文档库 最新最全的文档下载
当前位置:文档库 › 董斌—模具失效分析

董斌—模具失效分析

董斌—模具失效分析
董斌—模具失效分析

模具失效分析

目录

1引言模具失效

2模具失效形式案例分析及其改进模具磨损失效

模具断裂失效

模具塑性变形失效

3总结

4参考文献

1引言模具失效

冲压模具是冲压生产中必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。

生产中的冲压模具经过一定时间使用后,由于种种原因不能再冲出合格的产品,同时又不能修复的现象称为冲压模具的失效。由于冲压模具类型、结构、模具材料、工作条件的不同,所以冲压模失效的原因也各不相同。

一般为塑性变形、磨损、断裂或开裂、金属疲劳及腐蚀等等。

模具的失效也可分为:

正常失效和早期失效

模具模具在工作中,与成形坯料接触,并受到相互作用力产生一定的相对运动造成磨损。当磨损使模具的尺寸、精度、表面质量等发生变化而不能冲出合格的产品时,称为磨损失效,磨损失效是模具的主要失效形式,为冲模的正常失效形式,不可避免。

按磨损机理,模具磨损可分为磨粒磨损、黏着磨损、疲劳磨损、腐蚀磨损。

①磨粒磨损硬质颗粒存在于坯料与模具接触表面之间,或坯料表面的硬突出物,刮擦模具表面引起材料脱落的现象称为磨粒磨损。

②黏着磨损坯料与模具表面相对运动,由于表面凹凸不平,黏着部分发生剪切断裂,使模具表面材料转移或脱落的现象称为黏着磨损。

③疲劳磨损坯料与模具表面相对运动,在循环应力的作用下,使表面材料疲劳脱落的现象称为疲劳磨损。

④腐蚀磨损在摩擦过程中,模具表面与周围介质发生化学或电化学反应,引起表层材料脱落的现象称为腐蚀磨损。

在模具与坯料相对运动过程中,实际磨损情况非常复杂。工作中可能出现多种磨损形式,它们相互促进,最后以一种磨损形式失效。

冲裁模的工作条件

冲裁模具主要用于各种板料的冲切。从冲裁工艺分析中我们已经

得知,板料的冲裁过程可以分为三个阶段:

弹性变形阶段

塑性变形阶段

剪裂阶段

对于薄板冲裁模,由于模具受到的冲击载荷不大,在正常的使用过程中,模具因摩擦产生的刃口磨损是主要的失效形式

磨损过程可分为初期磨损,正常磨损和急剧磨损三个阶段

初期磨损阶段

模具刃口与板料相碰时接触面积很小,刃口的单位压力很大,造成了刃口端面的塑性变形,一般称为塌陷磨损, 其磨损速度较快.

正常磨损阶段

当初期磨损达到一定程度后,刃口部位的单位压力逐渐减轻,同时刃口表面因应力集中产生应变硬化。这时,刃口和被加工坯料之间的摩擦磨损成为主要磨损形式。磨损进展较缓慢,进入长期稳定的正常磨损阶段,该阶段时间越长,说明其耐磨性能越好。

急剧磨损阶段

刃口经长期工作以后,经受了频繁冲压会产生疲劳磨损,表面出现了损坏剥落。此时进入了急剧磨损阶段,磨损加剧,刃口呈现疲劳破坏,模具已无法正常工作。模具使用时,必须控制在正常磨损阶段以内,出现急剧磨损时,要立即刃磨修复。

2.1.2造成模具磨损失效原因

1、模具间隙选用不符合标准,模具间隙小,严格要求模具总间隙为板材厚度的20%-25%之间。

2、凹凸模具的对中性不好,包括模座和模具导向组件及砖塔镶套由于长期使用磨损或偏位而造成精度不足等原因造成模具对中性不好,应定期采用对芯棒对机床和安装座进行对中性检查调整。

3、凸模温度过高,主要是由于同一模具连续长时间冲压造成冲头过热或模具刃磨方法不当,造成模具退火而导致模具强度不够。注:(所有模具应要有专人刃磨,以免刃磨不当而造成模具损坏或减短模具寿命)

4、局部的单边冲切,如步冲,冲角或剪切时侧向力会使冲头偏向一边,该边的的间隙减小而造成模具磨损严重,如果机床模具安装精度不高,严重的会使冲头偏过下模而造成凸模和凹模损坏。

2.1.3预防模具的磨损失效措施

1.合理进行冲模设计

冲模设计是否合理是预防模具磨损提高冲模耐用度的基础。因此在设计冲模时应设法对产品成形中的不利条件采取有效措施。对于易磨损的凸、凹模,要设计成互换性好的零件,以便凸、凹模磨损后能随时进行更换,使冲模始终保持良好的工作状态。对弯曲模和拉深模,凸、凹模的间隙最好设计成可调的,以便当冲模磨损后经表面磨光和抛光后,对间隙值进行微调,即可使用。对冲裁模,冲模的间隙值要选择合理,其间隙值不可太小,否则会直接影响冲模的使用寿命及耐用度,若过大,又会使工件形成拉长的毛刺。

2.正确选择冲模材料

不同的冲模材料具有不同的强度、韧性和耐磨性,应根据被加工工件的种类、形状、数量和大小及硬度高低来选取冲模材料。对于生产批量大,磨损较严重的冲模,可采用耐磨的硬质合金来制造模具。在一定的条件下使用较高级材料会使冲模耐用度提高好几倍。

3.合理进行冲模零件的锻造及热处理

在选择优质冲模钢材的同时,对不同的材料要进行合理的锻造和热处理,这是预防磨损、提高冲模耐用度的主要途径之一。例如在淬火时,若在加热时产生过热不但会使此工件造成过大的脆性,而且在冷却时容易引起变形和开裂。另外还可采用一些表面强化工艺(真空热处理、离子氮化处理、气体软氮化工艺、渗硼处理等)来提高表面硬度、耐磨性及抗腐蚀性等。

4.保证被冲压板材和坯件的质量严格检查被冲压板材和坯件的质量,使其材质一定要均匀,厚薄一致,表面平整,不应有明显的凸起或凹坑,材料表面光洁,无毛刺和其它杂物等。

5.保持凸、凹模刃口的锋利及适当的润滑对冲裁模应经常刃磨凸、凹模刃口,使其始终保持刃口锋利性,而对弯曲、拉深等成形模具应经常将凸、凹模表面磨光保持较低的表面粗糙度值。在冲压时,还应经常在模具工作部位和毛坯件表面涂以适当的润滑油,使其在模具或坯件表面形成润滑膜,减少凸、凹之间的直接磨损。

6.选用合适的设备及加强模具维护

在冲压加工中应选用较高精度和较高刚性的压力机进行冲压,

以减少由于压力机的精度而造成的凸、凹模单面磨损。同时,操作者必须合理地使用及维护冲模,对冲模应经常进行检修;随时清除凸、凹模工作部位的废渣或杂物,保持工作台面的整洁,安全文明生产。

模具出现较大裂纹或分离为数部分而丧失工作能力,称为断裂效。不同模具断裂的驱动力有所不同。冷作模具所受的主要外力为机械作用力(如冲压力)。热作模具除承受机械力外,还有热应力和组织应力作用,有些热作模具的工作温度较高,又采用一定的强制冷却方式,形成较大的内应力,且其内应力又远远大于机械应力,因此,较多热作模具零件断裂失效的主要原因与内应力过大有关。模具断裂失效因果图见图1

