2.5.Cytotoxicity

Osteoprogenitor cells were isolated from neonatal(3days old) Wister rats’calvarias by an enzymatic digestive process.The ani-mal ethical committee from the University of Madras approved this protocol.The isolated and passaged cells(passage number2) were trypsinised,pelleted,and resuspended in a known amount of DMEM media.Cells were counted and diluted to a concentra-tion of3×104/cm2and seeded to the wells.2.5mg of scaffold was weighed and soaked in500?l of the DMEM medium for24h.The supernatant as conditioned medium was taken and it was added to the cells-containing wells at different volumes(0,10,and50?l).As positive control,Triton X-100(0.1%)was added to the wells.They were incubated for24h.The same protocol was also followed for human osteosarcoma cell line.The media were removed from the wells and500?l of MTT solution(0.05%)was added to each well. Following4h incubation at37?C,DMSO was used to dissolve the formazan crystals,and the optical densities(OD)were determined using the spectrophotometer(ULTRA SPEC2100pro,Amersham Life Sciences,USA)at570nm.The controls(empty wells with-out scaffold)were treated in the same manner.The results were compared with control and statistically analyzed.

2.2.6.Antibacterial activity

The antibacterial properties were determined by zone of inhibi-tion test using Staphylococcus aureus(Gram-positive bacteria)and Escherichia coli DH5?(Gram-negative bacteria).10ml of overnight cultures of both the strains were prepared.100?l from the overnight bacterial culture(1×108CFU/ml)was spread on Luria broth agar plates.Afterwards2.5mg of the scaffold was placed in the plates in triplicates followed by incubation for24h at37?C. After the incubation period the zone of inhibition was measured.

2.2.7.Statistical analysis

The data analysis was carried out using one way ANOVA,Stu-dent’s two-tailed t-test by using Graph pad prism software.A value of p<0.05was considered to be statistically signi?cant in case of t-test.

190S.Saravanan et al./International Journal of Biological Macromolecules

49 (2011) 188–193

Fig.1.Color change of scaffolds after immersion in silver nitrate solution(reduction of metallic silver to nanosilver).

3.Results and discussion

3.1.Characterization of CS/nHAp/nAg scaffold

As described in Section2.2,the CS/nHAp bio-composite scaf-folds were prepared and they were immersed in silver in nitrate solution.As shown in Fig.1,the color changes from white to brown of the scaffold indicated the silver ions reduction in to nanosilver particles.The silver ion reduction to metal silver nanoparticles is due to the phenomenon that silver ions are easily reduced by the lone pair electrons of the nitrogen and oxygen atoms[14].Each of the nitrogen and oxygen atoms of the functional groups in chi-tosan has lone pair electrons for occurring complexation as well as reduction of silver ions.Thus reduction was achieved because of the intrinsic property of chitosan,and without the usage of any external chemical reducing agent.

The CS/nHAp/nAg scaffolds were studied to evaluate the poros-ity distribution and the pore dimension by SEM analysis.The SEM photographs of the scaffolds revealed the porous nature of the scaffolds and they exhibited pores in the sizes of approximately 50–100?m(Fig.2a)which will support the harbouring of cells, cell penetration and migration,tissue in-growth and vascularisa-tion and nutrient supply within the bone graft.The roughness of the composite scaffolds was also seen which is essential for the cells adhesion and spreading.Fig.2b and c indicates the sizes of the silver particles ranging from80to120nm distributed in the scaf-folds.The?gures are indicative of the heterogeneous population of silver nanoparticles.Fig.2d shows the sizes of nHAp particles in the scaffolds ranging from80to120nm.These sizes matched with the sizes of the nHAp particles that were initially used for the scaffold fabrication,con?rming that there was no alteration of the nHAp dimension in the scaffolds.The nano-structured topography in the polymeric scaffolds may be responsible for enhanced cell adhesion and spreading as reported earlier[15].

The FTIR spectra of CS/nHAp and CS/nHAp/nAg scaffolds are shown in Fig.3.The CS/nHAp exhibited characteristic absorp-tion bands at3410cm?1.The bands at1058and500–600cm?1 corresponded to different modes of the PO4group in HA.Broad-ening of the band at1058cm?1showed the presence of polymer and its interaction with the phosphate groups.The bands at 1411–1453cm?1and at about866cm?1were due to the carbon-ate ions in apatite.A peak observed at1600cm?1indicated the NH2absorption band in chitosan.The bands at3600–3400cm?1 are assigned to hydroxyl groups present in chitosan.Addition of sil-ver nitrate to the CS/nHAp scaffolds shifted the characteristic peak of amide to1635cm?1and ensured the incorporation of silver ions into the scaffold.A shift could be effectively caused by the coordina-tive interaction between NH2groups of the chitosan and silver ions.

The typical XRD patterns of the CS/nHAp and CS/nHAp/nAg scaffolds are shown in Fig.4.The CS/nHAp/nAg scaffolds

yielded Fig.2.SEM photographs of the CS/nHAp/nAg scaffolds.(a)Surface morphology and pore dimension,(b)and(c)the sizes of silver nanoparticles,(d)the sizes of nHAp particles.

S.Saravanan et al./International Journal of Biological Macromolecules49 (2011) 188–193

191

Fig.3.FT-IR spectra of CS/nHAp/nAg and CS/nHAp scaffolds.

peaks at38.2,44.3,64.5,77.3corresponding to planes[111],[200], [220],[311]of face centered cubic silver particles[JCPDS File No. 64-0783].This result con?rmed the incorporation of silver in the scaffold and further supported the formation of silver nanoparticles as seen in the reduction step by chitosan.The presence of peaks at20?and31.7?are characteristic to the presence of crystalline chitosan and n-HAp,respectively.

3.2.Swelling studies

Swelling studies indicated that the CS/nHAp scaffolds retained water more than the original weight after24h incubation period in PBS.The incorporation of silver in the CS/nHAp scaffold decreased the swelling percentage(Fig.5).Increased swelling would lead to decreased mechanical properties of the scaffold,loosening of it from the implanted site and generation of stress to the surround-ing tissues.However the CS/nHAp/nAg scaffold showed reduced swelling when compared to the CS/nHAp scaffold thus indicating to have good mechanical strength supporting bone tissue ingrowth.

3.3.In vitro bio-degradation studies

Lysosyme is the primary enzyme responsible for in vivo degra-dation of chitosan but other proteolytic enzymes show only

less Fig.4.XRD patterns of CS/nHAp/nAg and CS/nHAp scaffolds.

