文档库 最新最全的文档下载
当前位置:文档库 › 直线电机的PID控制器设计

直线电机的PID控制器设计

直线电机的PID控制器设计
直线电机的PID控制器设计

基于MATLAB的直线电机PID控制器设计

摘要

随着现代工业的飞快发展,控制对象日益复杂,对其的性能控制要求也不断提高,致使人们寻找更好的控制方法,其中以改进PID控制最为典型。PID控制器具有结构简单、容易实现、控制效果好、鲁棒性强等特点,是目前最稳定的控制方法之一。它所涉及的参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。

直线电机是近年来国内外积极研究发展的新型电机之一,凭借自身的特性在以直线运动的工业控制中,有比旋转电机巨大的优越性。可广泛应用于交通运输、起重搬运、物流传输装置、国防及煤矿运输、车床进给等方面,发展前景十分广阔。

传统的比例积分微分( PID) 控制器参数往往因整定不良、性能欠佳,对运行状况的适应性很差。简单的控制又不能很好地适应对象系统特性变化时的最佳控制要求。因此,鉴于控制方法目前仍有广泛应用,对参数整定方法的研究将具有很好的应用价值。本文根据稳定边界法则及Ziegler-Nichol算法,以直线电机控制模型为例介绍如何在MATLAB 工具帮助下整定并验证PID 控制器参数,使参数的整定变得简单、易行,使整定效果更优化。

关键词:直线电机PID控制 MATLAB 控制系统参数整定系统仿真

Abstract:

With the fast development of modern industry, more complicated control object, its performance control requirements improve continuously, cause people looking for better control method, which to improve PID control is the most typical example. The PID (Proportional-Integral-Derivative) control is one of the most common control methods at present. Its structure is simple and easy to implement, however, the control effect is perfect and it has a strong robust characteristics. The physical parameters is, meaning of ,theoretical analysis of system is integrity, and it is familiar by the engineering sector, which in the industrial process control has been widely used.

Linear motor is one of the studied new motor. Because of its peculiarity, the linear motor performed better than rotary motor in the control systems when the moving route is linear. Its application range extends widely and widely. And it has been applied in many fields.

However, the traditional parameter adaptability of proportion-integral-differential (PID) controller to the operating situation is very bad sometimes because the reduction and performance isn't good. Simple control and can't well adapt to changes in the system characteristics of the object of optimal control requirements. Therefore, in view of the control method is currently there are still widely used, to the study of the method of parameter setting will have a good application value. According to the stable boundary principle and Ziegler-Nichol algorithm, this paper introduces how to reduce and validate the PID controller parameter with the help of MATLAB tool taking the linear motor control model as an example. Making the parameters set becomes simple, easy to operate, and make the setting effect more optimization.

Key words:Linear motor,PID control, Matlab, Control system, Parameters setting, System simulation

目录

基于MATLAB的直线电机PID控制器设计 ........................................................................... I 摘要........................................................................................................................................ I 关键词:................................................................................................................................... I Abstract: .............................................................................................................................. I I Key words: ........................................................................................................................... I I 第一章引言. (1)

第二章直线直流电机控制系统 (3)

1、直线电机进给系统的研究现状 (3)

2、直流直线电机的工作原理 (4)

3、直流直线电机数学模型 (6)

4、控制方案 (7)

第三章PID控制器及MATLAB简介 (9)

1、PID控制简介 (9)

1)P控制 (9)

2)PI控制 (9)

3)PD控制 (10)

4)PID控制 (10)

2、MATLAB简介 (12)

第四章控制系统及PID参数整定方法 (15)

1、控制系统构成 (15)

2、PID参数整定的几种方法概述 (15)

2.1.PID参数整定方法 (15)

2.2.PID调整方式 (16)

第五章直线电机PID控制器的设计 (21)

1.Ziegler-Nichols整定方法 (21)

2.稳定边界法则 (22)

3.PID参数的整定 (22)

4.PID参数的改进 (27)

第六章结论与展望 (33)

第一章

第一章引言

随着科学技术的发展和经济水平的提高,人们也逐渐开始追求个性化、自动化的生活,致使控制对象日益复杂,对控制的精度性和可靠性的要求却越来越高。已经成熟的传统控制理论(包括经典控制理论和现代控制理论)和技术在实际应用中受到了某种程度的严峻挑战。尤其是在学习控制研究和机器人控制方面,矛盾日渐突出,迫切需要为自动控制学科注入新的活力。智能控制就是在此时应运而生的。智能控制的产生是控制领域的一次飞跃,是自动控制发展的高级阶段,是控制论、系统论、信息论和人工智能等多种学科交叉和综合的产物,为解决那些用传统方法难以解决的复杂系统的控制提供了有效的理论和方法。尤其是近年来以智能控制理论的新成果与传统控制理论的成功结合为基础的智能控制系统的研究己成为控制界关注的热点

在工业过程控制中,目前采用最多的控制方式依然是PID方式。它具有容易实现、控制效果好、鲁棒性强等特点,同时它原理简单,参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。PID 控制也是最早发展起来的控制策略之一,被广泛应用于过程控制和运动控制中。但在实际系统设计过程中,设计师经常受到参数整定方法繁杂困扰,PID控制器参数往往因整定不良、性能欠佳,对运行工况的适应性很差。而计算机技术和控制理论的发展为PID 控制器参数的整定提供了新的途径。

MATLAB是由美国Mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,构成了一个灵活、综合、具有丰富特性的控制系统设计环境。借助于MA TLAB 设计环境可以直观、方便地对系统进行分析、计算,轻松解决PID 参数整定设计工作。

直线电机主要是直线电动机,它是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。直线电机的结构可以根据需要制成扁平型、圆筒型或盘型等各

第一章引言

种型式,它可以采用交流电源、直流电源或脉冲电源等各种电源进行工作。直线电机可以在几秒钟内把一架几千公斤重的直升机拉到每小时几百公里的速度,它在真空中运行时,其时速可达几千甚至上万公里的速度。直线直流电机是直线电机应用广泛的一个重要分支。它被广泛应用于航天、工业检测、自动化控制、信息系统、民用及其他各个技术领域。在这些领域中,它可以用作电子计算机外围设备、自动化仪器仪表、精密直线位移的机械手及机器人中用作增量运动的执行元件,尤其是近年来在机床进给系统中的应用,更加引起人们的关注。直线直流电机有着明显的优点,其运行效率高,没有功率因数低的问题;控制比较方便、灵活。直线直流电动机和闭环控制系统结合在一起,可精密地控制位移,其速度和加速度控制范围广,调速的平滑性好。

由直线电机驱动的进给系统,其主要性能包括速度、加速度、推力、定位精度、重复定位精度、机械特性(速度-推力特性)、动态性能和热性能等。为了提高直线进给的性能,目前对直线电机进给系统的研究主要在电机的结构和控制两方面。其中,控制技术的研究主要在于研究用不同的控制策略来设计控制器,及采用高性能的硬件等。

直线电机在我国的研究与应用起步较晚,水平落后于国外很多。目前国内对直线电机进给系统采用的控制策略主要有传统的PID控制、解耦控制;现代控制方法中的非线性控制、自适应控制、滑模变结构控制、H控制、模糊控制及人工智能控制等。

