文档库 最新最全的文档下载
当前位置:文档库 › 影响回转支承承载能力的四个参数

影响回转支承承载能力的四个参数

影响回转支承承载能力的四个参数
影响回转支承承载能力的四个参数

 万方数据

 万方数据

影响回转支承承载能力的四个参数

作者:侯宁

作者单位:马鞍山回转支承厂,马鞍山,慈湖,243052

刊名:

建筑机械

英文刊名:CONSTRUCTION MACHINERY

年,卷(期):2002(1)

被引用次数:4次

引证文献(4条)

1.高学海.黄筱调.王华.朱飞滚道几何参数对回转支承最大接触压力的影响[期刊论文]-矿山机械 2009(14)

2.崔丽琴.雷绳明立式数控磨床砂轮修整装置[期刊论文]-轴承 2007(6)

3.杜睿.吴志军单排球式回转支承的承载能力分析[期刊论文]-机械设计与制造 2006(9)

4.侯宁.许丽华.汪敏.戚晓利.冯建有.童靳于.潘天成椭圆形滚道回转支承力学性能分析[期刊论文]-建筑机械(上半月) 2010(9)

本文链接:https://www.wendangku.net/doc/4813405527.html,/Periodical_jzjx200201005.aspx

持久状况承载能力极限状态计算

持久状况承载能力极限状态计算 在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏,下面验算这两类截面的承载力。 ① 2.4.1 正截面抗弯承载力计算 荷载基本组合表达式按《桥规》式(4.1.6-1) )(1111 00k Q Q k G n i Gi sd M M M γγγγ+=∑= 现以边梁弯矩最大的跨中截面为例进行正截面承载力计算。 1)求受压区高度x 先按第一类T 形截面梁,略去构造钢筋的影响,由式x b f A f A f f cd p pd S sd ' =+计算受压区高度x : mm h mm b f A f A f x f f cd S sd p pd 1803.802100 4.221900 33025021260''=<=??+?= += 受压区全部位于翼缘板内,说明确实是第一类T 形截面梁。 2)正截面承载力计算 跨中截面的预应力钢筋和非预应力钢筋的布置见图2-12和图2-17,预应力钢筋和非预应力钢筋的合力作用点到截面底边的距离(a )为 mm A f A f a A f a A f a s sd p pd s s sd p p pd 1601900 3302502126060 190033018025021260=?+???+??= ++= 所以mm a h h 184016020000=-=-= 按《公预规》式(5.2.2-3),钢筋采用钢绞线,混凝土标准强度为C50,查《公预规》表5.2.1得相对界限受压区高度4.0=b ξ。 mm h x b 73618404.00=?=≤ξ 从表2-10序号⑦知,边梁跨中截面弯矩组合设计值m kN M d ?=01.6612,由式子: )2/(0'0x h x b f M f cd d +≤γ )2/3.801840(3.8021004.22)2/(0'-???=+=x h x b f M f cd u )01.66120.1(595.67980m kN M m kN d ??=≥?=γ 可见边梁弯矩最大的跨中截面正截面承载力满足要求。以下为各个截面的验算,见表

回转支承选型计算与结构

回转支承选型计算(JB2300-1999) ?转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数 ?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件

主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图 2 )静态参照载荷Fa' 和M' 的计算方法:

?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs M'=M*fs ?双排异径球式 对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。当Fr ≧10%Fa 时,必须考虑轨道内侧压力角的变化,其计算请与我们联系。 Fa'=Fa*fs M'=M*fs ?三排滚柱式 三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。 Fa'=Fa*fs M'=M*fs ?动态选型 对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司联系。 ?螺栓承载力验算: ?把回转支承所承受的最大载荷(没有乘静态安全系数fs )作为选择螺栓的载荷。 ?查对载荷是否在所需等级螺栓极限负荷曲线以下;

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

回转支承选型计算

回转支承选型计算 一、回转支承承载 回转支承在使用过程中,一般要承受轴向力Fa,径向力Fr以及倾覆力矩M的共同作用,对不同的应用场合,由于主机的工作方式及结构型式不同,上述三种载荷的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种型式——座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 客户在选型时,若所用回转支承为座式安装,可按下面的选型计算来进行选型;若所用回转支承为悬挂式安装或其他安装型式,请与我公司技术部进行联系。 二、回转支承的选型 1、结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: ? Do ≤1800时,单排球式为首选型式;Do >1800时,优先选用三排柱式回转支承。 ? 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排异径式。 ? Q系列单排球式回转支承,尺寸更紧凑,重量更轻,具有更好的性价比,为单排球式的首选系列。 2、回转支承的选型计算 单排球式回转支承的选型计算 ①计算额定静容量 C O = 0.6× D O×do0.5 式中:C O─── 额定静容量, kN D O─── 滚道中心直径, mm do───钢球公称直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4370M/D O + 3.44Fr 式中:Cp ─── 当量轴向载荷, kN M ───倾覆力矩,kN·m Fa ───轴向力,kN Fr ───径向力,kN ③安全系数 fs = Co / Cp fs值可按下表选取 三排柱式回转支承的选型计算 ①计算额定静容量 Co= 0.534×D O×do0.75 式中:C O───额定静容量, kN D O─── 滚道中心直径, mm do ─── 上排滚柱直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4500M/D O 式中:C p─── 当量轴向载荷, kN