192

S.Saravanan et al./International Journal of Biological Macromolecules

49 (2011) 188–193

CS/nHAp

CS/nHAp/nAg

S w e l l i n g r a t i o

Scaffolds

Fig.5.Swelling studies of CS/nHAp/nAg and CS/nHAp scaffolds.*Signi?cant differ-ences compared to CS/nHAp scaffold.

degradation activity.The N -acetyl glucosamine (NAG)groups of chitosan chains can be targeted by the enzyme.The CS/nHAp/nAg scaffolds at 24h,48h,and 72h showed less degradation by the enzyme when compared to CS/nHAp scaffolds (Fig.6).The incorpo-ration of silver in the CS/nHAp scaffold decreased its biodegradation suggesting the availability of CS/nHAp/nAg scaffold for longer period till the new bone tissue in growth proceeds.3.4.Cytotoxicity

For the scaffolds to be used in the orthopedics as bone implants,they should be biocompatible with mammalian cells.The scaffolds should not be toxic to the bone cells for orthopedic applications.Thus the scaffold materials were subjected to cytotoxic studies with rat primary calvarial osteoprogenitor cells and human osteosar-coma cells (HOS).The study was based on indirect MTT assay using a calorimetric method based on the ability of the live cells to reduce tetrazolium salt of MTT into formazan crystals.The results indicated no change in cell viability of rat osteoprogenitor cells (Fig.7a)and human osteosarcoma cells (Fig.7b)when they were incubated with the conditioned media obtained from the scaffolds.There was sig-ni?cant loss of cell viability when cells were incubated with Triton X-100.These results suggested that the CS/nHAp/nAg scaffolds are non-toxic to osteoblastic cells.3.5.Antibacterial activity

Our focus of this study was to develop scaffolds imparting antibacterial activity through silver nanoparticles incorporation and hence we compared the antibacterial activity of CS/nHAp/nAg scaffolds against normal CS/nHAp scaffolds for the zone of inhi-bition towards E.coli and S.aureus bacterial strains (Table 1).The zone inhibition of the CS/nHAp/nAg scaffolds was found to be 13.34±2.75mm and 12.78±1.10mm against E.coli and S.aureus ,respectively.The zone of inhibition against E.coli

and

0.511.522.5

24 h

48 h

72 h

D e g r a d a t i o n r a t i o

Fig.6.In vitro bio-degradation studies of CS/nHAp/nAg and CS/nHAp scaffolds.*Sig-ni?cant differences compared to CS/nHAp

scaffold.

Fig.7.Cytotoxicity assay of CS/nHAp/nAg scaffolds using (a)rat primary calvar-ial osteoblasts (osteoprogenitor cells)and (b)human osteosarcoma cell line (HOS).*Signi?cant differences compared to control.

S.aureus for the CS/nHAp (without silver nanoparticles)scaf-folds was comparatively lower in the order as 4.75±1.19mm and 4.10±1.17mm and that could be due to the presence of chitosan which possesses natural antibacterial activity.The results sug-gested that the greater zone of inhibition for the scaffolds with silver nanoparticles was due to the antibacterial activity of silver.Thus,the CS/nHAp/nAg biocomposite scaffolds have a broad spec-trum (against both Gram-negative and Gram-positive bacteria)of antibacterial activity.

The antibacterial properties vary signi?cantly with different metals and the effectiveness of metals to resist bacterial attach-ment varies with the bacterial strain.Metal accumulation results in the disruption of the bacterial cell wall and other cellular com-ponents [17].Metallic copper surfaces rapidly and ef?ciently kill bacteria by extensive membrane damage of them within min-utes of exposure to dry copper [19,20].Zinc supplementation can improve mucosal innate immunity through induction of antimicro-bial peptide (LL-37)secretion from intestinal epithelial cells [22].Even though the antibacterial activity of silver ions was demon-strated by many works [7,23–25],its mechanism is still unclear.Silver ions can target and kill the bacterial cells in different ways:they can bind to microbial DNA preventing bacteria replication or to sulfhydryl groups of bacteria enzymes,inhibiting cells respi-ration and bounding transport of vital molecules across the cell membrane and within the cells [26].These events can promote formation of reactive oxygen species (ROS).ROSs are harmful and lead to oxidative stress and also cause signi?cant damage to cell structure,eventually resulting in cell death [27].

Table 1

Antibacterial activity of CS/nHAp and CS/nHAp/nAg scaffolds towards S.aureus and E.coli .Scaffolds

Diameter of zone of inhibition (mm)S.aureus

E.coli CS/nHAp

4.75±1.19 4.10±1.17CS/nHAp/nAg

13.34±2.75

12.78±1.10

S.Saravanan et al./International Journal of Biological Macromolecules49 (2011) 188–193193

4.Conclusions

The CS/nHAp/nAg scaffolds were fabricated and the phys-iochemical analysis revealed the nanotopographical features of hydroxyapatite and silver particles,with pores in the sizes of micro range.These micro-and nano-structured scaffolds could favor cell penetration,adhesion and spreading,in addition to provid-ing mechanical strength.Even though post surgical measures like antibiotics administration prevent the risk of bacterial infection at the site of implants,the presence of silver nanoparticles in the scaf-folds would provide an additional measure to minimize the risk of infection and preventing implant failure.

Acknowledgement

This work was supported under the M.Tech.Students Research Program,SRM University.

References

[1]M.Freyman,I.V.Yannas,L.J.Gibson,Prog.Mater.Sci.46(2001)273–282.

[2]Q.Hu,B.Li,M.Wang,J.Shen,Biomaterials25(2004)779–785.

[3]D.A.Wahl,J.T.Czernuszka,Eur.Cells Mater.11(2006)43–56.

[4]B.K.Choi,K.Y.Kim,Y.J.Yoo,Int.J.Antimicrob.Agents18(2001)553.

[5]R.S.Aparna,P.Brown,S.S.Khajotia,J.J.Dmytryk,S.V.Madihally,J.Mater.Sci.:

Mater.Med.19(2008)1083–1090.

[6]K.Okuyama,K.Noguchi,Y.Hanafusa,K.Osawa,K.Ogawa,Int.J.Biol.Macromol.

26(1999)285.

[7]Y.Ma,T.Zhou,C.Zhao,Carbohydr.Res.343(2008)230–237.

[8]R.Jayakumar,M.Prabaharan,S.V.Nair,S.Tokura,H.Tamura,N.Selvamurugan,

Prog.Mater.Sci.55(2010)675–709.

[9]A.Sabokbar,R.Pandey,J.Diaz,J.M.W.Quinn,D.W.Murray,J.Mater.Sci.-Mater.

Med.12(2001)659–664.

[10]A.Eser Elcin,Y.M.Elcin,G.D.Pappas,Neurol.Res.20(1998)648.

[11]H.W.Kim,J.C.Knowles,H.E.Kim,J.Biomed.Mater.Res.A72(2005)136–145.

[12]M.Peter,N.Ganesh,N.Selvamurugan,S.V.Nair,T.Furuike,H.Tamura,R.Jayaku-

mar,Carbohydr.Polym.80(2010)687–694.

[13]K.Sahithi,M.Swetha,M.Prabaharan,A.Moorthi,N.Saranya,K.Ramasamy,N.

