文档库 最新最全的文档下载
当前位置:文档库 › 机器人行走结构

机器人行走结构

机器人行走结构
机器人行走结构

机器人行走结构的类型及特点

一、移动机器人行走机构概述

机器人行走机构按照其运动轨迹可分为固定式轨迹和无固定式轨迹两种。固定式轨迹主要用于工业机器人,它是对人类手臂动作和功能的模拟和扩展;无固定轨迹就是指具有移动功能的移动机器人,它是对人类行走功能的模拟和扩展。

移动机器人的行走结构形式主要有:车轮式移动结构;履带式移动结构;步行式移动结构。此外,还有步进式移动结构、蠕动式移动结构、混合式移动结构和蛇行式移动结构等,适合于各种特别的场合。

从移动机器人所处环境看,可以分为结构环境和非结构环境两类。

结构环境:移动环境是在轨道上(一维)和铺好的道路(二维)。在这种场合,就能利用车轮移动结构。

非结构环境:陆上二维、三维环境;海上、海中环境;空中宇宙环境等原有的自然环境。陆上建筑物的阶梯、电梯、间隙沟等。在这样的非结构环境领域,可参考自然界动物的移动机构,也可以利用人们开发履带,驱动器。例如:2足、4足、6足及多足等步行结构。

行走结构的设计对于移动机器人的工作效率有着至关重要的作用,选择适当、精巧的行走结构往往可以大大提高机器人的动作效率。这就需要我们熟悉和了解不同机器人行走结构的类型及特点。

二、三种常见的行走结构

1)车轮式移动结构

两车轮:像自行车只有两个车轮的结构。两车轮的速度、倾斜等物理量精度不高,因此进行机器人化,所需便宜、简单、可靠性高的传感器难以获得。此外,两轮车制动时以及低速运行时也极不稳定。

三轮车:三轮移动结构是车轮式机器人的基本移动结构,其结构是后轮用两轮独立驱动,前轮用小脚轮构成组合。这种结构的特点是结构组成简单,而且旋转半径可以从0到无限大,任意设定。但是他的旋转中心是在连接两驱动轴的连线上,所以旋转半径即使是0,旋转中心也与车体的中心不一致。

四轮车:四轮车的驱动结构和

运动基本上和三轮车相同。和

汽车一样,适合于高速行走,

稳定性也好。

一般情况下,车轮式行走结构

最适合平地行走,不能跨越高

度,不能爬楼梯。但现今也出

现特殊的轮式结构。

全方位移动车:在平面上移动的物

体可以实现前后、左右和自转3 个

自由度的运动.但如汽车等,可以前进、拐弯而不能横向移动就不是. 若具有完全的3 个自由

度,则称为全方位移动机器人,它非常适合工作在空间狭窄有限、对机器人的机动性要求高的场合中.国外很多研究机构开展了全方位移动机器人的

上下台阶车轮式结构:将普通的车轮进行适当的改装后,能够实现在阶梯上移动

不平地移动的多车节车轮式机构:

2)履带式移动结构

履带式结构称为无限轨道方式,其最大特点是将园环状的无限轨道履带卷绕在多个车轮上,使车轮不直接与路面接触。利用履带可以缓冲路面状态,因此可以在各种路面条件下行走。与车轮式移动结构相比,有如下特点:

a)支承面积大,接地比压小。适合松软或泥泞场地作业,下陷度小,滚动阻力小,

通过性能好;