回转支承选型计算

回转支承选型计算: 一、单排球式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN f ——静容量系数,0.108 kN / mm2 D ——滚道中心直径,mm d ——钢球公称直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN Fr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 二、三排柱式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN

f ——静容量系数,0.172 kN / mm2 D ——滚道中心直径,mm d ——上排滚柱直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 回转支承安全系数fs 工作类型工作特性机械举例fs 堆取料机,汽车起重机,非港 1.00~1.15 轻型不经常满负荷,回转平稳冲击小 口用轮式起重机 塔式起重机,船用起重机,履 1.15~1.30 中型不经常满负荷,回转较快,有冲击 带起重机 抓斗起重机,港口起重机,单 1.30~1.45 重型经常满负荷,回转快冲击大 斗挖掘机,集装箱起重机 斗轮式挖掘机,隧道掘进机, 1.45~1.70 特重型满负荷,冲击大或工作场所条件恶劣 冶金起重机,海上作业平台起

回转支承产品标准对合理选型的影响 《建筑机械》2002年第三期 现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。 单排球式回转支承的滚道中心直径(D0)和钢球直径(d0)是它的两个主参数,它们不但决定了回转支承的承载能力和使用寿命,也是其它参数设计的依据,因此两者的匹配合理与否不仅是回转支承设计水平的反映,将直接影响主机选用的科学性、经济性和结构的合理性。通常我们用D0/d0的比值来分析主参数匹配的合理性,在D0=500~2500范围内,JJ36.1中 D0/d0=31.25~41.67;JB/T2300中,D0/d0=16.67~62.5。德国ROTHEERDE 公司标准系列单排球式回转支承D0/d0=30~56。那么该比值在什么范围内科学合理呢?通过计算和比较我们不难找到答案。 当回转支承的D0和d0值确定以后,它的额定静容量和额定动容量也随之可计算出来,并可作出其静载和动载曲线,显然当静载曲线和动载曲线靠得很近时,在满足静载荷要求的同时又满足了动载荷(即寿命)的要求。如果两条承载能力曲线离得较远,只能按承载能力较低的一条曲线选用,势必造成另一种能力的浪费。从JB/T2300附录B承载能力曲线中不难看出30·900、30·1000、30·1120、35·1250、35·1400、45·1400、45·1600、45·1800、60·2000、60·2240、60·2500的动、静载曲线靠得较近,主参数匹配合理,它们的比值为30~41.67。同时也可看出,D0/d0比值过小,动载曲线远高于静载曲线(例30·500比值为16.67),比值过大动载曲线远低于静载曲线(例40·2500比值为62.5),在此附录中共有图B1~图B48共48幅曲线图覆盖220种型号,除上述11种主参数匹配代表的55种型号外,其余165种型号(占75%)的主参数匹配不合理。通过以上分析得道的答案是:D0/d0=30~40

回转支承的选型设计

回转支承的选型计算 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 C o=f0×d02×z×sinα…………………………………………(A.1) 式中: C o---当量静容量,单位为N; f o---静容量系数,按表A.1 选取,单位为N/mm2 ; d o---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2)

z取较小的圆整值; 式中: D o ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C P =P+4.37M/D0 +3.44Hr …………………………………(A.3) 式中: C P ---当量轴向载荷,单位为N. 单排球式回转支承选型应满足下式要求: C0/C P≥f S 式中: f S---单排式回转支承安全系数, 按表A.2 选取

回转支承选型计算

回转支承选型计算 转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数

?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件 主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 回转支承编号方法(点击进入) ?01系列回转支承承载能力曲线(点击进入) 02系列回转支承承载能力曲线(点击进入) 11系列回转支承承载能力曲线(点击进入) 13系列回转支承承载能力曲线(点击进入) 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图