根据断裂失效机理分析,按断裂原因可分为:过载断裂、疲劳断裂等当模具零件外加载荷超过其危险截面所能承受的极限应力时,零件将发生断裂,这种断裂称为过载断裂。过载断裂的断口宏观特征与材料拉伸断口形貌雷同。当材料塑性较好时,宏观断口显示出较大的塑性变形,而材料较脆时,零件断口呈脆性。

模具零件经过一定次数的循环载荷或交变应力作用

后引发的断裂现象称为疲劳断裂。疲劳断裂过程一般经历三个阶段:

疲劳裂纹的萌生,疲劳裂纹的扩展,最终断裂或瞬间断裂。典型的疲劳断口主要特征为:按照断裂过程形成三个形貌不同的区域。①疲劳核心区,它是疲劳断裂的源区,断口呈光滑、细洁的狭小区域。②疲劳裂纹扩展区,常见贝纹状或类似于海滩波纹状纹线以疲劳核心区为中心向四周扩散。③瞬断区,是疲劳裂纹扩展到临界尺寸后、残余断面发生快速断裂而形成的区域,呈现过载断裂的,特征,即具有放射区与剪切区。使模具发生疲劳损伤的根本原因是由循环载荷所引起的,凡是可促使表面拉应力增大的因素均能加速疲劳裂纹的萌生。通常,疲劳裂纹萌生于应力较大的部位,尤其是应力集中部位(如尺寸过渡处、缺口、刀痕、表面划伤、夹层等)。随着模具服役期的延长,细微的裂纹逐渐向纵深发展,扩展到极限尺寸时,严重削弱模具的承载能力而引起断裂失效。1防止材质不良引起裂纹

模具材料内部缺陷,如疏松、缩孔、夹杂物、成分偏析、碳化物分布不均,及材料的表面缺陷,如氧化、脱碳、折叠、疤痕等均会影响钢材性能,并造成锻造或热处理产生裂纹,引起断裂失效。

针对上述情况,常采取以下预防措施:①加强原材料的质量检验,严格控制钢材中碳化物不均匀度级别要求。②钢材在锻轧时,模具坯料应反复多方向锻造,从而使钢中共晶碳化物击碎得更为细小、均匀。

③选用淬透性良好的材料,使其淬火后能获得均匀的应力状态,以避免开裂或变形。例如冲裁模,通常凹模应选淬透性好的材料,而凸模则要求相应低些。

2防止锻造裂纹

选择合理的锻造工艺参数,是保证模具锻件质量的重要条件。坯料加热过程中应避免发生过热或过烧现象。因加热温度过高会引起晶粒迅速长大,使坯料塑性下降,影响锻件力学性能。过烧则会使金属晶粒边界出现氧化及形成易溶氧化物。过烧的坯料,塑性很差,强度严重降低,一经锻打即破碎成废料。因此,锻造过程中应严格控制加热温度,防止发生过烧现象,并防止加热过程中坯料氧化。预防措施为:锻件加热时,装炉温度不宜过高及加热速度不可过快,否则锻件心部与表层温差过大而造成内应力过大,导致内部产生裂纹。尤其是大型模具锻件加热时,坯料应采取预热措施,避免温差过大。锻件的冷却方式也将影响锻件的质量。终锻后应将锻件放置在500到700℃加热炉中,随炉缓慢冷却。一般情况下,锻件中含碳量、合金元素含量越高,体积越大,形状越复杂,冷却速度应越缓慢[4]。模具锻后应及时退火。一般可采用球化退火,如CrWMn钢采用等温球化退火工艺,将锻件加热至780℃左右,保温2到3h,随炉冷至680到720℃保温4到5h,再随炉冷却(冷却速度小于25℃/h)至500℃出炉空冷,以获得均匀的球化退火组

织,硬度≤229HBS

3防止淬火裂纹

消除内应力退火,防止过热或过烧,防止氧化和脱碳,防止淬火变形与裂纹,防止回火裂纹等。

塑料模具在服役时承受很大的应力,而且不均匀。当模具的某个

部位的应力超过了当时温度下模具材料的屈服极限时,就会以晶格滑移、孪晶、晶界滑移等方式产生塑性变形,改变了几何形状或尺寸,而且不能修复再服役时,叫塑性变形失效。塑性变形的失效形式表现为镦粗、弯曲、形腔胀大、塌陷等。

模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。在高温下服役的模具,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。

出现塑性变形失效的主要原因有:

1.模具材料的强度水平不高;

2.模具材料虽选择正确,但热处理工艺不正确,未能发挥模具钢的强韧性

3.冲压操作不当,发生意外的超载。

预防措施:

产生塑性变形失效的主要原因是模具材料强度不足,表面硬化层太薄以及工作温度高于回火温度而导致回火软化等。这种失效属于非正常失效,一般可通过选用较好的模具材料或适当的热处理强化方法予以避免。生产中,无论采用何种模具钢,为保证型腔表面具有足够的强度和硬度,一般都要对它们进行淬火处理(针对碳素结构钢),渗碳层厚度通常大于。

常见模具失效形式有磨损、断裂、塑性变形。模具失效是个综合性问题,与模具结构、工作条件、模具材料、加工方法、维护与管

理等多方面因素有关,必须针对具体问题具体分析,针对不同的影响因素,采取不同措施来预防模具的早期失效。对模具进行失效形式分析和改进措施非常有必要,对延长模具寿命,减少成本很有作用。

[1]邓明,胡亚民,彭威允.模具技术讲座[J].机械工人:冷加工,2001(3),55~57.

[2]曾珊琪,丁毅.模具寿命与失效[M].北京:化学工业出版社,2005,16~28,81~122.

[3]孙凤勤.冲压与塑压设备[M].北京:机械工业出版社,2003,26~27.

[4]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,2004,10~12.

12CrNi3A 模具失效分析

《模具材料及其失效分析》 结课大作业 系别: 班级: 姓名: 学号: 任课教师: 2013年月日

一12CrNi3A钢简介 (1)12CrNi3A钢是中淬透性合金渗碳钢。该钢淬火,低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,切削加工性能良好,当硬度为260-320HBS时,相对切削加工性为60%-70%。另外,钢退火后硬度低,塑性好,因此,既可以采用切削加工方法,也可以采用冷挤压成型方法制造模具。模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度,高耐磨性而心部具有很好的韧性。但该钢有回火脆性倾向和形成白点的倾向,在冶金生产和热处理工程过程中必须注意。 …. 二12CrNi3A钢热处理特点 (1) 锻造工艺:锻造加热温度为1200℃,始锻温度1150℃,终锻温度大于850℃,锻后缓冷,锻后必须软化退火。 (2) 退火工艺:670-680℃加热,保温4-6h后以5-10℃/h的速度缓冷至600℃,再炉冷至室温,退火后的硬度<160HBS,适于冷挤压成形。 (3) 正火工艺:880-940℃加热并保温3-4h后空冷,正火后硬度≤229HBS,切削加工性良好。 (4) 渗碳及淬火工艺:12CrNi3钢材采用气体渗碳工艺时,加热温度为900-920℃,保温6-7h,可获得0.9-1.0mm的渗碳层,渗碳后预冷至800-850℃后直接油淬或空冷,淬火后表层硬度可达56-62HRC,心部硬度为250-380HBS,变形微小。 采用渗碳钢制作的模具经表面渗碳后,使表面具备高耐磨性而心部保持高强韧性,不会发生早期磨损和脆断失效。其不足之处就是热处理工艺较复杂。 三12CrNi3A钢材料的热处理规范[3] (1)对热处理工艺的要求 渗碳层的厚度压制含有矿物填料的塑料(硬性塑料)时,模具的渗碳层厚度为 1.3—1.5mm.压制软性塑料时取0.8—1.2mm。有些模具有尖齿,薄边,则取0.2—0.6mm. (2) 渗层的化学成分若采用碳氮共渗,则其耐磨性,抗氧化性,耐腐蚀性,抗粘料性均优于前者。尤其对于压制胺基塑料的模具,碳氮共渗的效果更好。 ……. (10)渗碳后淬火工艺规程,直接空冷淬火,更好的是在氨气氛围下冷却淬火。