Srinivasan,N.C.Partridge,N.Selvamurugan,J.Biomed.Nanotechnol.6(2010) 333–339.

[14]P.Y.Lim,R.S.Liu,P.L.She,C.F.Hung,H.C.Shih,Chem.Phys.Lett.420(2006)

304–308.

[15]N.Saranya,S.Saravanan,A.Moorthi,B.Ramyakrishna,N.Selvamurugan,J.

Biomed.Nanotechnol.(2011),in press.

[16]S.D.Nunzio,C.V.Brovarone,S.Spriano,https://www.wendangku.net/doc/4d13383725.html,anese,E.Verne,V.Bergo,G.Maina,

P.Spinelli,J.Eur.Ceram.Soc.24(2004)2935–2942.

[17]M.Yasuyuki,K.Kunihiro,S.Kurissery,N.Kanavillil,Y.Sato,Y.Kikuchi,Biofoul-

ing26(2010)851–858.

[18]S.Hwang,S.Jeong,J.Nanosci.Nanotechnol.11(2011)610–613.

[19]C.Espírito Santo,https://www.wendangku.net/doc/4d13383725.html,m,C.G.Elowsky,D.Quaranta,D.W.Domaille,C.J.Chang,

G.Grass,Appl.Environ.Microbiol.77(2011)794–802.

[20]I.Codit??a, D.M.Caplan, E.C.Dr?a gulescu, B.E.Lixandru,I.L.Coldea, C.C.

Dragomirescu,C.Surdu-Bob,M.B?a dulescu,Roum.Arch.Microbiol.Immunol.

69(2010)204–212.

[21]A.Mishra,S.K.Tripathy,S.I.Yun,J.Nanosci.Nanotechnol.11(2011)204–208.

[22]P.Talukder,T.Satho,K.Irie,T.Sharmin,D.Hamady,Y.Nakashima,N.Kashige,

F.Miake,Int.Immunopharmacol.11(2011)141–144.

[23]S.Chen,G.Wu,H.Zeng,Carbohydr.Polym.60(2005)33–38.

[24]R.Dastjerdi,M.Montazer,Colloids Surf.B:Biointerfaces79(2010)5–18.

[25]K.Chaloupka,Y.Malam,A.M.Seifalian,Trends Biotechnol.28(2010)580–588.

[26]W.Chen,Y.Liu,H.S.Courtney,M.Bettenga,C.M.Agrawal,J.D.Bumgardner,J.L.

Ong,Biomaterials27(2006)5512–5517.

[27]H.L.Su,C.C.Chou,D.J.Hung,S.H.Lin,I.C.Pao,J.H.Lin,F.L.Huang,R.X.Dong,J.J.

Lin,Biomaterials30(2009)5979–5987.

皮肤组织工程支架材料

中国生物工程杂志ChinaBiotechnology,2005,25(10):58~62 皮肤组织工程支架材料术 曹成波1,4” 王一兵2 沈翔3 王 勇4 (1山东大学化学与化工学院 济南250100 2山东省立医院济南250021) (3山东大学材料科学与工程学院济南250061) (4山东大学控制科学与工程学院生物医学工程研究所济南250061) 摘要皮肤组织工程支架材料为种子细胞提供生长和代谢的环境,是人工皮肤研究中的重要内容,可按来源分为合成支架材料和天然支架材料。近几年的研究重点是:前者通过表面仿生技术增强其对细胞的黏附性;后者通过物理或化学方法提高其力学性能和渗透性等。今后应重点研究以下内容:深入研究合成支架材料的表面改性,进一步提高其引导细胞行为的功能,促进材料对细胞的黏附;进一步提高天然支架材料的微观渗透性和生物活性,促进毛细血管的长入;制备结构仿生支架材料及高活性复合支架材料。 关键词 皮肤组织工程合成支架材料天然支架材料仿生支架材料 目前最成功的组织工程产品是人工皮肤,已经商 品化的主要有美国的Inte目阻、AⅡode咖、Dem妒R、 Apligraf等。但现有人工皮肤并不具备完整的皮肤结构和功能,没有达到人工重建皮肤的目的,因此,近些年国内外众多研究者都在为实现真正意义上的人工皮肤而努力。皮肤组织工程支架材料作为细胞外基质,为细胞提供了黏附、生长、迁移、增殖和分化的环境,在人工皮肤的构建中起着关键作用,是皮肤组织工程的重 要研究内容,现简要综掘醚跨筏捌糖糍搦醚珏馨饔隧嘴黧罐壁同源j 蓁雾舞夔简瑟霆 鳇羹羹毳霭鞋堡塑召型娶学王莶撂短皓璎黑凿荐 揩羹委鬣涩冶氇囊引耐羹需满;嘉鞍i秭影孙i鬟rotein,cH P)也被称为钠氢离子交换活性 调节亚单位,是NHE的结合蛋白。各种cHP亚型表达在不同的组织细胞,CHPl广泛表达在各种组织细胞旧 ̄9J,cHP2表达在部分肿瘤组织细胞和细胞系[3,10“川,CHPl3表达在分化阶段的心、脑、肾等组织细胞p,13J。各种cHP亚型扮演着不同的角色,分别影响NHE活性,进而影响细胞内pH值变化,及肿瘤细胞生长和疾病进程[3“3|。 我们重点研究cHPl与NHEl结合部位、结合方式,以及CHP对NHEl活性调节作用。观察cHP调节NHEl活性对细胞生长和死亡的影响。 收稿日期:2005JD4JD5 修回日期:2005.06旬7 {天津市科委应用基础基金资助项目(05YFJⅢc02100)十,通讯作者,电子信箱:tiaIIxi8Il印a119@yalloo.com.cn 1 材料与方法 1.1材料和设备 1.1.1材料人体多种组织cDNA、真核细胞表达质粒pEGFP—N1均购自clorltech公司,细胞培养液DMEM购自Invitrogen公司,同位素22Na+购自PerkinElmer Life science公司。NHEl的抑制剂EIPA由日本国大阪新药特药研究室提供。NHE表达缺失的Psl20细胞系,包含野生型人NHEl的真核细胞表达质粒pEcE,抗人NHEl多克隆抗体、抗人cHPl多克隆抗体均由日本国家循环系统疾病中心研究所赠送。抗人NHEl多克隆 抗体的抗原决定簇是人NHEl细胞质区域氨基酸残 基;抗cHPl多克隆抗体的抗原决定簇是人cHPl全部氨基酸残基。1.1.2设备细胞内阳离子测定系统、共聚焦荧光显微镜(MRc-1024con‰almicrosc叩e)、放射线检测仪。1.2分析方法 应用共聚焦荧光显微镜检测cHPl.GFP融合蛋白在细胞内分布,研究细胞内cHPl定位。用放射线检测仪计数细胞摄入放射性钠的数值。应用显微镜计数分