本文将稳定边界法与传统PID控制、Ziegler—Nichol算法相结合,设计出新型直线电机的PID控制器,以求实现对PID的参数最佳调整,并作为直线电机进给伺服系统的控制方案。在完成控制器的设计后,对新控制器的控制性能进行仿真分析,以验证新型PID控制器在直线进给系统控制中的可行性。采用MATLAB仿真的研究方法,将设计出的新型PID控制器应用于直线电机进给系统中,为机床的控制策略在理论和应用上做创新性的探索研究。

第二章

第二章直线直流电机控制系统

1、直线电机进给系统的研究现状

直线电机的概念早在1838年法拉第发现电磁感应定律后,几乎是和旋转电机的概念同时提出的。1840年惠斯登(Wheatstone)开始试制直线电机,但没有获得成功。此后由于制造技术、工程材料以及控制技术的限制,直线电机的研究与应用一直处于停滞状态。1945年,美国西屋电气公司研制成功电力牵引的飞机弹射器,它以7400Kw的直线电机为动力,在4.15内成功地将一架重为4535Kg的喷气式飞机在165m的行程内由静止加速到 188Km小。它的试制成功,使直线电动机的可靠性等优点受到肯定阴。此后,直线电机作为高速列车的驱动装置,得到了各国的高度重视,并计划予以实施,但是仍然遇到了许多难于解决的技术问题。直到1965年后,随着控制技术的进步和许多新材料的出现,采用直线电机的实用设备才被逐渐开发出来。如采用直线电机的MHD泵、自动绘图仪、磁头定位装置、电唱机、缝纫机、空气压缩机、输送装置、仪表和计算机等。

而直线电机在高速机床上的应用则始于1993年,德国在第10届汉诺威的欧洲机床展览会(EMO)上展出了采用直线电机驱动的XHC240型加工中心。其x、y、z轴均采用德国Indramat 公司生产的感应式交流直线伺服电机,最高进给速度为60m/min,最大加速度为1g。同时美国Ingersoll铣床公司研制成功了HVM800和HVM600型高速加工中心,其x、y、Z轴均采用美国Anorad公司生产的永磁式直线电机,最高进给速度达76.2m/min,加(减)速度为1-1.5g。

在第10届EMO上,仅有德国的EX-Cel-O公司展出采用直线电机的机床,而在第12届EMO(汉诺威,1997)上,已有20多家公司展出了采用这种传动装置的机床。像法国 Renault Automation的高速加工中心、意大利Saimp的磨床、西班牙Danobat的加工中心、澳大利亚幻 Kirby Engineering的晰磨机等都采用了Siemens公司的直线电机作为进给传动装置。

直线电机在机床上的应用已不是样品,不是个例。近几年已在几十家著名企业的几十类产品上推广应用。据有关资料介绍,1997年直线电机驱动的机床销售量已达300台。2001年,德国DMG公司已在28种机型上采用直线电机,年产量达1500台(约3000多根直线电机驱动

轴),占其总产量的1/3。意大利JOBS公司自1999年开发出LinX直线电机驱动的龙门加工中心后,2003年该公司LinX系列产品已占全公司总产量的60%(年产50台大型龙门加工中心和龙门铣床),并成为公司的主要利润来源。有专家预测,2005年直线电机驱动的机床将达到3000台,到2010年世界上将有20%的数控机床采用直线电机进给驱动,而这些机床都是高档机床,因此其产业化前景是不言而喻的。

中国在直线电机及驱动控制技术的研发、应用与世界水平相差甚远,至少有十年的差距。无论产品的性能、品种,还是在机床上的应用仅仅处于起步阶段,甚至大量还是空白。国内直线电机技术的研究始于20世纪70年代,上海电机厂开始研制并生产直线异步电动机;宁波大学的丁志刚等对直线异步电机的工作原理、结构和控制系统进行了一定的研究;西安交通大学的陈世坤等人对感应式直线电机进行了研究,并将其应用到颈动脉血液泵驱动中。从九十年代开始,沈阳工业大学的郭庆鼎等人开始对永磁同步直线电机的运动控制进行研究,并制造出了推力为100N的实验样机,其研究的重点是电动机的控制方式及伺服系统。清华大学精密仪器与机械学系制造工程研究所也成功地研制了高频响直流直线电动机,其行程可达 5mm,截止频率大于 250Hz,推力达几百牛顿,用于驱动中突变活塞车床的横向刀架,在实际加工中获得了较好的应用效果。

2、直流直线电机的工作原理

直线电机的工作原理与旋转电机相比,并没有本质的区别。永磁式直流直线电机可以看作是由永磁旋转直流电机演变而来的。对应于旋转电机的转子部分,称为直线电机的初级,对应转子部分为直线电机的次级。电机运动轴与杯套固定在一起,杯套上有缠绕线圈,线圈置于永磁体产生的磁场中,在线圈的行程范围内,永久磁铁给予它大致均匀的磁场。当线圈中通入直流电流时,载有电流的导体在磁场中就会受到电磁力的作用,在电磁力的作用下,电机运动轴直线运动。

图1 旋转电机图2 直线电机

图3 短初级图4 短次级

图5 动铁型图6 动圈型

直线直流电机的基本结构分类如图7所示。其结构如下图7。

图7 直线直流电机结构的基本分类

本文选用的电机为永磁式动圈型直流直线电动机,永磁式是采用永久磁铁作磁通源。永磁式直线直流电动机容易达到无刷无接触运行。其结构如图6所示,图中线圈可沿铁棍轴向自由移动。通常情况,电磁力大小:

F=BIL=BlNI (2-1)

式中,N为线圈匝数;l为线圈导体每匝处在磁场中的平均有效长度;L为绕组线圈总长;B 为线圈所在空间的磁感应强度;I为线圈导体中的电流。

3、直流直线电机数学模型

数学模型是描述实际系统各物理量间关系和系统性能的数学表达式。对电机要认识其运动规律,各量间因果关系或定量关系以便于分析、设计和使用,这就必须建立数学模型。数学模型可用函数关系或图表给出电机的性能,也可用方程描述电机的运动状态。在电机发展史上,电机理论的发展,由依靠实验数据作近似分析,到利用矢量代数表示交流稳态,及绘制矢量图和圆图以图形表示数学模型,再应用代数方程及微分方程作量化的分析,每一阶段的改进都使电机的数学分析变得更为方便,使人们对电机的了解更加深入。

直流直线电机在运行的实际过程中,会受到外界的各种摩擦力和负载力等力的作用,为此,在建立实际运动模型时必须一一考虑。为了建立通用的数学模型,首先作如下假设:

(1) 假设电机的磁路是线性的,不考虑饱和效应;

(2) 不考虑电机的磁滞损耗;

根据直流直线电机的运动特性和动态特性可知,直流直线电机电压的动态方程和机械的动态方程为:

(3-1)

(3-2)

(3-3)

(3-4)