模具的失效分析

模具的失效分析№1 一, 目的 1, 模具设计人员必须熟知如何保证模具设计正确,合理,提高模具寿命,降低成本. 2, 生产中模具失效时,能分析原因,提出改进措施,也是工艺员应掌握的技能. 二, 模具的工作条件 1, 工装模具组成 凹模- 冷镦, 正挤, 反挤, 冲孔, 锥形凸模, 切边凹模, 切边凸模, 孔类` 螺母用凹模等. 套- 推出销套, 衬套 垫- 带孔垫块 轴类冲头–正挤, 反挤, 六方冲头, (螺母冲头), 推出销, 凸模销, 光凸模(无孔) 销, 轴, 杆. 板,块类型- 垫块,切断刀,送料滚,刀体,钳片,夹子,弹簧板,弹簧片 螺旋弹簧–拉,压 弹簧碟簧 板簧 2, 易损件(服役期短,经常更换的件) 冲头, 凹模 重点分析易损件–冲头, 凹模. 3, 模具工作条件 ①挤压冲头工作条件–以活塞销为例 上冲头 上冲头–向下运动, 下冲头–固定不动. 挤压中,上冲头受力大于下冲头. 上冲头受力情况如下: A) 向下运动–反挤坯料,冲头受压应力. B)向上运动–脱离坯料,因摩擦力冲头受拉应力. C)可能因冲头偏心,产生弯曲应力. 结论: 上冲头受力复杂,易导致失效. 上冲头最大名义压力可达2500 MPa. 在尺寸过渡处,由于应力集中, 有时应力更大于此值.

② 冷挤压凹模的工作条件 № 2 冷挤压过程中,凹模型腔表面受很大的压力,该压力使凹模产生巨大的切向拉应力. (以下插图) p 0 材料力学厚壁筒受力分析理论公式 拉应力压应力 P 1R 21 - P 0 R 20 R 20 -R 2 1P 1 -P 0R 21 R 2 0σt σr = ()+ R 2R 20 -R 21()=R 20 -R 2 1 P 1 R 21 - P 0 R 20 -)(R 20 -R 2 1R 2)(R 21 R 20P 1 -P 0① ② ③ ④ ⑤ ⑥ 当采用整体模时,如下图 P 0 =0 代入①,②式 )(R 20 -R 21R 2 + = σt R 21 R 20P 1R 20 -R 21P 1R 21= P 1R 2 1R 20 -R 21(1+ R 20R 2 ) P 1 R 21 R 2 0R 2 R 20 -R 21()-P 1R 21 R 20 -R 21 =σr =R 20 -R 21 P 1R 21 )R 2 R 2 01-(当R=R 1 时,分别代入公式③,④得 σtR1σrR1= )R 21 R 20 1+(R 20 -R 21P 1R 21)R 21 R 2 1- (R 20 -R 21 P 1R 21=P 1 R 20 -R 21R 20 +R 21= =-P 1

《模具失效研究》参考试卷

《模具失效分析》参考试卷制作人:陈杰200810111422 侯小毅200810111419 一、填空题:<每空1分,共20分) 1.为方便模具材料的选用,按模具的工作条件可将模具分为冷作模具、热作模具和温作模具三大类。 2. 评价冷作模具材料塑性变形抗力的指标主要是常温下的屈服点或 屈服强度;评价热作模具材料塑性变形抗力的指标则应为高温屈服点或屈服强度。 3. 在模具中常遇到的磨损形式有磨粒磨损、粘着磨损、疲劳磨损、气蚀和冲蚀磨损和腐蚀磨损等。 4. 模具失效分为非正常失效<早期失效)和正常失效两类。 5.模具常见的失效形式是磨损失效、塑性变形失效和断裂失效等。 6. 塑料模具成型工艺分为模压成型、挤压成型、注射成型三个阶段组成。 7.表面强化处理按其目的和作用可分为表面化学成分和组织结构改变型 和 表面物质保护型两大类。 二、选择题:<每题2分,共24分) 1. 常用来制作小型切边模、落料模以及小型的拉深模具,且性能较好、应用最广的碳素工具钢是< C )。 A、T7A B、T8A C、T10A D、T12A 2. 拉深模常见的失效形式是< B )。 A、断裂 B、粘附 C、磨损 D、过量变形 3. 3Cr2W8V钢是制造< C )的典型钢种。 A、冲裁模 B、冷挤压模 C、压铸模 D、塑料模 4. 适于制造要求高耐磨性的大型、复杂和精密的塑料模的材料是< D )。 A、T10A B、CrWMn C、9SiCr D、Cr12MoV 5. 以下各项表面强化技术中属于机械强化的是< D )。 A、高频加热淬火 B、渗碳 C、镀金属 D、喷丸 6. 低淬低回、高淬高回、微细化处理、等温和分级淬火等强韧化处理工艺主要用于< A )。

冲压模具的失效形式分析与思考

摘要:本文简单介绍了冲压模具失效的几种形式,并针对每种失效形式产生 的原因进行了具体分析,提出了相应的预防及解决措施。 关键词:冲压模具;失效形式;分析;措施 1 前言 随着我国现代工业技术的不断发展,冲压模具在工业生产中起到了越来越广泛的应用。冲压模具质量的好坏直接决定了所冲产品质量的优劣。然而,冲压模具在使用过程中,常常出现各种形式的失效情况,应对这些失效,往往需要耗费一定的时间、人力、物力以及财力资源,严重影响到了工业生产的进度,不利于企业经济效益的提高。因此,如何有效地预防冲压模具的失效,最大限度的提高其使用寿命,是很多企业共同面临的一个技术难题。只有对冲压模具的失效形式做出正确分析,归属其失效类型,才能精准地找出其失效的原因,采取相应的技术措施对其修复或预防,延长其使用寿命。 2 冲压模具失效形式概述 2.1 冲压模具失效的涵义 冲压模具在使用过程中,因各种原因如结构形状、尺寸的变化以及零部件组织与性能的变化等,使得冲压模具冲不出合格的冲压件,同时也无法再修复的情形就叫做冲压模具的失效。鉴定模具是否失效的判据有三种:一是模具已经完全丧失工作能力;二是模具虽然可以工作,但无法完成设定的功能;三是模具因结构受到严重损害,使用时存在安全隐患。 2.2 冲压模具失效的形式 冲压模具在使用过程中,因模具本身类型、结构、材料的不同以及实际工作条件的不同,会表现出不同的失效形式,主要可分为以下四种。 (1)磨损失效。冲压模具在正常工作过程中,往往会与加工的成形坯料直接接触,二者之间因相对运动而产生摩擦,造成冲压模具表面磨损。当磨损程度达到一定限度时,模具表面失去原来的状态,使之无法冲出合格的冲压件,这就是磨损失效。磨损在任何机械的使用过程中是不可避免的,因此是一种正常的失效形式,也是冲压模具失效形式中最为主要的一种。根据磨损机理,可将磨损失效细分为四种:①磨粒磨损失效。当坯料与模具接触的表面间存在硬质颗粒,亦或坯料加工前未打磨完全,其表面存在坚硬的突出物时,会摩擦并刮划模具的表面,严重时就会使模具表面材料脱落,造成磨粒磨损失效。②黏着磨损失效。冲压模具作用于坯料时,彼此之间存在相互作用力,有时黏着部分会因受力不均而发生断裂,造成模具表面物质脱落或转移,这种失效形式就是黏着磨损失效。③疲劳磨损失效。模具的有些部位经过长时间的使用,在与坯料摩擦力的循环作用下,难免会产生一些细小的裂纹,随着使用时间的推移,细纹逐渐加深,加深到一定尺度时,造成模具表面物质发生脱落,甚至模具因承载力不足而断裂。④腐蚀磨损失效。冲压模具在使用过程中,模具表面物质很容易与周围介质(如空气、水等)发生化学腐蚀或电化学腐蚀,加上摩擦力的作用,时间久了,就会造成模具表面物质侵蚀变质,发生脱落。 实际上,磨具与坯料作用时,磨具表面受到的磨损是极其复杂并且难以预测的,不可能仅仅只受某种磨损方式的影响,因此,实际生产加工中反映出来的磨损失效形式可能是多种形式相互作用的结果。 (2)断裂失效。所谓的断裂失效是指冲压模具因产生较大裂纹或者断裂为两部分(数部分)。断裂可分为两种:早期断裂(一次性断裂)以及疲劳断裂。早期断裂指的是冲压模具表面受到冲击载荷的压力过大,超出其负荷能力,造成迅速断裂。相反,造成疲劳断裂的应力通常较低,在模具的承受范围之内,但由于这种应力的频繁作用,细小裂纹开始逐渐扩展,最后引发断裂。 (3)变形失效。冲压模具在工作过程当中,若是零件所受到的应力超出其弯曲极限,就