b)越野机动性能好,爬坡、越沟等性能均优于车轮式移动结构

c)履带支承面上有履齿,不易打滑,牵引性能好,有利于发挥较大的牵引力

d)结构复杂,重量大,运动惯性大,减震性能差,零件易损害

这里介绍一种较特殊的履带结构

形状可变履带结构:它是指履带的构形可以根据需要进行变化的结构。这种结构一

般由两条形状可变的履带组成,分别由两个主电机驱动。当两个履带速度相同时,

实现前进或后退移动,当速度不同时,整个机器实现转向移动。

3)步行式移动机构

步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路

面的要求很低,不仅能在平地上,而且能在凹凸不平的地上步行,能跨越沟

壑,上下台阶,用于工程探险勘测或军事侦察等人类无法完成的或危险的工

作;也可开发成娱乐机器人玩具或家用服务机器人,具有广泛的适应性。主

要设计难点是机器人跨步时自动转移重心而保持平衡的问题。控制特点:使

机器人的重心经常在接地的脚掌上,一边不断取得准静态平衡,一边稳定的

步行。结构特点:为了能变换方向和上下台阶,一定要具备多自由度。

的,具有很高的实用性。四足机器人步行时,一只脚抬起,三只脚支撑自重,这时有必要移动身体,让重心落在三只脚接地点组成的三角形内。

三、其他行走结构

爬壁机器人:近年来,由于工业生产对特殊功能机器人的

需求越来越大,爬壁机器人的研究备受关注。

有的可以吸附在各种大型构造物如油罐、球形煤气罐、船

舶等的壁面,代替人进行检查或修理等作业。这种爬壁机

器人靠磁性车轮对壁面产生吸附力,其主要特征是:行走

稳定速度快,最大速度可达9m/min,适用各种形状的壁

面,且不损坏壁面的油漆。

我国的哈尔滨工业大学已经成功研制出单吸盘真空

吸附车轮行走式爬壁机器人和永磁铁吸附履带爬壁机器

人。其中磁吸附履带式爬壁机器人采用的是双履带永磁吸

附结构,在履带一周上安装有数十个永磁吸附块,其中的

一部分紧紧地吸附在壁面上,并形成一定的吸附力,通过履带(由链条和永磁块组成)使机器人贴附在壁面上。机器人在壁面上的移动靠履带来完成,移动时,履带的旋转使最后的吸附块在脱离壁面的同时又使上面的一个吸附块吸附于壁面,这样周而复始,就实现了机器人在壁面上的爬行。

管道内外移动:如图,可以看出移动主要是靠

两个轮子,但每个车轮两边还有一对撑架,用来帮助

车轮在管道外移动时站立而不倒,并可以增加车轮与

管道壁之间的摩擦,从而获得较大的移动力。这种结

构可用于检修核管道和煤气主干道等一些容易引发

危害的大型管道。

四、结论

机器人的行走结构就是机器人的脚,选择一双好脚就能事半功倍,因此在选择机器人的行走结构时,我们一定要充分的考虑各个方面,不断的调试,最后才能到达理想的效果。

参考资料:

[1] 丁学恭.机器人控制研究.杭州:浙江大学出版社,2006.9

[2] 周新伦,关绮玲.机器人.上海:复旦大学出版社,1994

[3] 周兰.机器人机身及行走机构.ppt文件

[4] 付文瀚.上下楼机器人设计

机器人行走路径的最优方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): D 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆市正大软件软件职业技术学院 参赛队员(打印并签名) :1. 王永清 2. 岳红梅 3. 冉锐 指导教师或指导教师组负责人(打印并签名): 日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

机器人行走路径的最优方案 摘要 本文研究的是机器人避障路径行走的最优方案。 针对问题一,机器人在行走时,首先考虑与障碍物的最小距离为转弯时的半径。然后,用各种几何知识(如:可视图法)分析O→A、O→B、O C →以及O→A→B→→的路径有哪些,将障碍物的起始点和目标点用直线和圆弧画出来, C O 而且要求不能穿越障碍物。图中的弧段就是集合,其中,起始点O连接的任何目标点都均不能与障碍物相交,在绕A、B、C时采用的是LINGO13编程,本队用MATLAN7.0软件编程计算从起始点到目标点的最优路径。 机器人从O到A的最短路径为471.0372,所花时间为96.0177秒; O到B的最短路径为853.1178,所花的时间为179.34276秒; O到C的最短路径为1088.195,所花的时间为222.0105秒; O绕A、B、C再回到O点,其最短路径为2729.885,所花时间为568.6497秒。 针对问题二,采用与问题一类似的方法解决此问题,用LINGO13软件编程计算出当机器人从障碍物上方绕过时到达A的最短时间为94.2283秒。此时,机器人所绕圆弧的半径和圆心分别为12.9885、(82.1414,207.9153)。 关键词:可视图法最短路径最优方案 MATLAB7.0 LINGO13

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

机器人的组成与结构

3、简介机器人系统的组成与结构,包括三大部分、六个子系统 答:机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。 感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。 机器人一环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。 人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。 控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。