其中,—线圈受到的电磁力 m—线圈质量 V—线圈速度

x—直线电机位移—回路电压—反电动势

—回路电流—磁感应强度—线圈导体电阻

—线圈导体电感F—外力—负载力

L—线圈在磁场中的有效长度K—弹性系数b—粘滞摩擦系数

求拉普拉斯变换、合并化简,并把电机安装时的受力和其他的外部扰动力都用N(S)来表示,

于是得到直流直线电机模型的方框图为图所示。

图8 电机本体的数学模型

得出传递函数为[1]:

文中选用的电机的设计参数如下表:

4、控制方案

为了获取控制信号, 在点位控制中,将给定位移作为给定值r,而将检测到的位移量作

为被控制量y,在控制过程中不停地检测y值并与给定值r相比较,将偏差e经过一定的变换后得到控制电压并输出使电机运动,这样只要有偏差就会有输出变化,电机就会运动,直到偏差达到允许范围为止,这时也达到了我们的控制目的;在高频运动时,可以首先给电机加上一定频率的成正弦变化的电压,使电机运动。此时电机的运动属于受迫振动,它的振动频率也就是给电机施加的正弦波的频率,只要控制正弦电压的电压幅值,就可以控制电机振动时的振幅。

第三章

第三章PID控制器及MATLAB简介

1、PID控制简介

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

经典PID控制的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。具体分类如下:

1)P控制

这类控制输出的变化与输入控制器的偏差成比例关系,输入偏差越大输出越大。单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定剩余误差存在的场合。在工业生产中,比例控制规律使用较为普遍,它是控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是不能最终消除剩余误差的缺点限制了它的单独使用。

2)PI控制

克服剩余误差的办法是在比例控制的基础上加上积分控制。积分控制器的输出与输入偏差对时间的积分成正比。它的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有

可以消除剩余误差。

3)PD控制

当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟。因此要引入比例、微分作用,即PD控制。它比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小偏差的幅度,节省控制时间,显著改善控制质量。

4)PID控制

最为理想的控制当属比例-积分-微分控制。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除剩余误差能力,还有微分作用的超前控制功能。当偏差扰动出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使振荡幅度减小。由于比例作用是持久和起主要作用的控制规律,积分作用可以慢慢把剩余误差克服掉,因此可使系统比较稳定;只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成。是一种基于“过去”,“现在”和“未来”信息估计的简单算法。常规PID控制系统原理框图如下图所:

图1 PID控制系统原理图

PID 控制器的数学描述为:

(1-1)

其传递函数可表示为:

(1-2)

比例部分:Kp*e(t) 在PID控制器中,比例环节的作用是对偏差瞬间做出反应。偏差一旦产生,控制器立即产生控制作用,使控制量向偏差减小的方向变化。控制作用的强弱取决于比例系数Kp,一般地,增大比例系数Kp,将加快系统响应速度,有利于减小静差,但并不能根本上消除静差,且过大的比例系数会使系统产生超调,并产生振荡或使振荡次数增多,使调节时间加长。当比例系数大于一定值时还会使系统稳定性变差甚至使系统变得不稳定。比例系数过小又会使系统动作迟缓。故而,Kp必须恰当选择,才能达到过渡时间少、静差小而又稳定的效果。

积分部分:Kp/Ti 从积分部分的数学表达式可以知道,只要存在偏差,则它的控制作用就不断的在加;只有在偏差为0时,它的积分才能是一个常数,控制作用才是一个不会增加的常数。可见,积分作用可以消除系统的偏差。

积分控制通常与比例控制或比例微分控制联合使用,构成PI或PID控制。积分环节的调节作用虽然会消除静态误差,但也会降低系统的响应速度,增加系统的超调量。积分常数Ti 越大,积分的积累作用越弱,这时系统在过渡时不会产生震荡;但是增大积分常数Ti会减慢静态误差的消除过程,消除偏差所需的时间也越长,但可以减小超调量,提高系统的稳定性。当Ti较小时,则积分的作用较强,这时系统过渡时间中有可能产生振荡,不过消除偏差所需的时间较短。所以必须根据实际控制的具体要求来确定Ti。

微分部分:KP*Td 微分控制通常与比例控制或比例积分控制联合使用,构成PD或PID控制。微分环节的作用是阻止偏差的变化,可改善系统的动态特性。它是根据偏差的变化趋势(变化速度)进行控制。偏差变化越快,微分控制器的输出就越大,并能在偏差值变大之前进行修正。微分作用的引入,将有助于减小超调量,克服振荡,使系统趋于稳定,特别对高阶系统非常有利,它加快了系统的跟踪速度。但微分的作用对输入信号的噪声很敏感,对那些噪声较大的系统一般不用微分,或在微分起作用之前对输入信号进行滤波。

微分部分的作用由微分时间常数Td决定。Td越大时,则它抑制偏差e(t)变化的作用越强;Td越小时,则它反抗偏差e(t)变化的作用越弱。微分部分显然对系统的稳定有很大的作用。

总之,各部分的作用可以概括如下:

比例:用于偏差的“粗调”,保证系统的“稳”;

积分:用于偏差的“细调”,保证系统的“准”;

微分:用于偏差的“细调”,保证系统的“快”。

PID控制器由于用途广泛、使用灵活,已有系列化产品,使用过程中只需合理设定三个参数(Kp , Ki 和Kd )即可基本实现所要求的功能。在很多情况下,并不一定需要整定全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的部分。虽然PID 在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作效果不是太好,但不可否认PID控制器是最简单的有时却是最好控制器的事实。

2、MATLAB简介

Matrix Laboratory(缩写为Matlab)软件包,是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。MATLAB是由美国Mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

Matlab家族成员及其功能大致包括以下几部分:

MATLAB是MATLAB产品家族的基础,它提供了基本的数学算法,例如矩阵运算、数值分析算法,MATLAB集成了2D和3D图形功能,以完成相应数值可视化的工作,并且提供了一种交互式的高级编程语言——M语言,利用M语言可以通过编写脚本或者函数文件实现用户自己的算法。

MATLAB Compiler是一种编译工具,它能够将那些利用MATLAB提供的编程语言——M语言编写的函数文件编译生成为函数库、可执行文件、COM组件等等,这样就可以扩展MATLAB功能,使MATLAB能够同其他高级编程语言例如C/C++语言进行混合应用,取长补短,以提高程序的运行效率,丰富程序开发的手段。

利用M语言还开发了相应的MATLAB专业工具箱函数供用户直接使用。这些工具箱应用的算法是开放的可扩展的,用户不仅可以查看其中的算法,还可以针对一些算法进行修改,

甚至允许开发自己的算法扩充工具箱的功能。目前MATLAB产品的工具箱有四十多个,分别涵盖了数据采集、科学计算、控制系统设计与分析、数字信号处理、数字图像处理、金融财务分析以及生物遗传工程等专业领域。

Simulink是基于MATLAB的框图设计环境,可以用来对各种动态系统进行建模、分析和仿真,它的建模范围广泛,可以针对任何能够用数学来描述的系统进行建模,例如航空航天动力学系统、卫星控制制导系统、通讯系统、船舶及汽车动力学系统等等,其中包括连续、离散,条件执行,事件驱动,单速率、多速率和混杂系统等等。Simulink提供了利用鼠标拖放的方法建立系统框图模型的图形界面,而且Simulink还提供了丰富的功能块以及不同的专业模块集合,利用Simulink几乎可以做到不书写一行代码完成整个动态系统的建模工作。