模具材料失效分析

1.模具寿命定义:模具因为磨损或其他形式失效、终至不可修复而报废之前所加工合格产品的件数称为模具的使用寿命,简称模具寿命。 2.失效定义:模具受到损坏,不能通过修复而继续服役时叫模具失效。 3.模具寿命与成本的关系:产品成本随着模具寿命的增加而下降,提高模具寿命可降低成本。考虑两个因素:应根据批量选择不同的模具材料和制造工艺。 4.磨损失效:由于相对运动产生磨损,使模具尺寸或表面状态发生改变,使之不能继续服役的现象,叫磨损失效。 5.磨粒磨损:外来硬质颗粒存在工件与模具接触表面之间,刮擦模具表面,引起模具表面材料脱落的现象。工件表面的硬突出物刮擦模具引起的磨损也叫磨粒磨损。 6.粘着磨损:工件与模具表面相对运动时,由于表面凹凸不平,粘着的结点发生剪切断裂,使模具表面材料转移到工件上或脱落的现象。 7.脆性断裂:断裂时不发生或发生较小的宏观塑性变形的断裂,分为一次性断裂和疲劳断裂。 8.多种失效形式的交互作用:(1)磨损对断裂及塑性变形的促进作用,。磨损沟痕可成为裂纹的发源地,当由磨损形成的裂纹在有利于其向纵深发展的应力作用下,就会造成断裂。模具局部磨损后,会带来承载能力的下降和偏载,造成另一部分承受过大应力而产生塑变。(2)塑性变形对磨损和断裂的促进作用。局部塑变会改变模具零件正常的配合关系,模具间隙变小引起不均匀磨损,会加快磨损速度进而促进磨损失效。另一方面,塑变后间隙不均匀,承载面变小,会带来附加偏心载荷,造成局部应力集中,并由此产生裂纹,促进断裂失效。 9.圆角半径的影响及措施:模具零件的两个面相交处常用圆角过渡,工作部位的圆角半径对成形件质量和模具寿命影响很大。(1)凸的圆角半径对成形工艺影响大。过小的凸圆角半径在板料拉深中增加成形力,在模锻中易造成锻件折叠缺陷。(2)凹的圆角半径对模具寿命影响大。小的凹圆角半径会使局部受力恶化,在圆角半径处产生较大的应力集中,易萌生裂纹导致断裂。【措施】增大圆角半径,使模具受力均匀,不易产生裂纹。 10.成形件材质与模具寿命的关系:成形件的材质有金属和非金属、固体和液体之分。(1)非金属材料和液体材料由于强度低,所需成形力小,模具受力小,模具

刀具模具失效模式分析

PVD涂层刀具、模具失效分析 郭 硕 摘要:1、阐述了刀具、模具的基本失效模式;2、失效模式与原因分析的方法;3、刀具、模具经过PVD (物理气相沉积)处理后,失效模式的分析与改善方法。 关键字:PVD、ALTiN、TiCN、TiN、磨损、失效模式 1、概述 1.1失效:即产品丧失规定功能。(国标GB3187-82中定义)比如刀具刃口磨损变钝,不能继续切削 使用。 1.2失效模式:是指失效的外在宏观表现形式和过程规律,一般可理解为失效的性质和类型。 1.3失效分析:是指判断产品失效模式,查找失效机理和原因,提出改善和预防措施的活动。 2、失效模式 2.1 主要的失效模式(针对模具、刀具、机械零件等) 2.1.1 磨损 2.1.2 断裂 2.1.3 变形 2.1.4 腐蚀 2.2 磨损 2.2.1 磨损过程(如下图所示) (1)磨合阶段(Ⅰ区,O~A) (2)正常磨损阶段(Ⅱ区,A~B) (3)快速磨损阶段,也称严重磨损阶段(Ⅲ区,B~C) 图1 磨损过程示意图 z磨损是一定会发生的,我们的分析与研究只是为了尽可能延长“正常磨损阶段”(即Ⅱ区)的时间,并能对B点的到来作出准确的预测。 2.2.2 磨损的分类

(1)粘着磨损:相对运动的物体,接触表面发生了固相粘着,使材料从一个表面转移到另一个表面的现象。粘着磨损情况严重时会出现“咬死”“卡死”现象。 z产生原因: ①表面粗糙,表面凸起来的部分在摩擦过程中,受到很大压力发生塑性变形,进 而彼此粘着。 ②接触的两种材料之间物理、化学特性接近,有粘着在一起的可能,比如金属之 间可能发生粘着,而金属和木材之间就不可能发生粘着。 z对于刀具、模具而言,轻微的情况就是粘料、积屑,以及进而形成的擦伤、拉毛等。 比如五金拉伸模具,模具表面粘料后,产品将出现拉毛、擦伤等异常。 (2)磨粒磨损:又称磨料磨损或研磨磨损,是指两物体接触时,一方硬度比另一方大得多时,或接触面之间存在着硬质颗粒时,所产生的磨损。 z此类磨损,在我们涂层的模具或零件应用中极为常见。因为涂层本身硬度极高,一旦脱落,其碎片就是“硬质颗粒”,它夹杂在摩擦面之间,会造成模具本身的快速 磨损。 (3)表面疲劳磨损:是指两物体接触摩擦,在交变应力作用下,材料表面疲劳,产生小坑点和很浅的细小裂纹以及由裂纹造成的下片金属脱落。表面疲劳是介于疲劳与磨损之间的破坏 形式。 z比如,冲压螺丝的十字精冲,冲压到某一寿命次数之后,十字针上就会出现很细小的裂纹和小坑点。 (4)腐蚀磨损:是指在有腐蚀性的环境下,摩擦面受到化学、电化学腐蚀与摩擦的双重作用,从而引起的破坏形式。 z塑胶模具,对于存在腐蚀性的胶料,同时受压力较大的部位(比如进胶口),在腐蚀和磨损双重作用下,就会更容易被破坏。 2.2.3 “正常磨损阶段”时间没有达到预期值(即我们所说的“寿命异常”)的失效分析,就是找 出实际发生的属于那种磨损形式,以及为何没有达到正常标准时限,并找出改善其摩擦环境 的措施。 2.2.4 在实际的磨损过程中,往往是多种磨损同时发生或交替作用,而且各种机理在里面的作用大 小也不一定,故我们在做失效模式判断时,要根据实际情况,作出全面的分析判断。 2.3 断裂 2.3.1 断裂:是指产品在外力作用下产生裂纹进而扩展分裂成两部分或多部分的过程。对于刀具、 模具的局部断裂,我通常称为“崩刃”、“崩口”。 2.3.2 断口:即断裂形成的断面。我们分析断裂原因时,就是根据断口的痕迹与特征来判断的。 2.3.3 断裂的分类: (1)脆性断裂:材料本身的韧性不够好,在承受过大的外力时,仅发生了很小的变形就断裂。 (2)塑性断裂:材料本身韧性较好,但由于承受的外力过大,发生严重塑性变形后断裂。 (3)疲劳断裂:材料在交变应力反复作用下(如冲压加工),萌生裂纹及裂纹扩展进而造成断裂。 2.3.4 对于刀具、模具而言,发生断裂的主要原因: (1)材料问题,材料本身的强度不足以承受这般大的外力,故而断裂。 (2)热处理问题,热处理的方式或工艺不当,造成刀具、模具内部应力没有完全消除,脆性过大进而断裂。 (3)使用不当,如装夹偏位、撞车、撞刀等。 (4)加工参数设定太严苛,使得刀具、模具负荷过大,或造成机台振动,从而造成刀具、模具崩裂。