毕业设计(论文)机器人行走机构 文献综述

重庆理工大学 毕业设计(论文)文献综述题目机器人行走机构设计 二级学院重庆汽车学院 专业机械设计制造及其自动化班级 姓名学号 指导教师系主任 时间

评阅老师签字:

机器人行走机构 吴俊 摘要:行走机器人是机器人学中的一个重要分支。行走机构可以是轮式的、履带式的 和腿式的等,能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。本 文从国内外的研究状况着手,介绍了行走机器人的发展历史,研究现状和发展趋势。本文还介绍了国内最新的研究成果。 关键字:机器人行走机构发展现状应用 Keyword:robot travelling mechanism developing current situation application 一,前言 行走机器人是机器人学中的一个重要分支。关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等;其次,必须考虑 驱动器的控制,以使机器人达到期望的行为;第三,必须考虑导航或路径规划。因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体 的综合系统。机器人的机械结构形式的选型和设计,应该根据实际需要进行。在机器 人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性 的工作。对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的 各种移动机构。当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数 仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车 到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和 广阔的应用前景而成为智能机器人发展的方向之一。 二、课题国内外现状 多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足 动物运动形式的特种机器人, 是一种足式移动机构。所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等。 步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个 阶段: 第一阶段, 以机械和液压控制实现运动的机器人。 第二阶段, 以电子计算机技术控制的机器人。 第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。 三、研究主要成果 国内多足步行机器人的研究成果[1]: 1991年,上海交通大学马培荪等研制出JTUWM[1]系列四足步行机器人。JTUWM-III是模仿马等四足哺乳动物的腿外形制成,每条腿有3个自由度,由直流伺服

机器人行走结构

机器人行走结构的类型及特点 一、移动机器人行走机构概述 机器人行走机构按照其运动轨迹可分为固定式轨迹和无固定式轨迹两种。固定式轨迹主要用于工业机器人,它是对人类手臂动作和功能的模拟和扩展;无固定轨迹就是指具有移动功能的移动机器人,它是对人类行走功能的模拟和扩展。 移动机器人的行走结构形式主要有:车轮式移动结构;履带式移动结构;步行式移动结构。此外,还有步进式移动结构、蠕动式移动结构、混合式移动结构和蛇行式移动结构等,适合于各种特别的场合。 从移动机器人所处环境看,可以分为结构环境和非结构环境两类。 结构环境:移动环境是在轨道上(一维)和铺好的道路(二维)。在这种场合,就能利用车轮移动结构。 非结构环境:陆上二维、三维环境;海上、海中环境;空中宇宙环境等原有的自然环境。陆上建筑物的阶梯、电梯、间隙沟等。在这样的非结构环境领域,可参考自然界动物的移动机构,也可以利用人们开发履带,驱动器。例如:2足、4足、6足及多足等步行结构。 行走结构的设计对于移动机器人的工作效率有着至关重要的作用,选择适当、精巧的行走结构往往可以大大提高机器人的动作效率。这就需要我们熟悉和了解不同机器人行走结构的类型及特点。 二、三种常见的行走结构 1)车轮式移动结构 两车轮:像自行车只有两个车轮的结构。两车轮的速度、倾斜等物理量精度不高,因此进行机器人化,所需便宜、简单、可靠性高的传感器难以获得。此外,两轮车制动时以及低速运行时也极不稳定。 三轮车:三轮移动结构是车轮式机器人的基本移动结构,其结构是后轮用两轮独立驱动,前轮用小脚轮构成组合。这种结构的特点是结构组成简单,而且旋转半径可以从0到无限大,任意设定。但是他的旋转中心是在连接两驱动轴的连线上,所以旋转半径即使是0,旋转中心也与车体的中心不一致。 四轮车:四轮车的驱动结构和 运动基本上和三轮车相同。和 汽车一样,适合于高速行走, 稳定性也好。 一般情况下,车轮式行走结构 最适合平地行走,不能跨越高 度,不能爬楼梯。但现今也出 现特殊的轮式结构。 全方位移动车:在平面上移动的物 体可以实现前后、左右和自转3 个 自由度的运动.但如汽车等,可以前进、拐弯而不能横向移动就不是. 若具有完全的3 个自由