Stateflow是一个交互式的设计工具,它基于有限状态机的理论,可以用来对复杂的事件驱动系统进行建模和仿真。Stateflow与Simulink和MATLAB紧密集成,可以将Stateflow创建的复杂控制逻辑有效地结合到Simulink的模型中。

在MATLAB产品族中,自动化的代码生成工具主要有Real-Time Workshop(RTW)和Stateflow Coder,这两种代码生成工具可以直接将Simulink的模型框图和Stateflow的状态图转换成高效优化的程序代码。利用RTW生成的代码简洁、可靠、易读。目前RTW支持生成标准的C语言代码,并且具备了生成其他语言代码的能力。整个代码的生成、编译以及相应的目标下载过程都可以自动完成,用户需要做的仅仅使用鼠标点击几个按钮即可。MathWorks 公司针对不同的实时或非实时操作系统平台,开发了相应的目标选项,配合不同的软硬件系统,可以完成快速控制原型(Rapid Control Prototype)开发、硬件在回路的实时仿真(Hardware-in-Loop)、产品代码生成等工作。

另外,MATLAB开放性的可扩充体系允许用户开发自定义的嵌入式系统目标,利用Real-Time Workshop Embedded Coder能够直接将Simulink的模型转变成效率优化的产品级代码。代码不仅可以是浮点的,还可以是定点的。

MATLAB开放的产品体系使MATLAB成为了诸多领域的开发首选软件,并且,MATLAB 还具有300余家第三方合作伙伴,分布在科学计算、机械动力、化工、计算机通讯、汽车、金融等领域。接口方式包括了联合建模、数据共享、开发流程衔接等等。

MATLAB结合第三方软硬件产品组成了在不同领域内的完整解决方案,实现了从算法开发到实时仿真再到代码生成与最终产品实现的完整过程。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。在此环境下所解问题的MATLAB语言表述形式和其数学表达形式相

同,不需要按传统的方法编程并能够进行高效率和富有创造性的计算,同时提供了与其它高级语言的接口,是科学研究和工程应用必备的工具。PID控制器的设计就是一种基于MATLAB 软件来实现的。目前,在控制界、图像信号处理、生物医学工程等领域都得到广泛的应用。

第四章

第四章控制系统及PID参数整定方法

1、控制系统构成

对控制对象的工作状态能进行自动控制的系统称为自动控制系统,一般由控制器与控制对象组成,控制方式可分为连续控制与反馈控制,即一般所称,开环回路与闭环回路控制。

连续控制系统的输出量对系统的控制作用没有任何影响,也就是说,控制端与控制对象为单向作用,这样的系统亦称开环回路系统。

反馈控制是指将所要求的设定值与系统的输出值做比较,求其偏差量,利用这偏差量将系统输出值与设定值调为一致。

反馈控制系统方块图一般如图1所示:

图1反馈控制系统方块图

2、PID参数整定的几种方法概述

2.1.PID参数整定方法

1)Relay feedback :利用Relay 的on-off 控制方式,让系统产生一定的周期震荡,再

用Ziegler-Nichols调整法则去把PID值求出来。

2)在线调整:实际系统中在PID控制器输出电流信号装设电流表,调P值观察电流表是否有一定的周期在动作,利用Ziegler-Nichols把PID求出来,PID值求法与Relay feedback 一样。

3)波特图&根轨迹:在MATLAB里的Simulink绘出反馈方块图。转移函数在用系统辨识方法辨识出来,之后输入指令算出PID值。

2.2.PID调整方式

图2 PID调整方式

如上描述之PID调整方式分为有转函数和无转移函数,一般系统因为不知转移函数,所以调PID值都会从Relay feedback和在线调整去着手。波特图法及根轨迹则相反,必须要有转移函数才能求取PID的各个参数值,其中关键部分就在于要先用系统辨识方法,辨识出转移函数出来,再用MATLAB里的Simulink画出反馈方框图,调出PID值。

所以整理出来,调整PID值的方法有在线调整法、Relay feedback、波特图法、根轨迹法。使用波特图法和根轨迹法的前提是要由系统辨识出转移函数。如下图3所示。

pid控制器设计

目录一设计任务与要求 二系统校正的基本方法与实现步骤 三PID的控制原理与形式模型 四设计的原理 五设计方法步骤及设计校正构图 六设计总结 七致谢 八参考文献

一 设计任务与要求 校正对象: 已知单位负反馈系统,开环传递函数为:s s s s G 1047035.87523500 )(23++=,设 计校正装置,使系统满足: (1)相位稳定裕量o 45≥γ (2)最大超调量%5≤σ 二 系统校正的基本方法与实现步骤 系统校正就是在自动控制系统的合适位置加入适当的装置,以改善和提高系统性能。按照校正装置在自动控制系统中的位置,可分为串联校正,反馈校正和顺馈补偿。 顺馈补偿方式不能独立使用,通常与其他方式同时使用而构成复合控制。顺馈补偿装置满足一定条件时,可以实现全补偿,但前提是系统模型是准确的,如果所建立的系统模型有较大误差,顺馈补偿的效果一般不佳。 反馈校正主要是针对系统中的敏感设备——其参数可能随外部环境条件发生变化,从而影响自动控制系统的性能——给敏感设备增加局部负反馈支路以提高系统的抗扰能力。由于负反馈本身的特性,反馈校正装置通常比较简单,只有比例(硬反馈)和微分(软反馈)两种类型。 串联校正是最基本也是最常用的校正方式,根据校正装置是否使用独立电源,可分为有源校正装置和无源校正装置;根据校正装置对系统频率特性的影响,可分为相位滞后、相位超前和相位滞后-超前校正装置;根据校正装置的运算功能,可分为比例(P )校正、比例微分(PD )校正、比例积分(PI )校正和比例积分微分(PID )校正装置。

三 PID 控制的原理与形式模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )()()()(0++=? 相应的传递函数为: ??? ? ? ? + +=S S s K K K G d i p c 1)( S S S K K K d i p 12++ ?= PID 控制的结构图为: 若14

数字PID控制器设计

数字PID控制器设计 实验报告 学院电子信息学院 专业电气工程及其自动化学号 姓名 指导教师杨奕飞

数字PID控制器设计报告 一.设计目的 采用增量算法实现该PID控制器。 二.设计要求 掌握PID设计方法及MATLAB设计仿真。 三.设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于,超调量不大于20%,调节时间不大于。采用增量算法实现该PID控制器。 四.设计原理 数字PID原理结构图 PID控制器的数学描述为:

式中,Kp为比例系数;T1为积分时间常数;T D为微分时间常数。 设u(k)为第K次采样时刻控制器的输出值,可得离散的PID表达式为:? 使用模拟控制器离散化的方法,将理想模拟PID控制器D(s)转化为响应的理想数字PID控制器D(z).采用后向差分法,得到数字控制器的脉冲传递函数。

2.增量式PID控制算法 u(k)=u(k-1)+Δu(k) 增量式PID控制系统框图 五.Matlab仿真选择数字PID参数 利用扩充临界比例带法选择数字PID参数,扩充临界比例带法是以模拟PID调节器中使用的临界比例带法为基础的一种数字PID参数