3D打印骨组织工程支架的研究与应用

中国组织工程研究 第19卷 第25期 2015–06–18出版 Chinese Journal of Tissue Engineering Research June 18, 2015 Vol.19, No.25 P .O. Box 10002, Shenyang 110180 https://www.wendangku.net/doc/4d13383725.html, 4076 www.CRTER .org 曹雪飞,男,1988年生,陕西省榆林市人,汉族、兰州大学第二临床医学院在读硕士,主要从事骨与关节损伤研究。 通讯作者:甄平,主任医师,解放军兰州军区兰州总医院全军骨科中心, 甘肃省兰州市 730050 中图分类号:R318 文献标识码:A 文章编号:2095-4344 (2015)25-04076-05 稿件接受:2015-04-24 https://www.wendangku.net/doc/4d13383725.html, Cao Xue-fei, Studying for master’s degree, Lanzhou University Second Hospital, Lanzhou 730050, Gansu Province, China; Military Center of Orthopedics, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou 730050, Gansu Province, China Corresponding author: Zhen Ping, Chief physician, Military Center of Orthopedics, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou 730050, Gansu Province, China Accepted: 2015-04-24 3D 打印骨组织工程支架的研究与应用 曹雪飞1, 2,宋朋杰1,乔永杰1,甄 平2(1兰州大学第二临床医学院,甘肃省兰州市 730000;2解放军兰州军区兰州总医院全军骨科中 心,甘肃省兰州市 730050) 文章亮点: 1 此问题的已知信息:以往制作骨组织工程支架的方法有采用溶液浇铸/离子洗出法、原位成型法、静电纺丝法、相分离/冻干法、气体成孔法等,但支架的三维结构、力学强度、支架个性化还不尽人意。 2 文章增加的新信息:通过3D 打印技术制作的骨组织工程支架在三维结构、力学强度、支架个性化方面有其独特优势。不同3D 打印技术制作出的支架有其优缺点,3D 打印骨组织工程支架目前处于发展阶段,需要多学科共同研究。 3 临床应用的意义:临床由于感染、肿瘤、创伤导致骨缺损的患者相当多见,但通过当前的治疗方法治疗情况不佳,通过3D 打印技术制作的骨组织工程有望为骨缺损患者带来希望。 关键词: 生物材料;骨生物材料;骨缺损;3D 打印技术;熔融层积成型术;立体平版印刷术;选区激光烧结术;3DP 技术;国家自然科学基金 主题词: 生物相容性材料;组织工程;支架 基金资助: 国家自然科学基金面上项目(81371983):多孔β-TCP 负载PLGA 抗结核药物缓释微球的构建及其抗结核成骨作用研究 摘要 背景:虽然应用传统方法制作骨组织工程支架取得一定成就,但在支架的三维结构、力学强度、支架个性化方面不太满意,通过3D 打印技术制作支架的方法有望改变这些不足。 目的:对3D 打印技术制作骨组织工程支架作一综述,对支架的未来优化进行展望。 方法:应用计算机检索PubMed 和谷歌学术数据库中,2008至2015年关于3D 打印技术制作骨组织工程支架的文章。纳入包含骨组织工程支架结构设计、材料及通过不同3D 打印技术制作的支架性能研究文章,排除观点重复和陈旧的文章,最后对37篇文献进行归纳总结。 结果与结论:目前可用作骨组织工程支架制作的3D 打印技术有熔融层积成型、立体平版印刷、选区激光烧结及3DP 技术。3D 打印技术制作的骨组织工程支架在力学、结构、个性化方面有其独特优势,但该技术仍有很多问题需要解决,比如原材料的问题、不同3D 打印技术的不足问题及3D 打印机器的改进问题等。相信在未来多学科的共同合作下,可以制作出适合于临床的骨组织工程支架,造福于人类。 曹雪飞,宋朋杰,乔永杰,甄平. 3D 打印骨组织工程支架的研究与应用[J].中国组织工程研究,2015, 19(25):4076-4080. doi:10.3969/j.issn.2095-4344.2015.25.027 3D printing of bone tissue engineering scaffolds Cao Xue-fei 1, 2, Song Peng-jie 1, Qiao Yong-jie 1, Zhen Ping 2 (1Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China; 2Military Center of Orthopedics, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou 730050, Gansu Province, China) Abstract BACKGROUND: Although bone tissue engineering scaffolds made of traditional methods have made certain achievements, the three-dimensional structure, mechanical strength and personalized property of the scaffolds are unsatisfied. 3D printing technology is expected to change these shortcomings. OBJECTIVE: To review the 3D printing of bone tissue engineering scaffolds and to prospect the optimization of the scaffolds. METHODS: A computer-based search of PubMed and Google academic database was performed for articles addressing the 3D printing of bone tissue engineering scaffolds published from 2008 to 2015. Articles concerning the structure design and materials of bone tissue engineering scaffolds and different 3D printing technologies for scaffold preparation were included, and repetitive and old articles were excluded. Finally, 37 articles were summarized. RESULTS AND CONCLUSION: Currently, 3D printing technologies used for preparation of bone tissue engineering scaffolds include melt laminated molding, stereolithography, selective laser sintering and 3DP

纤维素_壳聚糖复合膜的制备及结构表征

第18卷第2期2010年6月 纤维素科学与技术 Journal of Cellulose Science and Technology V ol. 18 No. 2 Jun. 2010 文章编号:1004-8405(2010)02-0033-06 纤维素/壳聚糖复合膜的制备及结构表征 马浩,郑长青,李毅群* (暨南大学化学系,广东广州 510632) 摘要:通过氯化1-(2-羟乙基)-3-甲基咪唑离子液体([HeMIM]Cl)溶解微晶纤维素, 并与壳聚糖的醋酸溶液混合的方法制备了质量比为2∶1的再生微晶纤维素/壳聚糖 复合膜。利用红外光谱、X射线衍射、热重分析、扫描电镜和数码相机照片对复合 材料的结构进行表征。IR结果表明再生微晶纤维素与壳聚糖分子之间存在着强烈的 氢键作用,且二者相容性较好;XRD、TGA结果表明复合材料中纤维素和壳聚糖有 较强的相互作用;SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在 的生物医用材料。 关键词:纤维素;壳聚糖;复合膜 中图分类号:O636文献标识码:A 纤维素和壳聚糖是自然界中可生物降解、生物相容性较好的两种天然高分子材料。纤维素是由β-(1→4)-链接的D-葡萄糖组成,它含有大量羟基,易形成分子内和分子间氢键,具有一定的力学强度,但成膜性较差[1]。壳聚糖是由D-氨基葡萄糖通过β-1,4-糖苷键结合而成,具有抗菌性及多种生物活性、吸附功能等,但壳聚糖吸水性强,所形成的纤维或膜材料的湿态机械强度差,易溶胀,作为医用材料的应用受到限制[2-6]。纤维素/壳聚糖复合材料具有纤维素和壳聚糖共同的特点,具有生物相容性和可生物降解性。其复合膜可以弥补纤维素和壳聚糖存在的不足,在生物医药领域中应用有着重要意义[7]。由于纤维素难溶解[8],目前主要是通过向壳聚糖的醋酸溶液中添加纤维素粒子的方法制备纤维素/壳聚糖复合材料[9-11],但是这种固―液混合的方法无法像液―液混合一样制备混合均匀的复合材料,于是有待于建立一个制备均匀的纤维素/壳聚糖复合材料的新方法。由于离子液体为纤维素的直接溶剂,能有效地溶解纤维素[12],因此,基于纤维素的离子液体溶液与壳聚糖的醋酸溶液能够实现液―液混合制备混合更加均匀的复合材料。本文正是通过混合微晶纤维素的离子液体溶液和壳聚糖的醋酸水溶液的方法,制备得到了质量比为2∶1的再生微晶纤维素/壳聚糖复合材料,并对这一材料的结构进行了初步表征。 收稿日期:2010-01-06 ?通讯作者 基金项目:国家自然科学基金(20672046)、广东省自然科学基金(8151063201000016)资助项目。 作者简介:马浩(1985~),男,安徽濉溪人,硕士研究生;从事功能高分子材料的研究。