机器人基本构成

机器人基本构成 机器人系统通常分为三大部分:机械部分、传感部分和控制部分;六个子系统:驱动系统、机械系统、感知系统、人机交互系统、机器人环境交互系统、控制系统等组成(如图1所示)。 图1 机器人系统的基本构成 1.机械系统 机械系统又称操作机或执行机构系统,由一系列连杆、关节或其他形式的运动部件组成,通常包括机座、立柱、腰关节、臂关节、腕关节和手爪等,构成多自由度机械系统。 工业机器人机械系统由机身、手臂和末端执行器组成,机身可具有行走机构,手臂一般有上臂、下臂和手腕组成,末端执行器直接装在手腕上,可以是两手指或多手指手爪,可以是喷漆枪、焊枪等作业工具。 2.驱动系统 驱动系统主要指驱动机械系统的机械装置,根据驱动源不同可分为电动、液压、气动三种或三者结合一起的综合系统;驱动系统可以直接与机械系统相连,或通过皮带、链条、齿轮等机械传动机构间接相连。 3.感知系统 感知系统由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态信息,确定机械部件各部分的运行轨迹、状态、位置和速度等信息,使机械部件各部分按预定程序和

工作需要进行动作。智能传感器的使用提高了机器人的机动性、适应性和智能化水平。人类感知系统对外部信息获取比较灵巧,但一些特殊信息传感器感知更有效。 4.控制系统 控制系统的任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构完成规定的运动和功能。若不具备信息反馈特种,则为开环控制系统;具备信息反馈特征则为闭环控制系统。根据控制原理可分为程序控制系统,适应性控制系统,人工智能控制系统;根据控制运动形式分为点位控制和轨迹控制。 5.交互系统 机器人-环境交互系统是实现机器人与外部环境中的设备相互联系和协调的系统。机器人可以与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等;也可以是多台机器人、多台机床、设备、零件存储装置等集成为一个可执行复杂任务的功能单元。 人机交互系统是操作人员参与机器人控制并与机器人进行联系的装置,如计算机终端、指令控制台、信息显示板及危险信号报警器等。主要有两类:指令给定装置和信息显示装置。

轮式移动机器人结构设计

大学 毕业设计说明书题目:轮式移动机器人结构设计 专业:机械设计制造及其自动化学号: 姓名: 指导教师: 完成日期: 2012年5月30日

大学 毕业论文(设计)任务书论文(设计)题目:轮式移动机器人结构设计 学号:姓名:专业:机械设计制造及其自动化指导教师:系主任: 一、主要内容及基本要求 1:了解轮式移动机器人的原理及其设计: 2:CAD绘图设计,要求A0图纸一张,总共达到两张A0。 3:说明书,要求6000字以上,要求内容完整,计算准确: 4:外文翻译3000字以上,要求语句通顺。 二、重点研究的问题 1:轮式移动机器人转向机构的设计: 2:轮式移动机器人电机的选型

三、进度安排 四、应收集的资料及主要参考文献 [1] 吕伟文.全方位轮移动机构的原理和应用[A].无锡职业技术学院学报,2005,615-17. [2] 赵东斌,易建强等.全方位移动机器人结构和运动分析[B].机器人,2003,9. [3] 李瑞峰,孙笛生,闫国荣等.移动式作业型智能服务机器人的研制[J].机器人技术与应 用,2003,1:27-29. [4] 杨树风.带有机械臂的全方位移动机器人的研制. 哈尔滨工业大学硕士毕业论文,2006. [5] 田宇,吴镇炜,柳长春.开放式三自由度全方位移动机器人实验平台[J].机器人,2002,24 (2):102-106. [6] 闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857. [7] 吕伟文.全方位移动机构的机构设计[A].无锡职业技术学院学报,2006.12:03-12. [8] 高光敏,张广新,王宇等.一种新型全方位轮式移动机器人的模型研究[A].长春工程学院学 报,2006,12. [9] 吴玉香,胡跃明.轮式移动机械臂的建模与仿真研究[B].计算机仿真,2006,1(05). [10] 付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通信,2004,12. [11] 付宜利,李寒,徐贺等.轮式全方位移动机器人几种转向方式的研究.制造业自动化,2005,10:5-33. [12] 滕鹏,马履中,董学哲.具有冗余自由度的新型护理机械臂研究.机械设计与研究,2004,1:3-32. [13] 孔繁群,朱方国,周骥平.一种机械手关节联接结构的改进设计[B].机械制造与研究,2005,5:2-16. [14] 蔡自兴编著.机器人原理及其应用. 中南工业大学出版社,1988. [15] 吴广玉,姜复兴编.机器人工程导论.哈尔滨:哈尔滨工业大学出版社,1988. 大学