的整定方法。其整定步骤如下 1)选择合适的采样周期T:,因为Tmin<1/10 T,选择采样周期为; 2)在纯比例的作用下,给定输入阶跃变化时,逐渐加大比例作用 Kp(即减小比例带δ),直至系统出现等幅震荡,记录比例增益 Kr,及振荡周期Tr 。Kr成为临界振荡比例增益(对应的临界比 例带δ),Tr成为临界振荡周期。 在Matlab中输入如下程序? G=tf(1,[1/150,36/150,185/150,1]); p=[35:2:45]; for i=1:length(p) Gc=feedback(p(i)*G,1); step(Gc),hold on end; axis([0,3,0,]) 得到如下所示图形: 改变其中的参数P=[35:2:45]为p=[40:1:45]得到下图曲线,得Kr约为43,Tr

根据SIMULINK的PID自动控制控制器设计与仿真

基于SIMULINK的PID控制器设计与仿真 1.引言 MATLAB是一个适用于科学计算和工程用的数学软件系统,历经多年的发展,已是科学与工程领域应用最广的软件工具。该软件具有以下特点:数值计算功能强大;编程环简单;数据可视化功能强;丰富的程序工具箱;可扩展性能强等。Simulink是MATLAB下用于建立系统框图和仿真的环境。Simulink环境仿真的优点是:框图搭建方便、仿真参数可以随时修改、可实现完全可视化编程。 比例-积分-微分(Proporitional-Integral-Derivative,PID)是在工业过程控制中最常见、应用最广泛的一种控制策略。PID控制是目前工程上应用最广的一种控制方法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因而易于工程实现,同时也可获得较好的控制效果。 2.PID控制原理 当我们不能将被控对象的结构和参数完全地掌握,或者是不能得到精确的数学模型时,在这种情况下最便捷的方法便是采用PID 控制技术。为了使控制系统满足性能指标要求,PID 控制器一般地是依据设定值与实际值的误差,利用比例(P)、积分(I)、微分(D)等基本控制规律,或者是三者进行适当地配合形成相关的复合控制规律,例如,PD、PI、PID 等。 图2-1 是典型PID 控制系统结构图。在PID 调节器作用下,对误差信号 分别进行比例、积分、微分组合控制。调节器的输出量作为被控对象的输入控制量。

图2-1典型PID 控制系统结构图 PID 控制器主要是依据给定值r (t )与实际输出值y (t )构成控制偏差,用公式表示即e (t )=r (t )-y (t ),它本身属于一种线性控制器。通过线性组合偏差的比例(P )、积分(I )、微分(D ),将三者构成控制量,进而控制受控对象。控制规律如下: 1 01() ()[()()]p d i de t u t K e t e t dt T T dt =++? 其传递函数为: ()1()(1)()p d i U s G s K T S E s T s = =++ 式中:Kp--比例系数; Ti--积分时间常数; Td--微分时间常数。 3.Simulink 仿真 3.1 建立数学建模 3.2 仿真实验 在传统的PID 调节器中,参数的整定问题是控制面临的最主要的问题,控制系统的关键之处便是将Kp 、Ti 、Td 三个参数的值最终确定下来。而在工业

变速积分PID控制系统设计

课程设计报告设计题目变速积分PID控制系统设计课程名称计算机控制技术B 姓名苏丹学号2008100731 班级自动化0803 教师闫高伟

设计日期2011年7月5日 目录 摘要............................................................ 错误!未定义书签。Abstract .. (4) 第1章数字PID及变速积分简介.................................... 错误!未定义书签。 1.1 数字PID发展介绍 (1) 1.2 PID控制器工作原理 (2) 1.2.1 模拟式PID控制算法.................................. 错误!未定义书签。 1.2.2 数字式PID控制算法 (3) 1.3 变速积分简介............................................... 错误!未定义书签。第2章系统分析与设计............................................ 错误!未定义书签。 2.1 系统功能分析............................................... 错误!未定义书签。 2.1.1 对象整体分析 (5) 2.1.2系统分析与设计与系统开环增益 (6) 2.2计算机系统选择分析 (6) 2.2.1 8088CPU简介 (6) 2.2.2 其余模块的使用 (7) 2.3 软件设计分析 (12) 第3章硬件设计与软件编程 (12) 3.1 硬件设计 (12) 3.1.1 系统方框图 (12) 3.1.2 线路原理图 (12) 3.2 软件编程 (13) 3.2.1 软件流程图 (14) 3.2.2 程序源代码 (21) 第4章设计仿真与运行分析 (21) 4.1 结果分析 (21) 4.2 matlab仿真 (22) 总结.............................................................................错误!未定义书签。附录....... (26) 附录1 线路原理图 (28) 附录2 TDN-AC/ACS+教学实验系统介绍 (28) 附录3 参考资料 (30)

PID控制器设计

PID 控制器设计

PID 控制器设计 被控制对象的建模与分析 在脑外科、眼科等手术中,患者肌肉的无意识运动可能会导致灾难性的后果。为了保证合适的手术条件,可以采用控制系统自动实施麻醉,以保证稳定的用药量,使患者肌肉放松,图示为麻醉控制系统模型。 图1结构框图 被控制对象的控制指标 取τ=0.5,k=10,要求设计PID 控制器使系统调节时间t s ≤8s,超调量σ%不大于15%,并且输出无稳态误差。 控制器的设计 PID 控制简介 PID 控制中的积分作用可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。 微分作用可提高系统的响应速度, 但其对高频干扰特别敏感, 甚至会导致系统失稳。 所以, 正确计算控制器的参数, 有效合理地实现 PID 控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。 在PID 控制系统中, PID 控制器分别对误差信号e (t )进行比例、积分与微分运算, 其结果的加权和构成系统的控制信号u (t ),送给对象模型加以控制。 PID 控制器的数学描述为 其传递函数可表示为: 1 1.0) 1.0(++s s k τ )1.0()15.0(1 2++s s 控制器 人 药物 输入 R(s ) 预期松弛程度 C(s) 实际松弛程度 + -

从根本上讲, 设计PID 控制器也就是确定其比例系数Kp 、积分系数T i 和微分系数T d , 这三个系数取值的不同, 决定了比例、积分和微分作用的强弱。控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下, 适当选择控制器的参数使控制仪表的特性和控制对象的特性相配合, 从而使控制系统的运行达到最佳状态, 取得最好的控制效果。下面介绍基于MATLAB 的 Ziegler-Nichols 算法PID 控制器设计。 原系统开环传递函数G(s)=)1.0)(15.0)(11.0(10 +++s s s 做原系统零极点图 图2原系统零极点图