2 )静态参照载荷Fa' 和M' 的计算方法: ?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs

6容许应力法和承载能力极限状态法在钢结构设计中的区别

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 、概率(极限状态)设计法

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

回转支承的选型计算

回转支承的选型计算 A5 安装螺栓的选择 A.5.1 螺栓按GB/T3098.1 和GB/T5782选用,亦可自行设计大六角头螺栓。性能等级为8.8级,10.9级和12.9级 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 Co=f0×d02×z×sinα…………………………………………………………(A.1) 式中: Co---当量静容量,单位为N; fo---静容量系数,按表A.1 选取,单位为N/mm2 ; do---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2) z取较小的圆整值; 式中: Do ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C =P+4.37M/D0 +3.44Hr ………………………………………………(A.3) P 式中:

滚动轴承轴向力算

滚动轴承所承受的载荷取决于 所支承的轴系部件承担的载荷。右图 为一对角接触球轴承反装支承一个 轴和一个斜齿圆柱齿轮的受力情况。 图中的F re、F te、F ae分别为所支承零 件(齿轮)承受的径向、切向和轴向 载荷,F d1和F d2为两个轴承在径向 载荷F r1和F r2(图中未画出)作用下 所产生的派生轴向力。这里,轴承所 承受的径向载荷F r1和F r2可以依据 两个角接触球轴承反装的受力分析 (径向反力) F re、F te、F ae经静力分析后确定,而轴向载荷F a1和F a2则不完全取决于外载荷F re、F te、F ae,还与轴上所受的派生轴向力F d1和F d2有关。 对于向心推力轴承,由径向载荷F r1和F r2所派生的轴向力F d1和F d2的大小可按下表所列的公式计算。 注:表中Y和e由载荷系数表中查取,Y是对应表中F a/F r>e的Y 值 下图中把派生轴向力的方向与外加轴向载荷F ae的方向一致的轴承标为2,另一端则为1。取轴和与其相配合的轴承内圈为分离体,当达到轴向平衡时,应满足:F ae+F d2=F d1 由于F d1和F d2是按公式计算的,不一定恰好满足上述关系式,这时会出现下列两种情况: 当F ae+F d2>F d1时,则轴有向左窜动的趋势,相当于轴承1被“压紧”,轴承2被“放松”,但实际上轴必须处于平衡位置,所以被“压紧”的轴承1所受的总轴向力F a1必须与F ae+F d2平衡,即 F a1=F ae+F d2 而被“放松”的轴承2只受其本身派生的轴向力F d2,即F a2=F d2。 当F ae+F d2<F d1时,同前理,被“放松”的轴承1只受其本身派生的轴向力F a1, 即F a1=F d1 而被“压紧”的轴承2所受的总轴向力为: F a2=F d1-F ae

承载能力极限状态包括结构构件或连接因强度超过而破坏结构

一级建造师建筑实务学习资料 承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 预应力混凝土构件的混凝土最低强度等级不应低于C40。 细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm) 一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步

最新承载能力极限状态计算

承载能力极限状态计 算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm, h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

回转支承承载能力

影响回转支承承载能力的四个参数 回转支承的失效形式有两种,一是滚道损坏,二是断齿,而滚道损坏占的比例达98%以上,因此我们说,滚道质量是回转支承质量的核心问题,影响回转支承滚道质量的因素较多,其中滚道淬火硬度、淬硬层深度、滚道曲率半径和接触角无疑是最重要的四个影响因素,它们以不同的方式影响着滚道质量,并决定了回转支承的承载能力和使用寿命。 ?滚道硬度 回转支承滚道淬火硬度对其额定静容量影响较大,如以HRC55时额定静容量为标准1,则滚道硬度与额定静容量有下列对应关系: 标准规定的最低硬度为HRC55,通常实际平均淬火硬度在HRC57左右,因此绝大多数回转支承实际承载能力均高于按HRC55计算的理论值。从上表也可看出当硬度低于HRC53时,即使留有1.2的安全系数,使用也不安全了,特别当硬度只有HRC50时,1.7倍的安全系数也形同虚设,非常危险。硬度不够极易造成回转支承失效,从滚道表面点蚀开始到坍塌结束。 ?滚道淬硬层深度 滚道淬硬层深度目前尚无无损检测的方法,主要靠工艺和装备来保证,必要的淬硬层深度是回转支承滚道不产生剥落的保证。当回转支承受外负荷作用时,钢球与滚道的点接触就变成了面接触,是一个长半轴为a,短半轴为b的椭圆面,滚道除受压应力外,还受到剪切应力作用,最大剪切应力发生在表面下0.47a深处,因此滚道淬硬层深度须大于0.47a(一般取0.6a),这也是标准中根据钢球直径大小,而不是根据回转支承直径大小来规定淬硬层深度的原因,同时给出了具体最小保证值。深度不够又会对回转支承的承载能力产生什么样的影响呢?它定量化的描述是:额定静容量CO与淬硬层深度H0.908成正比,由此可计算出,将要求为4mm的淬硬层深度只淬到2.5mm,那么CO将由1降至0.65,由此而产生的回转支承失效形式为滚道剥落,即使采取焊补措施也无济于事。 ?滚道曲率半径 这里的滚道曲率半径是指滚道在垂直剖面内的曲率半径,它与钢球半径的比值t(一般为1.04~1.08)的大小也显著影响着回转支承的额定静容量和动容量(寿命Lh),设t=1.04时为额定静容量和寿命均为1,则有下列对比关系:

关于回转支承的现状及发展状况

回转支承的现状 回转支承主要由外套、内套、滚动体、密封装置和润滑装置等组成,是一种可以同时承受轴向载荷、径向载荷和倾覆载荷的支承轴承,具有结构紧凑、运动平稳、精度高和承载能力强等特点。回转支承是近五十年在世界范围内随机械工业的发展而逐渐发展起来的新型机器部件,它已从用于塔式起重机、汽车起重机、挖掘机,逐渐延伸护展到运输机械、冶金机械、食品加工机械、军事装备(坦克、高炮、雷达、火箭发射台)、医疗机械、天梯、风车、机器人、旋转娱乐设施等领域。 我国回转支承产品的发展起步较晚, 也就是到70年代末80年代初才有一定的规模。起初,市场上用量最大的是单排四点接触球式回转支承,而且滚道直径在Φ500~Φ1500mm之间的占其中的绝大部分;如今,随着工程机械、特种车和工业机器人等的发展,回转支承产品在需求量日益增大的同时,对产品的质量、创新性提出了更高的要求。 国内外回转支承产品技术发展情况对比分析 国外主要厂家有德国HRE、法国Rollix、RKS及美国、英国、日本等。可生产直径400—15000mm的各类回转支承产品, 种类多达十几个系列,技术装备以数控机床为主。 我国的回转支承生产企业由于技术落后、工艺装备不全, 因此产品质量与国际水平还有较大的差距,下面从几个方面进行分析对比: 1、设计技术 国外只需将工况、安装尺寸要求、转速等数据输人计算机, CAD程序自动完成产品的结构设计、承载能力计算, 同时输出各种图形和曲线。并且使用有限元分析法, 对回转支承进行加载模拟仿真分析。国外公司新产品的品种层出不穷, 少说也有十几种之多, 而我们只有不到十个大类, 因此每年尚有不少特殊要求的回转支承从国外进口。 2、工艺技术 国外厂家已普遍使用CNC机床进行加工, 它的优点是大大简化了工艺, 减少工件装夹频次,避免加工和测量误差, 大大缩短了生产周期, 保证了内外圈装

第2章 轴向载荷作用下杆件的材料力学问题

范钦珊教育教学工作室 FAN Qin-Shan’s Education & Teaching Studi o eBook 材料力学习题详细解答 教师用书 (第2章) 2008-8-8

习题 2-1 习题 2-3 习题 2-5 习题 2-7 习题 2-9 习题 2-11 习题 2-13 习题 2-15 习题 2-2 习题 2-4 习题 2-6 习题 2-8 习题 2-10 习题 2-12 习题 2-14 习题 2-16 习题 2-17

F N1l 1 F l 30 ?103 ? 0.8 ? 4 (50 + 30) ?103 ?1.2 ? 4 200 ?109 ? π ? 202 ??10 200 ?109 ? π ? 302 ??10 6 = 1.06 10 m=1.06 mm ? + N BC BC 材料力学习题详细解答之二 第 2 章 轴向载荷作用下杆件的材料力学问题 2-1 两根直径不同的实心截面杆,在 B 处焊接在一起,弹性模量均为 E =200 GPa , 受力和尺寸等均标在图中。 习题 2-1 图 试求: 1.画轴力图; 2.各段杆横截面上的工作应力; 3.杆的轴向变形总量。 解:轴力图(略) (a )(1) ? AB =F N1 A 1 4F N1 π d 12 = 4 ? 30 ?10 3 π ? 20 2 ?10 6 = 95.5 MPa ? BC =F N2 A 2 4 ? (50 + 30) ?10 3 π ? 30 2 ?10 6 = 113 MPa (2) ?l = ?l AB + ?l BC = + N2 2 EA 1 EA 2 = + 6 3 (b )(1) ? AB = ? BC = F N AB A 1 F N BC A 2 = = 4 ? 50 ?10 3 2 6 4 ? ( 60) ?10 3 2 6 = 44.1 MPa = 18.1 MPa (2) ?l = ?l AB + ?l BC = F N AB l AB EA 1 F l EA 2 50 ?10 3 ? 0.9 ? 4 200 ?10 9 ?π ? 38 2 ?10 6 60 ?10 3 ?1.22 ? 4 200 ?10 9 ?π ? 65 2 ?10 6