履带式行走机器人论文

1 绪论 1.1机器人发展概况 在工业机器入问世30多年后的今天;机器人己被人们看作是一种生产工具。在制造、装配及服务行业,机器入的应用取得了明显的进步。由干传感器、控制、驱动及材料等领域的技术进步,通过智能机器人系统首次在制造领域以外的服务行业,开辟了机器人应用的新领域,让机器人作为“人的助手”,使人们的生活质量得以提高。目前在许多领域己经进行了很大的努力来开发服务机器入系统,并力争在较大范围内使用它们。这些机器人系统尽管有不同的应用领域,但它们所从事的工作仅限于维护保养、修理、运输、清洗、保安、救援及数据采集等方面。 机器人是一个通用的自动化装置。国际标准化组织(1SO)的定义:“机器人是一种自动的、位置可控的、具有编程能力的多功能操作机,这种操作机具有几个轴,能够借助可编程操作来处理各种材料、零件、工具和专用装置,以执行各种任务”。从1954年美国工程师乔治.大卫发表了《适用重复作业的通用性工业机器人》论文开始,到1962年美国联合控制公司推出第一台机器人“尤尼麦特”为止。机器人开始在工业生产的各种场合中,起到了置关重要的作用。而在所有的机器人研究中,尤使日本的机器人研究最为突出。 现在国外大多都在致力于直立行走机器人和微型机器人的研究。 特别是注重对于机器人控制和视觉识别方面的研究。对于行走机器人而言,最引起大多数科学家注意的是对于视觉识别方面的研究。并且也取得了许多可人的成果。 行走机器人分很多种,不仅有直立式,还有履带式,多支点式等等。而这里只谈谈履带式行走机器人。履带式行走机器人是一种利用履带进行支撑机器人机体的移动机器人目前我国发展了多履带式机器人,有四条和六条履带的移动机器人。他们的优点是转向方便移动稳

机器人的基本结构原理

教案首页 课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求: 1.弄清机器人的基本构成; 2.了解机器人的主要技术参数; 3.了解机器人的手部、腕部和臂部结构; 4.了解机器人的机身结构; 5.了解机器人的行走机构 重点: 1.掌握机器人的基本构成 2.弄清机器人都有哪些主要技术参数 3.机器人的手部、腕部和臂部结构 难点: 机器人的手部、腕部和臂部结构 思考题: 1.机器人由哪些部分组成? 2.机器人的主要技术参数有哪些? 3.机器人的行走机构共分几类,请想象未来的机器人能 否有其它类型的行走机构?

第2章概论 教学主要内容: 2.1机器人的基本构成 2.2机器人的主要技术参数 2.3人的手臂作用机能初步分析 2.4机器人的机械结构构成 2.5机器人的手部 2.6机器人的手臂 2.7机器人的机身 2.8机器人的行走机构 本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。 2.1机器人的基本构成 简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。 不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。如图2-1所示。

●是由关节连在一起的许多机械连杆的集合体, 关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。 个主要部●常规的驱 接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。 ●感知系统 ....由一个或多个传感器组成,用来获取内部和外部环境中的有用信息,通过这些信息确定机械部件各部分的运行轨迹、速度、位置和外部环境状态,使机械部件的各部分按预定程序或者工作需要进行动作。传感器的使用提高了机器人的机动性、适应性和智能化水平。 ●控制系统 ....其任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。若机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统又可分为程序控制系统、