纳米羟基磷灰石及其复合材料的研究进展_李志宏

医疗卫生装备?2007年第28卷第4期 ChineseMedicalEquipmentJournal?2007Vol.28No.4 纳米羟基磷灰石及其复合材料的研究进展 李志宏 武继民 李瑞欣 许媛媛 张西正 (军事医学科学院卫生装备研究所 天津市 300161) 摘要纳米羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物材料,被广泛应用于骨组织的修复与替代技 术。但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,因此,提高及制备综合性能优越的纳米羟基磷灰石复合生物材料是当今研究的重心和热点。综述了纳米羟基磷灰石制备的主要方法及其复合生物材料的研究进展,并探讨了纳米羟基磷灰石骨修复材料的发展方向。关键词 纳米羟基磷灰石;复合材料;骨修复 Advancesinnano-hydroxyapatiteanditscomposite LIZhi-hong,WUJi-min,LIRui-xin,XUYuan-yuan,ZHANGXi-zheng (InstituteofMedicalEquipment,AcademyofMilitaryMedicalSciences,Tianjin300161,China) AbstractNano-hydroxyapatitehasbeenwidelyusedasreconstructiveandprostheticmaterialforosseoustissue,owingtoitsexcellentbiocompatibilityandtissuebioactivity.Butthepoormechanicalpropertyofhydroxyapatiterestrictsitsfurtherapplication.Inordertoenhancethecomprehensiveperformanceofthematerial,manyresearcheshavebeendedicatedtothesynthesizationofthecompositematerials.Thisarticlereviewsthemainpreparationmethodsofnano-hydroxyapatiteandtheadvancementinresearchofitscomposite.Thedirectionsinthisresearchareaaredescribedaswell.Keywordsnano-hydroxyapatite;compositematerial;bonerepair 作者简介:李志宏,硕士,主要从事高分子材料和生物材料方面的研究; 武继民,博士,硕士生导师,副研究员。 羟基磷灰石(hydroxyapatite,HA或HAP)是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长。其表面具有极性,与机体组织有较强的亲和力,与骨组织形成牢固的骨性结合,是公认性能良好的骨修复替代材料。本文综述了纳米羟基磷灰石复合生物材料的研究进展,并探讨了其可能的发展方向。 1纳米羟基磷灰石的合成 羟基磷灰石超微粉属无机材料,常用制备方法有水热法、 沉淀法、溶胶-凝胶法、微乳液法等。此外,还有等离子体喷涂法、干法、冲击波法等。 1.1水热法 水热法是指在密封压力容器中,以水溶液作反应介质,在 高温、高压下,使通常难溶或不溶的物质溶解且重结晶的一种制备材料的方法。它可以用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体和无机纤维或晶须增强材料。近年来,水热法制备羟基磷灰石也取得了很大的进展。 廖其龙等[1]经水热反应获得了晶粒完整、 粒度在100nm以下的柱状或针状HA晶体,结果表明:随Ca/P比的增加,进入磷灰石结构的CO32-的量增加,引起晶格畸变,晶粒尺寸降低。肖秀峰等[2]研究发现随水热温度的提高和时间的延长,晶体发育越完整,晶粒尺寸越大。郭广生等[3] 研究中发现水热温度和反应时间对HA微晶尺寸变化有较大的影响,高温有利于HA微晶在a轴方向的生长,而延长时间则有利于其在c轴方向的生长。刘晶冰等[4]在较低温度下合成了结晶度较高的棒状羟基磷灰石粉末,同时研究了pH值及温度对产物结构及形貌的 影响。 1.2沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合, 在混合溶液中加入适当的沉淀剂制备超微颗粒的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的超微颗粒。此法制备纳米HA大多采用无机钙盐和磷酸盐反应得到。 任卫等[5]采用均相共沉淀法和爆发成核法制备出了可长期稳定的、尺度在60~70nm的HA溶胶和纳米粒子。 吕奎龙等[6] 经研究发现:加入形核剂、适当提高反应温度及搅拌速度有 利于制备纯净的羟基磷灰石。李玉峰[7]研究表明:控制反应温度、加料速率,使体系维持一定pH值范围,并适当引入超声波及其它强化条件,可以合成Ca/P比值较为理想、HA相较纯、晶粒度(272.2 ̄544.7)分布好的羟基磷灰石。郭大刚等[8]制得尺寸和形状更接近于人体骨磷灰石结构的HA颗粒,并具有较好的尺寸稳定性,600℃下仍能保持不团聚长大。 1.3溶胶-凝胶法(Sol-Gel) 溶胶凝胶法的基本原理是:将金属醇盐或无机盐水水解, 然后使溶质聚合胶化,再将凝胶干燥、焙烧,最后得到无机材料。其优点是:原料均匀混合;产品粒子化学均匀性好、纯度高、颗粒细;可容纳不溶性组分或不沉淀组分;烘干后凝胶颗粒烧结温度低。 黄志良等[9]用Sol-Gel法制备了不同钙磷摩尔比的HAP和不同CO32-含量的HAP,并系统研究此2类磷灰石的热稳定性。结果表明:Ca和HAP由于存在填隙缺陷结构,表现出较高的热稳定性;在150 ̄800℃范围内CHAP(含有CO32-的HAP)中的CO32-脱除是非平衡态的连续固溶体分解,同时其结晶度增加且晶粒重结晶长大。袁媛等[10]以四水硝酸钙和磷酸三甲酯为 中图分类号:TB383;TB33 文献标识码:A 文章编号:1003-8868(2007)04-0030-02 GENERALREVIEW 综述 30