基于MATLAB的PID控制器设计说明

基于MATLAB的PID 控制器设计

基于MATLAB的PID 控制器设计 一、PID控制简介 PID控制是最早发展起来的经典控制策略, 是用于过程控制最有效的策略之一。由于其原理简单、技术成,在实际应用中较易于整定, 在工业控制中得到了广泛的应用。它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数, 经过经验进行调节器参数在线整定, 即可取得满意的结果, 具有很大的适应性和灵活性。 积分作用:可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。 微分作用:可提高系统的响应速度, 但其对高频干扰特别敏感, 甚至会导致系统失稳。 所以, 正确计算控制器的参数, 有效合理地实现 PID控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。 在PID控制系统中, PID控制器分别对误差信号e(t)进行比例、积分与微分运算, 其结果的加权和构成系统的控制信号u(t),送给对象模型加以控制。 PID控制器的数学描述为 其传递函数可表示为: 从根本上讲, 设计PID控制器也就是确定其比例系数Kp、积分系数T i 和微分系数T d , 这三个系数取值的不同, 决定了比例、积分和微分作用的强弱。控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下, 适当选择控制器参数使控制仪表的特性和控制对象的特性相配合, 从而使控制系统的运行达到最佳状态, 取得最好的控制效果。 二、MATLAB的 Ziegler-Nichols算法PID控制器设计。 1、PID控制器的Ziegler-Nichols参数整定 在实际的过程控制系统中, 有大量的对象模型可以近似地由一阶模型 来表示。这个对象模型可以表示为 sL - e sT 1 K G(s) + = 如果不能建立起系统的物理模型, 可通过试验测取对象模型的阶跃响应, 从而得到模型参数。当然, 我们也可在已知对象模型的情况下, 利用MATLAB,通过使用step ( ) 函数得到对象模型的开环阶跃响应曲线。在被控对象的阶跃响应中, 可获取K 、L 和T参数, 也可在MATLAB中由dcgain ( ) 函数求取 K值。

数字PID控制器设计制作(附答案)

数字PID控制器设计 设计任务: 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 具体要求: 1.采用Matlab完成控制系统的建立、分析和模拟仿真,给出仿真结果。 2.设计报告内容包含数字PID控制器的设计步骤、Matlab仿真的性能曲线、采样周期T的选择、数字控制器脉冲传递函数和差分方程形式。 3.设计工作小结和心得体会。 4.列出所查阅的参考资料。

数字PID控制器设计报告 一、设计目的 1 了解数字PID控制算法的实现; 2 掌握PID控制器参数对控制系统性能的影响; 3 能够运用MATLAB/Simulink 软件对控制系统进行正确建模并对模块进行正确的参数设置; 4 加深对理论知识的理解和掌握; 5 掌握计算机控制系统分析与设计方法。 二、设计要求 1采用增量算法实现该PID控制器。 2熟练掌握PID设计方法及MATLAB设计仿真。 三、设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 四、设计原理 1.数字PID原理结构框图

2. 增量式PID 控制算法 ()()()()()01P I D i u k K e k K e i K e k e k ∞ ==++--????∑ =u(k-1)+Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =u(k-1)+(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 所以Δu(k)=u(k)-u(k-1) =Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 整理: Δu(k)= Ae(k)-Be(k-1)+Ce(k-2) A= Kp+Ki+Kd B=-(Kp+2Kd ) C=Kd 五、Matlab 仿真选择数字PID 参数 (扩充临界比例度法/扩充响应曲线法 具体整定步骤) 利用扩充临界比例带法选择数字PID 参数,扩充临界比例带法是 以模拟PID 调节器中使用的临界比例带法为基础的一种数字 PID 参数的整定方法。其整定步骤如下:;

PID控制器设计

PID控制器设计 一、PID控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )( )( )( )( + + =? (1-1)相应的传递函数为: ? ? ? ? ? ? + + =S S s K K K G d i p c 1 ) ( S S S K K K d i p 1 2+ + ? = (1-2) PID控制的结构图为: 若1 4< T i τ,式(1-2)可以写成: = ) (s G c()() S S S K K i P 1 1 2 1 + + ? τ τ 由此可见,当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使积分部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使微分部分发生在系统频率特性的中频段,以改善系统的动态性能。

二、实验内容一: 自己选定一个具体的控制对象(Plant),分别用P 、PD 、PI 、PID 几种控制方式设计校正网络(Compensators ),手工调试P 、I 、D 各个参数,使闭环系统的阶跃响应(Response to Step Command )尽可能地好(稳定性、快速性、准确性) 控制对象(Plant)的数学模型: ()()??? ? ??++=115.01 )(S S S G 2 322++=S S 实验1中,我使用MATLAB 软件中的Simulink 调试和编程调试相结合的方法 不加任何串联校正的系统阶跃响应: (1) P 控制方式: P 控制方式只是在前向通道上加上比例环节,相当于增大了系统的开环增益,减小了系统的稳态误差,减小了系统的阻尼,从而增大了系统的超调量和振荡性。 P 控制方式的系统结构图如下: 取Kp=1至15,步长为1,进行循环 测试系统,将不同Kp 下的阶跃响应曲线绘制在一张坐标图下:

PID控制器设计及仿真

PID控制器设计及仿真 摘要 温度控制对于工业生产以及科学研究都具有重要意义,当前我国科技技术还不太成熟,温度控制领域大多使用传统控制方式为主,该方法精度不高,容易造成系统不稳定,给控制系统带来了很大的困难,正是在上述背景下,本文以电锅炉为研究对象详细分析其温度控制策略。 本文主要针对电锅炉控制方法进行了深入探讨,首先分析的是PID控制策略,该方法的主要运行机理是温度偏差环节通过比例、积分和微分等线性组合从而构成控制部分,完成对电锅炉的控制;由于经典PID控制存在的缺陷,本文加入了补偿器,如Simith预估器、Ziegler-Nichols,并通过Simulink进行了仿真分析,实验结果表示虽然超调量和调节时间下降,但是系统却出现了问题误差,因此本文深入分析了模糊控制理论,将PID控制方法与模糊控制相结合。设计的模糊PID控制策略,通过Simulink的 Fuzzy逻辑箱完成了对电锅炉的稳定控制,仿真实验结果表明,实验的模糊PID控制策略能够较好的达到电锅炉的稳定控制目标,因此是一种较为理想的控制策略。 关键词:电锅炉;温度控制;模糊PID控制;仿真分析

Abstract Temperature control is of great significance for industrial production and scientific research, the current our country science and technology also is not very mature, the temperature control field are mostly using traditional control method is given priority to, the accuracy is not high, easy to cause system instability, the control system to bring very great difficulty, it is under the above background, taking electric boiler as the research object, this paper has a detailed analysis of the temperature control strategy. This paper focuses on the electric boiler control method has carried on the deep discussion and the analysis of the first is the PID control strategy, the main operating mechanism of the method is of temperature deviation by proportion, integral and differential linear combination so as to constitute control part, complete control of the electric boiler; Due to the flaws of the classical PID control, this paper joined the compensator, such as Simith forecast, Ziegler Nichols, and through the Simulink simulation analysis, the results said although the overshoot and adjustment time decreased, but the system has a problem of error, so this paper deeply analyzes the fuzzy control theory, the method of PID control is combined with fuzzy control. Design of Fuzzy PID control strategy, by the Fuzzy logic of the Simulink box has completed the stability control of electric boiler, the simulation results show that the experiment of the Fuzzy PID control strategy can better achieve the stability of the electric boiler control, thus is an ideal control strategy. Key words:The electric boiler; Temperature control; Fuzzy PID control; The simulation analysis