《机器人沿线行走第一课时》教学设计

《机器人沿线行走(第一课时)》教学设计 盐城市聚亨路小学焦小明 【教材分析】 本课是机器人基础知识、机器人行走、传感器使用基础之上的后续课程,是机器人教学中一节比较难的课。本课要用到传感器的使用,电机的使用,变量的使用,条件循环程序设计和分支结构的程序设计,是一节机器人知识集中使用的一节课。由于本课容量较大,要讲透所以的知识点需要至少两课时。传感器、电机的使用,条件循环和分支结构程序设计作为第一课时,具体而言,第一课时讲机器人沿线行走的前三种情况(直走、左偏、右偏);变量的使用,具体而言,第二课时讲机器人行走的后两种情况(完全左偏、完全右偏)。第一课时中传感器数值的理解、分支结构的条件、电机的转动等环节难度较大。 【学情分析】 学习本课要建立在前几节课:机器人的行走、传感器的使用等课程的基础之上,学生还要掌握好传感器的数值理解、分支结构的条件、电机的转动等知识要点,课堂容量偏大。学生对沿线行走的兴趣很大,教师但要引导好,把环节细化,把内容讲透,否则学生容易产生浮躁心理,程序编写容易出错。 【教学目标】 知识与技能: 让学生了解机器人可以沿线行走;让学生了解灰度传感器的使用,感受灰度传感器的数值;设计分支结构的程序,了解机器人行走的五种情况(在线上、左偏、右偏、完全左偏、完全右偏)。过程与方法: 让学生通过感受、测试、分析等方法,掌握灰度传感器的使用和分支结构程序的条件判断。情感态度与价值观: 让学生感受到机器人的智能,感受到机器人沿线行走在生活中的重要应用。 【重点难点】 重点:灰度传感器的使用,行走程序的设计。 难点:灰度传感器数值的理解,五种行走情况的条件判断。 【教学策略与手段】 通过课件演示、学生自主探究灰度数值、教师演示、在观察模仿的基础上逐步完成和完善程序等教学策略,学生逐步深化对灰度值、分支条件、和电机转动等知识点的认识,进而完善自己的程序。 【教学过程】 一.导入 从机器人行走入手,回忆机器人行走与电机转动的关系。 观看机器人沿直线行走的视频,了解和体会机器人如何沿以下几种类型的线走。

【CN109917420A】一种自动行走装置和机器人【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910147427.7 (22)申请日 2019.02.27 (71)申请人 科沃斯商用机器人有限公司 地址 215104 江苏省苏州市吴中经济开发 区越溪街道友翔路18号楼3幢 (72)发明人 邵长东 钟立扬 邱华旭 高倩  (74)专利代理机构 北京清源汇知识产权代理事 务所(特殊普通合伙) 11644 代理人 冯德魁 窦晓慧 (51)Int.Cl. G01S 17/93(2006.01) G01S 7/48(2006.01) G01N 21/84(2006.01) (54)发明名称 一种自动行走装置和机器人 (57)摘要 本申请公开一种自动行走装置,包括:设置 在自动行走装置内部的控制处理装置,以及设置 在自动行走装置前进方向一侧的视觉图像传感 器和多线激光雷达;其中,多线激光雷达根据预 设角度发射多束探测激光束,并根据探测激光束 的反射信号确定障碍物的特征信息;视觉图像传 感器用于获取自动行走装置前进方向的图像信 息;控制处理装置根据多线激光雷达获取的障碍 物特征信息以及视觉图像传感器获得的前进方 向的图像信息,计算并执行自动行走装置运动策 略。本申请同时公开一种机器人。通过本方案可 以探测具有一定高度的障碍物,且不会忽略小体 积障碍物,使探测过程中不会出现盲区,也减少 了摄像头的安装,从而降低了算法难度和制造成 本。权利要求书1页 说明书7页 附图1页CN 109917420 A 2019.06.21 C N 109917420 A