回转支承选型计算方法

回转支承选型计算方法 万达回转支承技术科 1静态选型: 静态参照载荷Fa’和M’的计算方法 ●单排四点接触球式 单排四点接触球式回转支承的选型计算分别按承载角45°和60°两种情况进行。 I、a=45°Ⅱ、a=60° Fa’=(1.225·Fa+2.676·Fr)·fs Fa’=(Fa+5.046·Fr)·fs M’=1.225·M·fs M’=M·fS 然后在曲线图上找出以上两点,其中一点在曲线以下即可。 ●单排交叉滚柱式 Fa’=(Fa+2.05·Fr)·fs M’=M·fs ●双排异径球式 对于双排异径球式回转支承选型计算,当Fr≤10%Fa时,Fr忽略不计。当Fr>10%Fa时,必须考虑滚道内压力角的变化,其计算请与我们联系。 Fa’=Fa·fs M’=M·fs ●三排滚柱式 三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。 Fa’=Fa·fs M’=M·fs 2动态选型: 对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司技术部联系。 3螺栓承载能力验算: 1)把回转支承所承受的最大载荷(没有乘静态安全系数fs)作为选择螺栓的载荷; 2)查对载荷是否落在所需等级螺栓极限负荷曲线以下;

3)若螺栓承载能力不够,可重新选择回转支承,或与我公司技术部联系。 表1 应用场合 fs fL 原则上,必须以作用在支承上的最大载荷做为静态计算值,这个载荷必须包括附加载荷和试验载荷。 没有被列入表中的应用场合,可以参照表中与其相类似的工作条件和应用,选取静安全系数fL 。 *)上回转式塔机 M=空载时的反向倾覆力矩 M=幅度最大时的倾覆力矩 **)对于静安全系数fs 取1.45的应用场 合,因平均负载较高和繁重的工作场合,应优先选择多排滚道式回转支承。 浮式起重机(货物负载) 汽车起重机(货物负载) 船用甲板起重机(抓斗) 焊接设备 工作台(连续运转) 1.10 1.0 塔式起重机 上回转* Mf≤0.5M 1.25 1.0 0.5M≤Mf≥0.8M 1.15 Mf≥0.8M 1.25 下回转 1.0 回转式起重机(货物负载) 造船厂起重机 装船机/卸船机 1.15 冶金起重机 1.45** 1.5 汽车起重机(抓斗式或处理繁重工作) 回转式起重机(抓斗或吸盘) 桥式起重机(抓斗或吸盘) 浮式起重机(抓斗或吸盘) 1.7 斗轮挖掘机 堆取料机 悬臂输送机 2.15 近海起重机 根据特殊的标准 铁路起重机 甲板起重机(货物负载) 1.00 在这些应用场合,工作条件变化相当大,比如对于不经常回转的情况下使用的回转支承,只要求静态校核。对于连续回转和间歇式情况下使用的回转支承,将需要进行动态寿命计算。 堆料机 输送车 1.10 绳索式挖掘机/索斗 1.25 小于等于1.5m3液压挖掘机 1.45 大于1.5m3液压挖掘机 根据特殊的标准 钢包回转台 1.75 注:f L 为动态安全系数,它必须结合动态承载曲线使用(动态承载曲线不包含在此样本中)。它来源于经验和试验,是基于最大工作载荷情况下的一个参考值、若需根据寿命选择回转支承时,请与我公司技术部门联系。

回转支承选型原则

回转支承选型原则 (万达回转支承研发所,徐州,20100525) (1)结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。 在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。 (2)单排球式回转支承系列的选择 在国内,目前单排球式回转支承有3个系列的尺寸规格:HS系列,Q系列和01系列。对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下: 3个系列的参数比较(以滚道中心直径1250外齿式为例) 公司主要回转支承产品的类型和规格 回转支承的主要型式是交叉滚柱式,八十年代后开始生产单排球式回转支承,交叉滚柱式回转支承逐渐被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。 因此,从节约成本和资源出发,HS系列应该尽可能不用。考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。 ②. 01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与 011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。所以在选用01系列单排球式回转支承应注意选择较大钢球的规格。

相关文档