骨组织工程

骨组织工程 骨组织工程本质上说,就是用一个有利于细胞黏附和保持其功能的支架,在特定的骨诱导因子作用下,与富含骨始祖细胞共同作用。但是,到今天,能够血管化,具有一定力学强度的能促进骨传导和骨诱导的构造物也仅仅只是理论上的证明。 对细胞功能,细胞外基质形成的了解对我们制备有利于细胞吸附,保持细胞功能的支架是非常重要的。随着人口老年化问题的突出,一些由疾病或者外伤引起的组织缺损极大的降低了人民的生活质量,在临床上,人工关节的置换在治疗风湿性关节炎,骨关节炎以及骨质疏松症方面取得不错的效果,也极大的提高病人的生活质量,但是由于侵蚀作用,力学性质的改变等也会导致非常严重的后果。临床上也期望能发展一种能促进骨组织在生的新的治疗方法,即通过骨组织工程来制备一种“活的”,能与周围正常组织相互作用的修补物。 一般用来产生新组织的方法,是通过合适的三维支架在生物反应器内,让从活体组织中取得细胞进行增殖。一般生物反应器可以通过一个半透膜来进行气体交换,通过旋转来获得微重力环境以及构建组织生长微环境。 另外的一种方法就是将没有接种上细胞的支架放到体内,让周围的细胞向其扩散生长或者在植入几天后将细胞注射到支架上,即将人体作为一种天然的生物反应器。 一般来说,对于骨组织工程来说,一般可以分为六个阶段, 1,制造可吸收的支架。 2,在静态的环境下,将成骨细胞或者软骨细胞接种到支架上面。 3,在动态的环境中培养改组织。 4,将成熟的组织在接近生理条件下进行培养,生物反应器。

5,进行手术移植。 6,对移植后的组织工程支架进行观察,是否被肌体同化或者需要重新建立。 临床需求 骨折的治疗一直是社会经济学关心的问题,在英国每年在这个方面的发费达9亿英镑,并且随着老年化问题的不断突出,费用在逐步增加。每年在英国有150,000例由于骨质疏松导致的骨折。特别是股骨头骨折具有更高的致残率和死亡率,一般来说不到一半的病人在手术后能回家生活。30%到50%的臀部骨折患者需要再次进行手术效正,同时有很大部分的别人需要进行骨修补。由于在重建手术方面,技术和方法上的缺少,使得能够通过骨组织工程而受益的病人数目大大增加。很显然,在一些缺损修补手术中,我们需要具有更好生物相容性,能与天然组织相互作用的整形外科移入物, 目前使用的治疗方法包括自体移植法和同种异体移植方法,他们主要使用血管化的腓骨和髂骨顶部以及其他部位的骨骼。虽然这是整形外科常用的方法,但是它们仍有许多限制条件。自体移植,一般来自髂骨顶部,成本很高,并且受病人供体部位的健康状态影响;异体移植容易产生感染或者其他的疾病。 大体上,组织工程包含3个要素,1干细胞或者前体细胞,2适当的生物学支架,3生长因子。这个3个方面的任何一个方面的限制或者发展都会对组织工程产生一定的影响。 干细胞 长期以来人们就认识到骨组织具有很强的再生能力,因为其内部细胞具有一些干细胞的性质。这些多功能基质干细胞主要位于骨髓中,它们能分化为纤维原细胞,成骨细胞,破骨细胞,以及组织网状细胞。并且由这些干细胞产生的能演变成特定细胞株的始祖细胞似乎可以在外观上转变。对于很多种物种来说,通过移植,在体外进行扩增的骨髓细胞可以治疗小的骨缺损并且产生新的成骨组织。特别是人

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

组织工程材料

一、组织工程学是集生物工程、细胞生物学、分子生物学、生医材料、生物技术、生物化学、 生物力学以及临床医学于一体的一门交叉学科。 A、概况:1、几丁聚糖具有很强的抗菌力,促进肉芽生长和皮肤再生的效能,可用于 制造人工皮肤,或治疗烧伤、烫伤,加速外伤愈合。 2、用几丁聚糖制成人工皮肤不会发生人体排斥反应带来的一系列问题。 这种人工皮肤和身体亲和力强,可被人体吸收,可使皮肤愈合良好。它还有促 使细胞活化的作用,可大量产生胶原纤维,不会留下伤疤。 B、基本原理和方法:将体外培养扩增的正常组织细胞,吸附于一种生物相容性良好并可被机体吸收的生物材料上形成复合物,将细胞-生物材料复合物植入机体组织、器官的病损病分,细胞在生物材料逐渐被机体降解吸收的过程中形成新的在形态和功能方面与相应器官、组织相一致的组织,而达到修复创伤和重建功能的目的。 C、核心:建立由细胞和生物材料构成的三维复合体 D、三要素: 种子细胞(Cell) -增殖、分化、自组装成组织和器官 信号因子(细胞因子或生长因子,Growth factor) -调节细胞的增殖和分化 支架材料(scaffold)(细胞外基质,Extracellular matrix, ECM) -支撑和指导细胞增殖、分化 二、组织工程的步骤与方法将细胞取得,快速培养后再植入支架,使细胞依着支架材料的形状长出新的再生组织,最后长好的组织再移植入人体。 A、支架──细胞的家 B、想要让细胞长成我们所预期的器官构造,如果缺乏细胞的立足点,也就是作为细胞生长温床的「支架」,是一件不可能的任务。 组织工程利用特殊的生物高分子材料建构出三度空间的立体框架,让植入的细胞可以在其中生长并增生。 支架的功能不仅仅当作细胞生长的框架结构,更可以进一步地控制引导细胞朝特定的方向生长、分化。 三、支架要求:1、支架必须有许多彼此连接的孔洞的要求,以便细胞和营养液流通。 这些孔洞的大小,必须要能让细胞通过。 2、因为要让细胞附着在支架上繁衍成长,所以支架的材料必须是没 有毒性,具有生物兼容性,才不会伤害细胞及患者。支架的表面需适合细 胞附着,才能使细胞「安居乐业」。 3、支架若能在细胞繁殖的期间,同时分解成对人体无害的物质。材 料的选用仍须考虑适当的分解速率,以配合细胞的繁殖速率 4、因为支架终究将移植入体内,所以必须具备一定的强度,不然整 个结构可能受体内各种外力的影响而垮掉。所以,在考虑孔洞大小的时候, 不可忽略整个结构的强度。 四、组织工程支架要求: 1、符合生物安全性要求 2、合适的可生物降解吸收性

壳聚糖复合膜的制备及其性能研究(可编辑)