权 利 要 求 书1/1页CN 109917420 A 1.一种自动行走装置,其特征在于,包括:设置在自动行走装置内部的控制处理装置,以及设置在自动行走装置前进方向一侧的视觉图像传感器和多线激光雷达;其中,所述多线激光雷达根据预设角度发射多束探测激光束,并根据所述探测激光束的反射信号确定障碍物的特征信息; 所述视觉图像传感器用于获取所述自动行走装置前进方向的图像信息; 所述控制处理装置根据所述多线激光雷达获取的障碍物特征信息以及所述视觉图像传感器获得的前进方向的图像信息,计算并执行所述自动行走装置运动策略。 2.根据权利要求1所述的自动行走装置,其特征在于,所述多线激光雷达设置为四线激光雷达,所述预设角度包括第一预设角度、第二预设角度和第三预设角度,以及第四预设角度; 则所述多线激光雷达根据预设角度发射多束探测激光束包括:按照第一预设角度发射第一探测激光束;按照第二预设角度发射第二探测激光束,按照第三预设角度发射第三探测激光束,按照第四预设角度发射第四探测激光束。 3.根据权利要求2所述的自动行走装置,其特征在于,所述第一预设角度沿水平平面斜上倾斜,其夹角范围为10°~30°;所述第二预设角度沿水平平面斜下倾斜,其夹角范围为15°~30°;所述第三预设角度沿水平平面斜下倾斜,其夹角范围为10°~15°;所述第四预设角度沿水平平面斜下倾斜,其夹角范围为30°~60°。 4.根据权利要求3所述的自动行走装置,其特征在于,还包括调节装置,所述调节装置与所述多线激光雷达连接;所述调节装置用于分别调整多束探测激光束在各自的对应的预设夹角范围内的发射角度。 5.根据权利要求4所述的自动行走装置,其特征在于,所述调节装置包括设置在的转轴上的透镜结构。 6.根据权利要求2所述的自动行走装置,其特征在于,所述多线激光雷达同时发射各个预设角度对应的探测激光束。 7.根据权利要求1所述的自动行走装置,其特征在于,所述多线激光雷达包括四个激光器,所述预设角度包括第一预设角度、第二预设角度和第三预设角度,以及第四预设角度;每个激光器与各个预设角度一一对应,并发射探测激光束。 8.根据权利要求7所述的自动行走装置,其特征在于,还包括驱动装置,所述驱动装置与各个所述激光器连接,用于分别调整多束探测激光束在各自的对应的预设夹角范围内的发射角度。 9.根据权利要求1所述的自动行走装置,其特征在于,所述驱动装置为伺服电机。 10.一种机器人,其特征在于,包括:设置在机器人内部的控制处理装置,以及设置在机器人前进方向一侧的视觉图像传感器和多线激光雷达;其中, 所述多线激光雷达根据预设角度发射多束探测激光束,并根据所述探测激光束的反射信号确定障碍物的特征信息; 所述视觉图像传感器用于获取所述自动行走装置前进方向的图像信息; 所述控制处理装置根据所述多线激光雷达获取的障碍物特征信息以及所述视觉图像传感器获得的前进方向的图像信息,计算并执行所述机器人运动策略。 2

机器人的组成系统

一.工业机器人组成系统 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 几个问题: (1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型? (2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆? (3)能不能控制机器人中每一个电机的输出功率或扭矩? (4)机器人每一个关节从驱动电机到执行机构的传递效率有没有? 二.工业机器人的主体 机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。机器人采用电机驱动,电机分为步进电机或直流伺服电机。直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。 各部件组成和功能描述如下: (1)基座:基座是机器人的基础部分,起支撑作用。整个执行机构和驱动装置都安装在基座。 (2)腰部:腰部是机器人手臂的支撑部分,腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。 (3)大臂:大臂和传动部件 (4)小臂:小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运

扫地机器人结构详细上课讲义

扫地机器人结构详细

扫地机器人结构详细 自动清扫机器人是当今服务机器人领域一个热门的研究方向。从理论和技术上讲,自动清扫机器人比较具体地体现了移动机器人的多项关键技术,具有较强的代表性,从市场前景角度讲,自动清扫机器人将大大降低劳动强度、提高劳动效率,适用于宾馆、酒店、图书馆、办公场所和大众家庭。因此开发自动清扫机器人既具有科研上的挑战性又具有广阔的市场前景。 家用智能清扫机,包括计算机、传感器、电机与动力传动机构、电源、吸尘器、电源开关、操作电位计等,在清扫机的顶部共设有三个超声波距离传感器;清扫机底部前方边沿安装有5个接近开关,接近开关与超声波距离传感器一起,构成清扫机测距系统;清扫机装有两台直流电机;在清扫机的底部安装有吸尘器机构。自动清扫机器人的功能是自动完成房间空旷地面尤其是家居空旷地面的清扫除尘任务,打扫前,要把房间里的物体紧靠四周墙壁,腾出空旷地面。清扫机完成的主要功能:能自动走遍所以可进入的房间,可以自动清扫吸尘,可在遥控和手控状态下清扫吸尘。 本文所介绍的自动清扫机器人的总体布局方案如图1所示,前后两轮为万向轮,左右两轮为驱动轮。驱动轮设计采用两轮独立且各由两台步进电动机驱动的转向方式,通过控制左右两轮的速度差来实现转向。考虑到机器人实际应用的实用性,本驱动系统设计成一个独立的可方便替换的模块,当机器人驱动系统发生故障时,只需简单步骤就可以对驱动部分进行替换。同时为了机器人能够灵活的运动,从动轮选用万向轮。