失效案例分析

工程材料失效分析 姓名:丁静 学号:201421803012

案例一乙烯裂解炉炉管破裂原因分析某石化公司化工一厂裂解车间CBL一Ⅲ型乙烯裂解炉于1998年9月投入运行,1 999年4月检查发现一根裂解炉管发生泄漏。为查明炉管泄漏原因,对失效炉管进行了综合分析。 CBL一Ⅲ型乙烯裂解炉炉管工作温度为1050~llOO℃,材质化学成分(质量分数)为0.35~0.60%C;1.0%~2.0%Si;1.O%~1.50%Mn;33%~38%Ni;23%~28%Cr及微量Nb.Ti.Zr等。宏观观察失效炉管表面可以看出,泄漏部位炉管内、外壁均有两个孔坑,两个孔坑在内、外表面相互对应,孔坑边缘金属略有凸起,呈火山口状。仔细观察发现,在内壁两个孔坑附近表面有一约3 mm xl mm凸棱,凸棱略高于附近炉管表面(图11-1、图11-2)。

化学成分分析结果表明,失效炉管化学成分符合厂家技术要求。金相检查结果表明,失效炉管显微组织基体为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物(图11-3)。 能谱分析结果表明,这些颗粒状碳化物为Nb.Zr.Ti或Cr的

碳化物。晶界分布的骨架状碳化物系以铬为主的碳化物。首先,采用扫描电镜观察了泄漏部位炉管内、外表面的放大形貌,观察发现,所有孔坑均存在白亮色块状物。通常,不导电的非金属氧化物或金属氧化物在电子束作用下因积累电荷而呈白亮色。能谱分析结果表明,白亮色块状物含有很高的稀土铈。分析认为,白亮色块状物为稀土氧化物。在泄漏部位,分别在内壁凸棱和孔坑两处,垂直于内表面制备了炉管横截面金相试样。可以看出,不论是凸棱对应部位,还是炉管内、外表面两个孔坑之间,炉管横截面均分布有宏观深灰色金属夹杂物,夹杂物在内、外表面两个孔坑之间连续贯通(图11-4)。 在扫描电镜下进一步观察、分析结果表明,两个横截面深灰色区域同样是稀土铈的氧化物(图11-5)。采用微型拉伸试样,对失效炉管进行了1100℃短时高温拉伸试验,其结果如表11-1所示。可以看出,失效炉管1100℃高温短时拉伸性能低于厂家相关技术要求。

董斌—模具失效分析

模具失效分析 目录 1引言模具失效 2模具失效形式案例分析及其改进模具磨损失效 模具断裂失效 模具塑性变形失效 3总结 4参考文献

1引言模具失效 冲压模具是冲压生产中必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。 生产中的冲压模具经过一定时间使用后,由于种种原因不能再冲出合格的产品,同时又不能修复的现象称为冲压模具的失效。由于冲压模具类型、结构、模具材料、工作条件的不同,所以冲压模失效的原因也各不相同。 一般为塑性变形、磨损、断裂或开裂、金属疲劳及腐蚀等等。 模具的失效也可分为: 正常失效和早期失效

模具模具在工作中,与成形坯料接触,并受到相互作用力产生一定的相对运动造成磨损。当磨损使模具的尺寸、精度、表面质量等发生变化而不能冲出合格的产品时,称为磨损失效,磨损失效是模具的主要失效形式,为冲模的正常失效形式,不可避免。 按磨损机理,模具磨损可分为磨粒磨损、黏着磨损、疲劳磨损、腐蚀磨损。 ①磨粒磨损硬质颗粒存在于坯料与模具接触表面之间,或坯料表面的硬突出物,刮擦模具表面引起材料脱落的现象称为磨粒磨损。 ②黏着磨损坯料与模具表面相对运动,由于表面凹凸不平,黏着部分发生剪切断裂,使模具表面材料转移或脱落的现象称为黏着磨损。 ③疲劳磨损坯料与模具表面相对运动,在循环应力的作用下,使表面材料疲劳脱落的现象称为疲劳磨损。 ④腐蚀磨损在摩擦过程中,模具表面与周围介质发生化学或电化学反应,引起表层材料脱落的现象称为腐蚀磨损。 在模具与坯料相对运动过程中,实际磨损情况非常复杂。工作中可能出现多种磨损形式,它们相互促进,最后以一种磨损形式失效。 冲裁模的工作条件 冲裁模具主要用于各种板料的冲切。从冲裁工艺分析中我们已经

模具的失效分析

模具的失效分析 一,目的 1,模具设计人员必须熟知如何保证模具设计正确,合理,提高模具寿命,降低成本. 2,生产中模具失效时,能分析原因,提出改进措施,也是工艺员应掌握的技能?二,模具的工作条件 1,工装模具组成 「凹模- 冷镦,正挤,反挤,冲孔,锥形凸模,切边凹模,切边凸模,孔类' 螺母用凹模等? 套- 推出销套,衬套 -垫- 带孔垫块 轴类厂冲头-正挤,反挤,六方冲头,(螺母冲头),推出销,凸模销,光凸模(无孔)—销,轴,杆. 板,块类型- 垫块,切断刀,送料滚,刀体,钳片,夹子,弹簧板,弹簧片 哪旋弹簧-拉,压 弹簧碟簧 —板簧 2,易损件(服役期短,经常更换的件) 冲头,凹模 重点分析易损件-冲头,凹模? 3,模具工作条件 ①挤压冲头工作条件-以活塞销为例 上冲头-向下运动,下冲头-固定不动? 挤压中,上冲头受力大于下冲头?上冲头受力情况如下: A)向下运动-反挤坯料,冲头受压应力? B)向上运动-脱离坯料,因摩擦力冲头受拉应力? C)可能因冲头偏心,产生弯曲应力? 结论:上冲头受力复杂,易导致失效?上冲头最大名义压力可达2500 MPa. 在尺寸过渡处,由于应力集中,有时应力更大于此值?