摘要 本文的目的是采用涂布法以聚乙烯醇(PVA)膜作为基膜制备壳聚糖复合膜, 以得到具有高阻隔性、较好力学性能、可降解性和抗菌性的食品包装材料,用乌氏粘度计测定壳聚糖的相对黏均分子质量。所用 3 种壳聚糖的相对黏均分 5 5 5 子质量分别为:4.68×10 、4.77×10 、6.68×10 。 比较抑菌圈法、比浊法、稀释平板计数法发现,比浊法结合稀释平板计数法用 于空白组与实验组的活菌计数,可以更准确地显示壳聚糖的抑菌效果。壳聚糖溶液 浓度为 0.01%的 LB 培养液在培养过程中出现絮状沉淀,而高浓度(0.1%)和空白实 验则不出现。这一有趣现象未见文献报导。相对分子质量大的壳聚糖的抑菌作用较 强。太低浓度的壳聚糖溶液,如 0.01%浓度,对两种细菌的抑菌效果不理想。对 E. coli 抑菌活性昀好的壳聚糖溶液浓度是 0.05%;而对 S. aureus 抑菌活性昀好的浓度则是 0.025%。 合成的两种壳聚糖衍生物样品(PCS、TMC)为白色絮状,都能溶于中性水。

浓度为 0.1%的 PCS 和 TMC 溶液都能有效抑制 E. coli 的生长。壳聚糖衍生物对细菌 的抑菌活性有一定的选择性。TMC 对 E. coli 菌比对 S. aureus 菌具有更好的抑菌效 果。 以 PVA 膜作为基材,采用涂布法制备了 PVA/壳聚糖复合膜。用万能材料试验机 测定复合膜的力学性能。复合膜的弹性模量随所用壳聚糖浓度的增大而增大。复合 膜的断裂伸长率和抗拉强度比 PVA 膜略微减小。 用透湿仪测定了复合膜的水蒸汽透过系数。各类复合膜的水蒸汽透过系数略高 于 PVA 膜。用 CS-1 和 CS-2 制得的复合膜的水蒸汽透过系数随壳聚糖浓度的增大而 增大;然而涂布 CS-3 的复合膜的水蒸汽透过系数却随着壳聚糖浓度的增大而减小。 复合膜的水蒸汽透过系数受环境相对湿度影响较大。用透氧仪测定了复合膜的氧气 透过系数,涂布壳聚糖可以提高 PVA 膜对 O 阻隔性能。 2 采用 QB/T 2591-2003 标准方法评价了复合膜对 E. coli 和 S. aureus抑菌效果。复

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

明胶_壳聚糖复合膜的制备与性能_宋慧君

第27卷第8期高分子材料科学与工程 Vol .27,No .8  2011年8月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Aug 2011 明胶-壳聚糖复合膜的制备与性能 宋慧君 1,2 ,孟春丽2,汤克勇 1 (1.郑州大学材料科学与工程学院,河南郑州450001; 2.河南工程学院材料与化学工程系,河南郑州450007) 摘要:制备了一系列不同配比的明胶-壳聚糖复合膜,研究了壳聚糖含量对复合膜力学性能、吸湿性能的影响,通过X 射线衍射和红外光谱分析了复合膜的结构。结果表明,复合膜及纯壳聚糖膜的断裂伸长率和拉伸强度均大于纯明胶膜,壳聚糖的加入可改善膜的力学性能。随壳聚糖含量的增加,复合膜的吸湿率增大。明胶与壳聚糖分子间存在较强的相互作用,与明胶共混可改变壳聚糖的晶粒大小,降低壳聚糖的结晶度。明胶与壳聚糖之间的相容性良好。关键词:明胶;壳聚糖;复合膜;性能;结构 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2011)08-0165-03 收稿日期:2010-12-20 基金项目:国家自然科学基金资助项目(50973097);河南省高校科技创新人才支持计划资助项目(2009HAS TIT015)通讯联系人:汤克勇,主要从事天然高分子及其复合材料的研究, E -mail :keyongtangzzu @yahoo .com 明胶来源广泛,价格低廉,具有良好的生物相容性和可降解性。但是,它的成膜性、力学性能及抗水性较差。壳聚糖价廉易得、易于加工,具有良好的生物相容 性、可降解性、抗菌防腐性和成膜性等。明胶-壳聚糖复合膜可用于生物医药、组织工程、食品等。目前,对增塑及改性明胶-壳聚糖复合膜的性能与应用的研究较多[1~3] ,但有关未增塑及改性明胶-壳聚糖复合膜的结构与性能的研究很少[4]。为了开发具有新性能的复合材料,使明胶-壳聚糖复合材料在可食性包装方面得到应用,有必要系统研究明胶-壳聚糖复合物的结构与性能,进一步了解其制备、结构与性能之间的关系,以制备性能特点互补、功能协同增效的绿色包装材料。本文采用溶液共混法制备了一系列明胶-壳聚糖复合膜,并研究了复合膜的结构和性能。1 实验部分1.1 实验材料 明胶:生物级,天津市科密欧化学试剂有限公司;壳聚糖:脱乙酰度95%,山东奥康生物科技有限公司;冰醋酸、氢氧化钠、碳酸钾、氯化钠:均为分析纯(市售)。1.2 明胶-壳聚糖复合膜的制备 将一定量的明胶(Gel )溶于去离子水中,40℃水浴加热,配成10%的明胶溶液;将一定量的壳聚糖(CS )溶解于2%的醋酸溶液中制备2%的壳聚糖溶 液。二者按照一定比例混合,使复合膜中壳聚糖的质量分数分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,分别用Gel 、10%CS 、20%CS 、30%CS 、40%CS 、50%CS 、60%CS 、70%CS 、80%CS 、90%CS 和CS 表示。将不同比例的明胶-壳聚糖溶液共混后,于40℃水浴中搅拌均匀,静置24h ,在洁净的水平聚氯乙烯板上流延成膜。用0.3mol /L 的NaOH 溶液洗涤后再用去离子水洗至中性,室温下自然干燥,揭膜。 1.3 明胶-壳聚糖复合膜的性能测试 1.3.1 力学性能:将所制复合膜裁成哑铃型标准试样,于室温、相对湿度65%的环境中调湿48h 以上至恒量。参照GB /T 1040-92《塑料拉伸性能试验方法》,以CM T6104型微机控制电子万能试验机(深圳新三思计量技术有限公司)测定试样的拉伸强度和断裂伸长率,拉伸速率50mm /min ,每个试样测5次,取平均值。 1.3.2 吸湿性能:将膜裁成1cm ×1cm 大小的薄片,在装有P 2O 5的干燥器中干燥至恒量,然后放在相对湿度为75%的密闭容器中,定时称量,至吸湿平衡。吸湿率以Q 表示,按式(1)计算。 Q =m w -m d m d (1) 式中:m d 、m w ———吸湿前、后试样的质量。每个试样