基于MATLAB的PID控制器设计报告

基于MATLAB 的PID 控制器设计 一.PID 控制简介 PID 控制是最早发展起来的经典控制策略, 是用于过程控制最有效的策略之一。由于其原理简单、技术成,在实际应用中较易于整定, 在工业控制中得到了广泛的应用。它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数, 经过经验进行调节器参数在线整定, 即可取得满意的结果, 具有很大的适应性和灵活性。 PID 调节器是一种线性调节器,它根据给定值)(t r 与实际输出值)(t c 构成的控制偏差: )(t e =)(t r -)(t c 将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID 调节器。在实际应用中,常根据对象的特征和控制要求,将P 、I 、D 基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P 调节器,PI 调节器,PID 调节器等。 综上我选择PID 调节: 比例调节反应速度快,输出与输入同步,没有时间滞后,其动态特性好,但是比例调节的结果不能使被调参数完全回到给定值,而产生余差。比例调节的结果不能使被调参数完全回到给定值,而产生余差。在实际应用中为了达到更高的要求,常根据对象的特征和控制要求,将P 、I 、D 基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。所以我选择PID 调节。 PID 是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。这三种算法是: 比例- 来控制当前,误差值和一个负常数P (表示比例)相乘,然后和预定的值相加。P 只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。那么它在10°C 的时候会输出100%,在15°C 的时候会输出50%,在19°C 的时候输出10%,注意在误差是0的时候,控制器的输出也是0。 积分 - 来控制过去,误差值是过去一段时间的误差和,然后乘以一个

PID控制器设计教程文件

P I D控制器设计

PID 控制器设计 一、 PID 控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p ) ()()()(0 ++=? (1-1) 相应的传递函数为: ??? ? ??++=S S s K K K G d i p c 1)( S S S K K K d i p 1 2++? = (1-2) PID 控制的结构图为: 若14

二、 实验内容一: 自己选定一个具体的控制对象(Plant),分别用P 、PD 、PI 、PID 几种控制方式设计校正网络(Compensators ),手工调试P 、I 、D 各个参数,使闭环系统的阶跃响应(Response to Step Command )尽可能地好(稳定性、快速性、准确性) 控制对象(Plant)的数学模型: ( )()??? ? ??++=115.01 )(S S S G 2 32 2 ++= S S 实验1中,我使用MATLAB 软件中的Simulink 调试和编程调试相结合的方法 不加任何串联校正的系统阶跃响应: (1) P 控制方式: P 控制方式只是在前向通道上加上比例环节,相当于增大了系统的开环增益,减小了系统的稳态误差,减小了系统的阻尼,从而增大了系统的超调量和振荡性。 P 控制方式的系统结构图如下: 取Kp=1至

控制系统仿真与CAD课程设计(二阶弹簧—阻尼系统的PID控制器设计及其参数整定)

设计一:二阶弹簧—阻尼系统的PID 控制器 设计及其参数整定 一设计题目 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg ,b=2N.s/m ,k=25N/m ,F (S )=1。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: F kx x b x M =++ 25211) ()()(2 2 ++= ++= = s s k bs Ms s F s X s G 二设计要求 1. 控制器为P 控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 2. 控制器为PI 控制器时,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。(例如当kp=50时,改变积分时间常数) 3. 设计PID 控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。

图2 闭环控制系统结构图 三设计内容 1. 控制器为P 控制器时,改变比例系数p k 大小 P 控制器的传递函数为:()P P G s K ,改变比例系数p k 大小,得到系统的阶跃响应曲线 00.2 0.4 0.6 0.8 1 1.2 1.4 Step Response Time (sec) A m p l i t u d e 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 程序: num=[1]; den=[1 2 25]; sys=tf(num,den); for Kp=[1,10:20:50]

基于MATLAB的PID控制器设计

基于MATLAB的PID 控制器设计 基于MATLAB的PID 控制器设计

一、PID控制简介 PID控制是最早发展起来的经典控制策略, 是用于过程控制最有效的策略之一。由于其原理简单、技术成,在实际应用中较易于整定, 在工业控制中得到了广泛的应用。它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数, 经过经验进行调节器参数在线整定, 即可取得满意的结果, 具有很大的适应性和灵活性。 积分作用:可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。 微分作用:可提高系统的响应速度, 但其对高频干扰特别敏感, 甚至会导致系统失稳。 所以, 正确计算控制器的参数, 有效合理地实现PID控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。 在PID控制系统中, PID控制器分别对误差信号e(t)进行比例、积分与微分运算, 其结果的加权和构成系统的控制信号u(t),送给对象模型加以控制。PID控制器的数学描述为 其传递函数可表示为: 从根本上讲, 设计PID控制器也就是确定其比例系数Kp、积分系数T i 和微分系数T d , 这三个系数取值的不同, 决定了比例、积分和微分作用的强弱。控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下, 适当选择控制器参数使控制仪表的特性和控制对象的特性相配合, 从而使控制系统的运行达到最佳状态, 取得最好的控制效果。 二、MATLAB的Ziegler-Nichols算法PID控制器设计。 1、PID控制器的Ziegler-Nichols参数整定 在实际的过程控制系统中, 有大量的对象模型可以近似地由一阶模型 来表示。这个对象模型可以表示为 sL - e sT 1 K G(s) + = 如果不能建立起系统的物理模型, 可通过试验测取对象模型的阶跃响应, 从而得到模型参数。当然, 我们也可在已知对象模型的情况下, 利用MATLAB,通过使用step ( ) 函数得到对象模型的开环阶跃响应曲线。在被控对象的阶跃响应中, 可获取K 、L 和T参数, 也可在MATLAB中由dcgain ( ) 函数求取K值。

实验四-PID-控制器的设计

实验四PID 控制器的设计 一、实验目的 了解PID控制规律和P、I、D参数对控制系统性能的影响,学会用Simulink 来构造控制系统模型。 本实验首先用MATLAB描述对象的模型,分别采用P、PI、PD、PID控制器构成闭环控制系统,并求取闭环系统的阶跃响应;在此基础上变化P、I、D参数的值,了解比例、积分和微分参数对控制系统性能的不同影响,并用Simulink来构造控制系统模型。 二、实验指导 1.Simulink仿真 1)Simulink简介 Matlab的Simulink是一个用来对动态系统进行建模、仿真和分析的软件包。它使Matlab的功能得到进一步的扩展,这种扩展表现在三个方面: (1) 实现了可视化建模,用户可以在窗口环境下通过简单的鼠标操作建立直观的系统模型,进行设计仿真。实现了多种环境之间的文件共享与数据交换,甚至能够和硬件实现实时信息交换。 (2) 把理论研究和工程实现有机地结合在一起。 Simulink不但支持线性系统仿真,也支持非线性系统仿真,既可进行连续系统仿真,也可进行离散系统仿真或者二者的混合系统仿真,同时它支持具有多采样速率的系统仿真。在实际系统制作出来之前,预先对系统进行仿真和分析,可以对系统作出适当的实时修正或者按照仿真的最佳效果来调试及设定控制系统的参数,以提高系统的性能,减少设计系统过程中反复修改的时间,实现高效率地开发系统的目标。 其可视化建模体现在为用户提供了用方框图进行系统建模的图形接口。通过这种图形接口,在Simulink环境下描述一个系统,如同用纸笔绘制模型图,十分简单、灵活、方便。定义完模型后,用户可以通过Simulink菜单或Matlab 命令对它进行仿真,在仿真的同时可以显示仿真结果,非常实用。此外,还可以在改变参数后迅速观察到系统响应的变化;仿真结果也可以输入到Matlab工作空间,进行处理或可视化输出。Simulink和Matlab是集成在一起的,用户在任意环境下都可以对模型进行仿真、分析和修正。 2)Simulink的环境与建模 进入Matlab,在命令窗口中键入“Simulink”,回车后便打开一个名为