(T r b tRi b rRi P 1R 2 R 2 -R 2 P i R[ R 2 -R 1 R 21 R R - 2 O R P i R 2 R 2 R 2 ( R 2 -R 2 ) 当R=R i 时,分别代入公式③ R 2 R i 2 ,④得 P i R ? R 2 -R 2 )=P i P i R i 2 R 2 -R 2 (i- R 2 R 2 ) =-P i = — i+4 ③ R o -R i R 2 +R 2 R 2 -R 2 R 2 ② 冷挤压凹模的工作条件 血2 冷挤压过程中,凹模型腔表面受很大的压力,该压力使凹模产生巨大的切向拉 应力? (以下插图) 拉应力 t = PiRi - Po R 0 + Ri R0 ( Pi -Po ) R O -R 2 R 2( R 2-R 2 ) 压应力 P i R i 2 - P o R 2 R 2 -R i 2 R 2 R 2( P i -P o ) R 2 ( R 2 -R i 2 ) 当采用整体模时,如下图 P 0 =0代入①,②式

模具失效

1、什么是模具失效? 答:模具零件在服役中产生了过量变形、断裂破坏、表面损伤等现象后,将丧失原有功能,达不到预期要求,或变的不安全不可靠,以致不能正常的服役,这种现象称为模具失效。 2、什么是模具损伤? 答:模具在制造和使用中产生了某些缺陷,如表面轻度磨损、微裂纹等,但还没有丧失规定的功能而仍可继续服役,那么,这些缺陷就称为模具的损伤。 4、什么是模具的早期失效?其主要是因为什么引发的?特点为何? 答:模具未达到一定工业技术水平公认的使用寿命就不能服役时,称为模具的早期失效。早期失效发生在模具的使用初期,主要是由于模具设计和制造上的缺陷一经使用就显露出来,进而诱发失效。这一阶段的失效几率甚高,但随着使用时间的延长而迅速减低。 5、什么是模具的随机失效?该种失效有何特点并如何防止? 答:模具经过使用初期的考验而未发生失效,就进入了随机失效阶段。由于环境的偶然变化,操作者的人为差错,或者因管理不善而造成的某些损伤,仍可能导致失效。特点:这种失效几率很低,且随着使用时间的延长其增长也很缓慢,呈随机分布。防止措施:对模具的正确使用和精心维护。 6、什么是耗损失效?如何拖延耗损失效期的到来? 答:模具经过了长期使用,由于损伤的大量积累,致使发生的几率急剧增加,从而进入耗损失效阶段,即到了模具寿命的终止期。在模具使用过程中,经常性的维护、保养,可延迟耗损失效期的到来。 7、按经济法观点对失效分类,可将失效分为哪四种情况? 答:正常耗损失效、产品缺陷失效、误用失效、受累性失效 8、按失效形式及失效机理分类,失效大致可分为哪几类? 答:过量变形、断裂、表面损伤 9、模具失效原因的分析和防护措施的提出,可以从哪几方面入手? 答:合理选材、合理结构设计、合理加工与装配、合理使用与保养、严格质量控制、表面强化。 10、以断裂失效形式为例,简要说明失效分析的方法和步骤有哪些? 答:现场调查和模具断裂件的处理、模具制造工艺和服役历史的调查及质量检验、模具工件条件和断裂状况分析、断口分析、断裂原因的判定、提出防护措施 12、什么是一次刃磨寿命? 答:两次刃磨之间模具服役的时间或冲裁次数,称为一次刃磨寿命。 13、模具在服役过程中磨损可分为哪三个阶段?各阶段有何特点? 答:初期磨损、稳定磨损、急剧磨损。特点:磨损速度较大、磨损速度变缓、模具失效 14、影响模具磨损的主要因素有哪些? 答:模具材料和被加工材料的成分、组织及性能,模具和坯料的表面状态及粗糙度,模具的工作条件如冲裁力、冲裁速度、工作温度及润滑条件等。 15、冷挤压模的失效形式主要有哪些? 答:模具冲头承受很大的三向压应力及拉应力、偏载或横向弯曲载荷,因此,冲头的失效形式可能有塑性变形、折断、疲劳断裂、纵向断裂等。冷挤压凹模的内壁承受均压,易发生胀裂或塑性变形。冷挤压凸模、凹模,都要经受坯料塑变流动的剧烈摩擦,从而产生磨粒磨损和粘着磨损。 16、冷镦模失效的主要形式有哪些? 答:磨损失效和疲劳断裂失效 17、影响冷镦模和冷挤压模寿命的主要因素有哪些? 答:由于冷挤压模和冷镦模受力较大,因而模具的结构、加工质量、润滑条件、维护保养以及冷挤压工艺设计等因素对模具的失效和寿命影响很大。 18、冷拉深模的失效形式是什么?影响冷拉深模寿命的因素有哪些? 答:磨粒磨损和粘着磨损。因素:被拉深板材的强度、厚度、表面状况、材料的成分和组织,均影响模具载荷的轻重和粘着(咬

设计失效模式及后果分析

目录 一、前言 (01) 二、设计FMEA (02) 1.先期规划 (03) 2.设计FMEA展开 (07) 3.后续追踪与应用 (14) 附录A:设计FMEA方块图范例 (16) 附录B:设计FMEA范例 (17) 附录C:设计FMEA表格 (18) 案例分析 (19)

一、前言 失效模式、效应与关键性分析(Failure Mode,Effects and Criticality Analysis,FMECA)是一种系统化之工程设计辅助工具,主要系利用表格方式协助工程师进行工程分析,使其在工程设计时早期发现潜在缺陷及其影响程度,及早谋求解决之道,以避免失效之发生或降低其发生时产生之影响。FMECA之前身为FMEA(Failure Mode and Effects Analysis),系由美国格鲁曼(Grumman)飞机公司在1950年首先提出,应用于飞机主操纵系统的失效分析,在1957年波音(Boeing)与马丁(Martin Marietta)公司在其工程手册中正式列出FMEA之程序,60年代初期,美国航空太空总署(NASA)将FMEA成功地应用于航天计画,同时美国军方也开始应用FMEA技术,并于1974年出版军用标准FMECA程序MIL-STD-1629,于1980年由国际电工技术委员会(International Electrothnical Commission,IEC)所出版之国际IEC 812即为参考MIL-STD-1629A加以部份修改成之FMEA程序。除此之外,ISO 9000及欧市产品CE标志之需求,也将FMEA视为重要的设计管制与安全分析方法。 在70年代,美国汽车工业受到国际间强大的竞争压力,不得不努力导入国防与太空工业之可靠度工程技术,以提高产品品质与可靠度,FMEA手册,此时发展之分析方法与美军标准渐渐有所区别,最主要的差异在引进半定量之评点方式评估失效模式之关键性,后来更将此分析法推广应用于制程之潜在失效模式分析,从此针对分析对象之不同,将FMEA分成”设计FMEA”与制程FMEA”,并开始要求零件供货商分析其零件之设计与制程。在各个汽车厂都要求其零件供货商按照其规定之表格与程序进行FMEA的情况下,由于各公司的规定不同,造成零件供货商按照其规定之表格与程序进行FMEA的情况下,由于各公司的规定不同,造成件供货商额外的负担,为改善此一现象,福特(Ford)、克莱斯勒(Chrysler)、与通用汽车(General Motor)等三家公司在美国品管学会(ASQC)与汽车工业行动组(AIAG)的赞助下,整合各汽车公司之规定与表格,在1993年完成『潜在失效模式与效应分析(FMEA)参考手册』,确立了FMEA在汽车工业的必要性,并统一其分析程序与表格,此参考手册在1995年完成修定二版,并成为SAE正式技术文件SAEJ-1739。 目前FMEA已经广泛应用在航空、航天、电子、机械、电力、造船和交通运输等工业,根据对美国国防部所属的112个单位进行的调查显示,有87个单位认为FMEA是一种有效的可靠度分析技术,值得推广。 FMEA做为设计工具以及在决策过程中的有效性决定于设计初期对于问题的信息是否有效地传达沟通,或许FMEA给人最大的批评在于其对设计之改进效益有限,其最主要原因为执行的时机不对,以及单独作业,在设计过程中没有适当的输入FMEA信息,掌握时机或许是执行FMEA是否有效的最重要因素。FMEA的目的为确认在系统设计中的所有失效模式,其第一要务为及早确认系统设计中所有的致命性(Catastrophic)与关键性(Critical)失效发生的可能性,以便尽早开始进行系统高层次之FMEA,当获得更多数据后,再扩展分析到低层次硬品。 本教材乃针对设计FMEA相关技术做一探究。 将FMEA技术应用于制造/组装程序之分析称为”制程FMEA”,亦即在设计制造程序时,