纳米羟基磷灰石

纳米材料学作业 2005202027 张峰 一.外文综述 1.纳米羟基磷灰石与胶原和聚乙烯醇的复合生物材料[1] 材料的制备 1.合成纳米羟基磷灰石 根据羟基磷灰石中Ca/P摩尔比nCa/Np=1.67,配制Ca(NO3)2·4H2O(80 ml, 0.1 M)溶液和Na3PO4 (48 ml, 0.1 M)溶液,室温下共滴定,不断搅拌混合液。用Na(OH)2调节PH,使PH保持在10。反应得到悬浊液用布氏漏斗过滤后,去离子水清洗,沉淀物80℃隔夜干燥。 2.合成纳米羟基磷灰石/PVA复合物 90℃下配制不同浓度的PVA/去离子水混合液,90℃保持30min。在搅拌的条件下加入1中制备的羟基磷灰石粉体,持续搅拌30min,制得的HAp/PVA凝胶体。用冷冻分相干燥法对该胶体脱水干燥(将胶体降温至-20℃后在升温至20℃,如此反复进行1~4个周期)。 3.合成羟基磷灰石/胶原复合物(HAp/Col) 先在室温下配制30ml、浓度为0.6 mg/ml胶原/水的混合液,持续搅拌2h。之后加入80 ml 0.1M 的Ca(NO3)2·4H2O溶液,再缓慢滴加Na3PO4 (48 ml, 0.1 M)溶液,用Na(OH)2调节PH至10,制得呈凝胶状的HAp/Col复合物。将该凝胶用布氏漏斗过滤,去离子水清洗,室温干燥。4.合成羟基磷灰石/胶原/PVA复合物(HAp/Col/PVA) 室温、搅拌的条件下配制15ml浓度为0.3mg/ml的一型胶原/水混合物,持续搅拌1h后把该混合液倒入等体积的PVA/水的混合液中。将得到的混合物室温搅拌30min,再加入40ml0.1M 的Ca(NO3)2(PH调为10),搅拌,70℃保持24h。之后加入24ml0.1M Na3PO4(PH调为10)。如此,在胶原/PVA上原位合成HAp。然后将反应混合物过滤、冲洗、干燥、检测。 结果与讨论 1.不论是单独合成还是在胶原或PVA或是胶原/PVA纤维上原位合成,所制得的羟基磷灰石都为纳米微粒,其宽为10~30nm,长为40~50nm。 2.羟基磷灰石通过氢键或[OH-]-Ca2+-[-OH]和PVA和胶原结合形成有机-无机杂化体,此外胶原上的羧基也是和羟基磷灰石上的钙离子结合的位点。由于氢键的形成,随着有机相的增加,在有机相原位合成的羟基磷灰石的粒径和结晶度减小。 3.在PVA有机相中引入羟基磷灰石无机相后,复合材料的线性粘弹性大大提高,经低温处理后塑性大幅度增加。 4.复合材料由于胶原的加入、并经脱水处理后强度得到提高,且形成孔径在50~500nm范围内的贯通孔多孔材料。 2.用多糖基羟基磷灰石制备可生物吸收的骨水泥[2] 材料的制备 1.合成纳米羟基磷灰石 用CaCl2和(NH4)2HPO4共沉淀法制备羟基磷灰石纳米晶体。将0.3M(NH4)2HPO4 水溶液缓慢逐滴滴加到0.5M的CaCl2水溶液中。搅拌速度调整为1000rpm,反应温度保持在60℃,用注射器滴加NH4OH的方法调节混合液的PH值,最小为10。反应所得沉淀在相同的搅拌速度下陈化24h,然后过滤,蒸馏水洗4~5次,微波照射15min。微波照射后将最终的沉淀物10,000rpm转速下离心分离10min,去离子水反复冲洗,之后60℃真空干燥。 2.制备复合骨水泥 将适量壳聚糖分散在含2%乙酸的蒸馏水中。37℃,1000rpm搅拌的条件下,将1中反应

骨组织修复材料

生物材料——骨组织工程讨论组织工程(Tissue Engineering)是近年来正在兴起的一门新兴学科,组织工程一词最早是由美国国家科学基金会1987年正式提出和确定的。它是应用生命科学和工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下结构与功能关系的基础上。研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态生物替代物的科学。 组织工程的核心就是建立细胞与生物材料的三维空间复合体,即具有生命力的活体组织,用以对病损组织进行形态、结构和功能的重建并达到永久性替代。共基本原理和方法是将体外培养扩增的正常组织细胞,吸附于一种生物相容性良好并可被机体吸收的生物材料上形成复合物,将细胞-生物材料复合物植入机体组织、器官的病损病分,细胞在生物材料逐渐被机体降解吸收的过程中形成新的在形态和功能方面与相应器官、组织相一致的组织,而达到修复创伤和重建功能的目的。 骨组织构建 构建组织工程骨的方式有几种:①支架材料与成骨细胞;②支架材料与生长因子;③支架材料与成骨细胞加生长因子。 生长因子通过调节细胞增殖、分化过程并改变细胞产物的合成而作用于成骨过程,因此,在骨组织工程中有广泛的应用前景。常用的生长因子有:成纤维细胞生长因子(FGF)、转化生长因子(TGF-ρ)、胰岛素样生长因子(IGF)、血小板衍化生长因子(PDGF)、

骨形态发生蛋白(BMP)等。它们不仅可单独作用,相互之间也存在着密切的关系,可复合使用。目前国外重点研究的项目之一,就是计算机辅助设计并复合生长因子的组织工程生物仿真下颌骨支架。有人采用rhBMP-胶原和珊瑚羟基磷灰石(CHA)复骨诱导性的骨移植、修复大鼠颅骨缺损,证实了复合人工骨具有良好的骨诱导性和骨传导性,可早期与宿主骨结合,并促进宿主骨长大及新骨形成。用rhBMP-胶原和珊瑚复合人工骨修复兔下颌骨缺损,结果显示: 2个月时,复合人工骨修复缺捐赠的交果优于单纯珊瑚3个月时,与自体骨移植的修复交果无明显差异。 目前,用组织工程骨修复骨缺损的研究,已从取材、体外培养、细胞到支架材料复合体形成等都得到了成功。有人用自体骨髓、珊瑚和rhBMP-2复合物修复兔下颌骨缺损,结果表明:术后3个月,单独珊瑚组及空白对照组缺损未完全修复;珊瑚-骨髓组和珊瑚-rhBMP-2组及单独骨髓组已基本修复了缺损;而骨髓、珊瑚和rhBMP-2复合物组在2个月时缺损即可得到修复。我们用骨基质成骨细胞与松质骨基质复合物自体移植修理工复颅骨缺损的动物实验,也取得了满意的治疗效果。 带血管蒂的骨组织工程是将骨细胞种植于预制带管蒂的生物支架材料上,将它作为一种细胞传送装置。我们将一定形状的thBMP-2、胶原、珊瑚复合物植入狗髂骨区预制骨组织瓣,3个月时,复合物已转变成血管化骨组织。

相关文档