13个基于PID控制器的设计实例

13个基于PID控制器的设计实例 PID 控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元比例P(proportion)、积分单元I(integration)和微分单元D(differentiation)组成。PID 控制器作为最早实用化的控制器已有近百年历史,现在仍然是应用最广泛的工业控制器。PID 控制器简单易懂,使用中不需精确 的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID 控制的原理及常用口诀总结 基于AT89S51 单片机的PID 温度控制系统设计 本文对系统进行硬件和软件的设计,在建立温度控制系统数学模型的基 础之上,通过对PID 控制的分析设计了系统控制器,完成了系统的软、硬件调试工作。算法简单、可靠性高、鲁棒性好,而且PID 控制器参数直接影响控制效果。 基于ARM 与PID 算法的开关电源控制系统 本文将SAMSUNC 公司的嵌入式ARM 处理器S3C4480 芯片,应用到开关电源的控制系统的设计中,采用C 语言和少量汇编语言,就可以实现一种以嵌入式ARM 处理器为核心、具有智能PID 控制器以及触摸屏、液晶显示器等 功能的开关电源控制系统。 基于DSP 的电子负载:模糊自适应整定PID 控制策略 本系统引入模糊控制理论设计一个模糊PID 控制器,根据实时监测的电压或电流值的变化,利用模糊控制规则自动调整PID 控制器的参数。 基于FPGA 的高速PID 控制器设计与仿真 本设计使用Altera 公司的Cyclone 系列FPGA 器件EP1C3 作为硬件开发平台,对运动控制中常用的增量式数字PID 控制算法进行优化处理,提高了运

PID控制器设计

PID 控制器设计 一、PID 控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p ) ()()()(0 ++=? (1-1) 相应的传递函数为: ??? ? ??++=S S s K K K G d i p c 1)( S S S K K K d i p 1 2 ++? = (1-2) PID 控制的结构图为: 若14

二、实验内容一: 自己选定一个具体的控制对象(Plant),分别用P 、PD 、PI 、PID 几种控制方式设计校正网络(Compensators ),手工调试P 、I 、D 各个参数,使闭环系统的阶跃响应(Response to Step Command )尽可能地好(稳定性、快速性、准确性) 控制对象(Plant)的数学模型: ()()??? ? ??++=115.01 )(S S S G 2 322++=S S 实验1中,我使用MATLAB 软件中的Simulink 调试和编程调试相结合的方法 不加任何串联校正的系统阶跃响应: (1) P 控制方式: P 控制方式只是在前向通道上加上比例环节,相当于增大了系统的开环增益,减小了系统的稳态误差,减小了系统的阻尼,从而增大了系统的超调量和振荡性。 P 控制方式的系统结构图如下: 取Kp=1至15,步长为1,进行循环测试系统,将不同Kp 下的阶跃响应曲线绘制在一张坐标图下:

基于SIMULINK的PID控制器设计与仿真

基于SIMULINK的PID控制器设计与仿真

————————————————————————————————作者: ————————————————————————————————日期:

基于SIMULINK的PID控制器设计与仿真1.引言 MATLAB是一个适用于科学计算和工程用的数学软件系统,历经多年的发展,已是科学与工程领域应用最广的软件工具。该软件具有以下特点:数值计算功能强大;编程环简单;数据可视化功能强;丰富的程序工具箱;可扩展性能强等。Simulink是MATLAB下用于建立系统框图和仿真的环境。Simulink环境仿真的优点是:框图搭建方便、仿真参数可以随时修改、可实现完全可视化编程。 比例-积分-微分(Proporitional-Integral-Derivative,PID)是在工业过程控制中最常见、应用最广泛的一种控制策略。PID控制是目前工程上应用最广的一种控制方法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因而易于工程实现,同时也可获得较好的控制效果。 2.PID控制原理 当我们不能将被控对象的结构和参数完全地掌握,或者是不能得到精确的数学模型时,在这种情况下最便捷的方法便是采用PID 控制技术。为了使控制系统满足性能指标要求,PID 控制器一般地是依据设定值与实际值的误差,利用比例(P)、积分(I)、微分(D)等基本控制规律,或者是三者进行适当地配合形成相关的复合控制规律,例如,PD、PI、PID 等。 图2-1是典型PID控制系统结构图。在PID 调节器作用下,对误差信号分别进行比例、积分、微分组合控制。调节器的输出量作为被控对象的输入控制量。

基于MATLAB的PID控制器设计报告

MATLAB论文 --基于控制系统的PID 调节

基于MA TLAB 的PID 控制器 摘要:本论文主要研究PID 控制器。PI D控制是迄今为止最通用的控制方法, 大多数反馈回路用该方法或其较小的变形来控制。PI D控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器 (至今在全世界过程控制中用的84%仍是纯P ID 调节器,若改进型包含在内则超过90%)。在PID 控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID 参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MAT LAB 仿真系统。本论文主要介绍PID 的原理及简单的用法,探究控制器中各个参数对系统的影响,就是利用《自动控制原理》和《MAT LA B》所学的内容利用简单的方法研究PI D控制器的设计方法,并通过MATL AB 中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键字:PI D控制简介 PID 控制器原理 M ATLAB 仿真 P ID 参数的设定 正文: 一、PID 控制简介 PID控制器又称PID 调节器,是工业过程控制系统中常用的有源校正装置。长期以来,工业过程控制系统中多采用气动式PID 控制器。由于气动组件维修方便,使用安全可靠,因此在某些特殊场合,例如爆炸式环境,仍然使用气动式PID 控制器。随着运算放大器的发展和集成电路可靠性的日益提高,电子式PID 控制器已逐渐取代了气动式P ID控制器。目前,已在开发微处理器PID 控制器。这里,仅简要介绍PI D控制器的主要特性。 PID 调节器是一种线性调节器,它根据给定值)(t r 与实际输出值)(t c 构成的控制偏差: )(t e =)(t r -)(t c 将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID 调节器。在实际应用中,常根据对象的特征和控制要求,将P 、I 、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P调节器,PI 调节器,PID 调节器等。 所以, 正确计算控制器的参数, 有效合理地实现 PID 控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。 二、原理分析与说明 PID 控制器由比例单元( P )、积分单元( I )和微分单元( D )组成。其输入 e (t) 与输出 u (t) 的关系为公式(1-1) 公式 (1-1)因此它的传递函数为公式(1-2)

相关文档