模具失效的原因及预防措施

模具生产过程中失效的原因及预防措施 1 前言 模具在生产应用过程中,经常发生各种不同情况的失效,浪费大量的人力、物力,影响了生产进度。以下主要讲述模具的几种基本失效形式及失效的原因以及预防措施。 2 模具失效 冷热模具在服役中失效的基本形式可分为:塑性变形;磨损;疲劳;断裂。 (1)塑性变形。 塑性变形即承受负荷大于屈服强度而产生的变形。如凹模出现型腔塌陷、型孔扩大、棱角倒塌陷以及凸模出现镦粗、纵向弯曲等。尤其热作模具,其工作表面与高温材料接触,使型腔表面温度往往超过热作模具钢的回火温度,型槽内壁由于软化而被压塌或压堆。低淬透性的钢种用作冷镦模时,模具在淬火加热后,对内孔进行喷水冷却产生一个硬化层。模具在使用时,如冷镦力过大,硬化层下面的基底抗压屈服强度不高,模具孔腔便被压塌。模具钢的屈服强度一般随碳(c)的含量从某些合金元素的增多而升高,在硬度相同的情况下,不同化学成分的钢具有的抗压强度不同,当钢硬度为63HRC时,下列4种钢的抗屈服强度由高到低依次顺序为:W18Cr4V>Cr12>Cr6WV>5CrNiW。 (2)磨损失效。 磨损失效是指刃门钝化、棱角变圆、平面下陷、表面沟痕、剥落粘膜(在摩擦中模具工作表而粘了些坯料金属)。另外,凸模在工作中,由于润滑剂燃烧后转化为高压气体,对凸模表面进行剧烈冲刷,形成气蚀。 冷冲时,如果负荷不大,磨损类型主要为氧化,磨损也可为某种程度的咬合磨损,当刃口部分变钝或冲压负荷较大时,咬合磨损的情况会变得严重,而使磨损加快,模具钢的耐磨性不仅取决于其硬度,还决定于碳化物的性质、大小、分布和数量,在模具钢中,目前高速钢和高铬钢的耐磨性较高。但在钢中存在有严重的碳化物偏析或大颗粒的碳化物情况下,这些碳化物易剥落,而引起磨粒磨损,使磨损加快。较轻冷作模具钢(薄板冲裁、拉伸、弯曲等)的冲击,载荷不大,主要为静磨损。在静磨损条件下,模具钢的含碳量多,耐磨性就大。在冲击磨损条件下(如冷镦、冷挤、热锻等),模具钢中过多的碳化物无助于提高耐磨性,反而因冲击磨粒磨损,而降低耐磨性。 研究表明,在冲击磨粒磨损条件下,模具钢含碳量以O.6%为上限,冷镦模在冲击载荷条件下工作,如模具钢中碳化物过多,容易固冲击磨损而山现表面剥落。这些剥落的硬粒子将成为磨粒,加快磨损速度。热作模具的型腔表面,由于高温软化而使耐磨性降低,此外,氧化铁皮也起到磨料的作用,同时还有高温氧化腐蚀作用。 (3)疲劳失效。 疲劳失效的特征:模具某些部位经过一定的服役期,萌生了细小的裂纹,并逐渐向纵深扩展,扩展到一定尺寸时,严重削弱模具的承载能力而引起断裂。疲劳裂纹萌生于应力较大部位,特别是应力集中部位(尺寸过渡、缺口、刀痕、磨损裂纹等处),疲劳断裂时断门分两部分,一部分为疲劳裂纹发展形成的疲劳处破裂断面,呈现贝壳状,疲劳源位于贝壳顶点。另一部分为突然断裂,呈现不平整粗糙断面。 使模具发生疲劳损伤的根本原因为特环载荷,凡可促使表面拉应力增大的因素均能加速疲劳裂纹的萌生。 冷作模具在高硬状态下工作时,模具钢具有很高的屈服强度和很低的断裂韧性。高的屈服强度有利于推迟疲劳裂纹的产生,但低的断裂韧性使疲劳裂纹的扩展速率加快和临界长度减小,使疲劳裂纹扩展循环数大大缩短,因此,冷作模具疲劳寿命主要取决于疲劳裂纹萌生时间。

压铸模具的失效分析

压铸模具的失效分析 随着铝合金压铸模具技术的日趋成熟,锌、铝、镁合金压铸越来越广泛应用于汽车、摩托车、柴油机、电子设备、家用电器等工业及民用产品配件的生产。然而,压铸模具的早期失效一直是困扰模具生产和使 用者的普遍问题,那么,该如何提高模具的使用寿命 呢? 一、压铸模具的失效 压铸模的使用时急热急冷,条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在铝液注射时,型腔表面温度急剧上升,型腔表面承受极大的压应力。开模顶件、喷涂脱模亮剂时,型腔表面温度急剧下降承受极大的拉应力。由于交变温度影响模具型面压缩、拉伸的交变应力的反复作用从而使模具金属因热疲劳而产生龟裂缺陷。 开裂是由于模具的短时间的热应力或机械应力过载而引起的模具整体破损。模具的侵蚀主要分为三种: 1、腐蚀:金属熔液与铁互相扩散并形成金间化合物; 2、冲蚀:金属熔液在型腔中流动时所产生的热机械磨损; 3、粘著:金属熔液附着在模具型腔表面,顶出产品时带走型面表层金属。而压陷是因为模具强度不足或金属碎屑附着在模具型面,受到锁模力作用使模具产生的塑性变形。

。 二、影响压铸模具使用寿命的因素 1、钢材对模具寿命的影响 因压铸模具恶劣的使用环境,所以要求模具钢材必须具有优良的淬透性、良好的抗高温强度、高的耐磨性、好的韧度、好的抗热裂能力和高的耐熔损性能等。 ●化学成分 压铸模具钢的应用广泛和具有优良的特性主要由钢中的C、Cr、Mo、Si、V 等化学成分决定的。当然钢中杂质元素必须降低,有资料表明,当Rm在1550MPa 时,材料含硫量由0.03%降到0.003%,会使200℃左右时的冲击韧度提高约1-2倍。北美压铸学会(NADCA 207-2003)标准就规定:优级(premium)H13钢含硫量小于0.005%,而超级(superior) 的应小于0.003%S和0.015%P。 ●退火状态 均匀的球状珠光体 无晶界碳化物 ●钢材的纯净度 杂质是热龟裂发生的起源点

模具爆裂八大具体原因案例分析

模具爆裂八大具体原因案例分析 因为工作条件不同,以及冲压工序不一样,所以多方面原因造成模具爆裂。下面我们根据冲模的设计、制造和使用等方面综合分析模具爆裂的原因,以及给出相应的改善措施供大家学习了解。 1.热处理:淬火回火工艺不当产生变形 事实证明,模具的热加工质量对模具的性能与使用寿命影响甚大。从模具失效原因的分析统计可知,因热处理不当所引发模具失效‘事故’约占40%以上。模具工作零件的淬火变形与开裂,使用过程的早期断裂,均与摸具的热加工工艺有关。 锻造工艺:这是模具工作零件制造过程中的重要环节。对于高合金工具钢的模具,通常对材料碳化物分布等金相组织提出技术要求。此外,还应严格控制锻造温度范围,制定正确的加热规范,采用正确的锻造力法,以及锻后缓冷或及时退火等。 预备热处理:应视模具工作零件的材料和要求的不同分别采用退火、正火或调质等预备热处理工艺,以改善组织,消除锻造毛坯的组织缺陷,改善加工工艺性。高碳合金模具钢经过适当的预备热处理可消除网状二次渗碳体或链状碳化物,

使碳化物球化、细化,促进碳化物分布均匀性。这样有利于保证淬火、回火质量,提高模具寿命。 淬火与回火:这是模具热处理中的关键环节。若淬火加热时产生过热,不仅会使工件造成较大的脆性,而且在冷却时容易引起变形和开裂,严重影响模具寿命。冲模淬火加热时特别应注意防止氧化和脱碳,应严格控制热处理工艺规范,在条件允许的情况下,可采用真空热处理。淬火后应及时回火,并根据技术要求采用不同的回火工艺。 消应力退火:模具工作零件在粗加工后应进行消应力退火处理,具目的是消除粗加工所造成的内应力,以免淬火叫产生过大的变形和裂纹。对于精度要求高的模具,在磨削或电加工后还需经过消应力回火处理,有利于稳定模具精度,提高使用寿命。 2.模具材质不好在后续加工中容易碎裂 不同材质的模具寿命往往不同。为此,对于冲模工作零件材料提出两项基本要求: (一)材料的使用性能应具有高硬度(58~64HRC)和高强度,并具有高的耐磨 性和足够的韧性,热处理变形小,有一定的热硬性; (二)工艺性能良好。冲模工作零件加工制造过程一般较为复杂.因而必须具 有对各种加工工艺的适应性,如可锻性、可切削加工性、淬硬性、淬透 性、淬火裂纹敏感性和磨削加工性等。通常根据冲压件的材料特性、生 产批量、精度要求等,选择性能优模具材料,同时兼顾其工艺性和经济

IATF16949风险分析及失效模式控制程序

IATF16949风险分析及失效模式控制程序 (word版可编辑修改,含流程图) 1、目的 为了持续的进行风险分析,根据对顾客的影响严重度、频度和探测度使用潜在失效模式潜对实际的回馈、现场返回及修理、投诉、报废以及任何返土进行风险分析。评价潜在失效对顾客产生的后果,编制一个潜在失效模式的分级表,以便建立一个考虑预防/纠1L措施的优选体系。 2、适用范围 本公司新开发的直接交汽车厂的产品,或客户有要求时,识别和评估所有生产过程和基础设施设备的内部和外部风险,确保生产的输出,确保顾客的要求得到满足。在先期产品质量策划的产品设计开发阶段和量产前须执行潜在失效模式及后果分析。(公司暂无产品设计开发,DFMEA不适用) 3、定义 3. 1 PMEA:潜在失效模式及后果分析(Potential Failure Mode and Effects Analysis)在产品的设计策划阶段对产品的各部份和基础设施设备逐1进行分析,找出失效模式,分析可能产生的后果,鉴定失效的原因,评估其风险程度(RPN)从而采取相应的措施,减少失效的危害,提高产品/过程质量,确保顾客满意的一种系统化的管理方法。包括设计FMEA

不锈钢制管模具失效分析及防止粘着磨损对策

不锈钢制管模具失效分析及防止粘着磨损对策 不锈钢型材以其坚固,易保养,耐磨损,抗氧化及豪华气派等特点,广泛用于建筑,冶金,化工,医疗及商场,宾馆,住宅等的装饰, 因而不绣钢制管业发展迅速, 在不锈钢制管生产过程中主要工序都要靠模具完成, 如纵剪, 成型, 拉延, 整形, 定径等工序, 而模具的磨损是失效的主要形式. 1 模具磨损的类型 模具材料为, 生产工艺流程为, 下料一铸造, 球化退火. 粗车, 热处理, 机械加工, 磨平面, 磨内孔, 数控型面, 抛光, 按常规热处理方法, 即淬火, 低温回火, 硬度60 以上,在生产过程是模具型面出现白亮带或斑点, 有不平的手感, 在型材表面出现划痕或亮带,表明模具困磨损而失效,不能继续使用, 根据粘着磨损的定义, 即磨损面发生相对滑动时,因相冷焊作用产生粘着点, 该点在剪切应力作用下变形以致断裂, 使材料从一个表面迁移到另一个表面, 在作用力一定的条件下, 这种材料的迁移方向和程度主要取决于模具, 型材的化学成分和结合部分的相对强度. 2 磨损原因 2.1 据制管厂家信息反馈,同样的模具制作不同质量的板材,模具磨损程度不一样, 进口板材几首不磨损, 而某些国内厂家的板材磨损, 这主要是板材粗晶所致,在压延时晶界及晶粒位向不同, 各晶粒变形不均,粗晶变形大而不均,严重者出现粗糙的表面呈桔皮状, 这样的板材对模具损害较大. 2.2 所加工的模具经常规热处理,硬度一般为以上, 而被成型的板材料的奥氏体,其硬度为,二者相差悬殊, 在一定压力下, 容易被焊合. 2.3 不锈钢具有高的屈服强度,故在成型时需要较大的能量,一般要比低碳钢成型所需要能量大2倍之多,这主要是奥氏体不锈钢在成型过程中另工硬化速度快, 由原始硬度可骤增到近, 强度迅速提高. 2.4 模具在动力作用下,以动运转, 使不锈钢板渐变形, 成型,此时模具承受一个大的正压力和摩擦力, 摩擦的大小与压力P成正比,与板材加工硬化速成度成正比,继续动摩擦,二者材料元素互溶,形成冷焊?在剪切作用下,材料从一个表面迁移到另一个表面, 模具失效. 3 防止模具粘着磨损对策

模具失效分析论文

模具失效分析作业 1.什么是模具寿命?如何提高模具寿命? 模具因为磨损或者其他形式失效、种植不可修复而报废之前所加工的产品的件数,称模具的使用寿命,简称模具寿命。指在保证制件品质的前提下,所能成形出的制件数。 模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能服役。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续服役。 1模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 模具寿命与模具类形和结构有关,它是一定时期内的模具材料性能、模具设计与制造水平.模具热处理水平以及使用及维护水平的综合反映。模具寿命的高低在一定程度上反映一个地区、一个国家的冶金工业、机械制造工业水平。 2模具失效形式及机理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 (1)磨损失效 模具在服役时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分为以下几种: 1)疲劳磨损两接触表面相对运动时,在循环应力(机械应力与热应力的作用下,使表面金属疲劳脱落的现象称为疲劳磨损。 2)气蚀磨损和冲蚀磨损气蚀磨损金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。 冲蚀磨损液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。 3)磨蚀磨损在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。

相关文档