下图为自动清扫机的三维立体图:

自动清扫机器人车箱体采用框架式结构。从下至上分隔成三个空间:第一层装配各运动部件的驱动电机、传动机构;第二层为垃圾存储空间;第三层装配机器人控制系统、接线板、电源 电池、开关等。 自动清扫机器人控制系统硬件 主要是以单片机AT89C51作为核 心,辅助其外围电路、电机驱动电 路、传感器检测电路以及红外遥控 电路等,各模块在单片机的控制 下,相互协调工作,保证自动清扫 机器人各种功能的实现。该控制系 统框图如图2所示。传感器在清扫机器人上的布置如图下所示,图中红色的圆点代表六个红外传感器的位置。 下图为清扫机的硬件系统:

机器人技术基础(课后习题答案)

0.1 简述工业机器人的定义,说明机器人的主要特征。 答:机器人是一种用于移动各种材料、零件、工具、或专用装置,通过可编程动作来执行种种任务并具有编程能力的多功能机械手。 1.机器人的动作结构具有类似于人或其他生物体某些器官(肢体、感官等)的功能。 2.机器人具有通用性,工作种类多样,动作程序灵活易变。 3.机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等。 4.机器人具有独立性,完整的机器人系统在工作中可以不依赖于人的干预。 0.2工业机器人与数控机床有什么区别? 答:1.机器人的运动为开式运动链而数控机床为闭式运动链; 2.工业机器人一般具有多关节,数控机床一般无关节且均为直角坐标系统; 3.工业机器人是用于工业中各种作业的自动化机器而数控机床应用于冷加工。 4.机器人灵活性好,数控机床灵活性差。 0.5简述下面几个术语的含义:自有度、重复定位精度、工作范围、工作速度、承载能力。答:自由度是机器人所具有的独立坐标运动的数目,不包括手爪(末端执行器)的开合自由度。 重复定位精度是关于精度的统计数据,指机器人重复到达某一确定位置准确的概率,是重复同一位置的范围,可以用各次不同位置平均值的偏差来表示。 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。 工作速度一般指最大工作速度,可以是指自由度上最大的稳定速度,也可以定义为 手臂末端最大的合成速度(通常在技术参数中加以说明)。 承载能力是指机器人在工作范围内的任何位姿上所能承受的最大质量。 0.6什么叫冗余自由度机器人? 答:从运动学的观点看,完成某一特定作业时具有多余自由度的机器人称为冗余自由度机器人。 0.7题0.7图所示为二自由度平面关节型机器人机械手,图中L1=2L2,关节的转角范围是0゜≤θ1≤180゜,-90゜≤θ2≤180゜,画出该机械手的工作范围(画图时可以设L2=3cm)。

行走机器人图纸

行走机器人套件组装说明书 一、产品说明 行走机器人套件是顺应科技进步新开发的机器人教学套件。它具有电路精简、实用、可学习性强之外还具有趣味性强等特点,适合各类实训教学使用。 二、原理说明 本电路的集成块采用NE555时基电路,内部由比较器、RS触发器、放电管等部分组成,如图6脚R端的正相输入端和7脚放电端连在一起为RS触发器翻转做了准备。2脚是S端的反相输入端,3脚是输出端。初始状态时RS触发器的Q端输出低电平放电管截止不放电,3脚输出高电平。此时W2、R13、C5构 成正稳态的延时电路,电源通过W2、R13对C5充电(调节 W2可以调节C5达到触发电平的时间)当C5端的电压达到 2/3VCC时,R端比较器翻转输出高电平。此时S端电平基本 不变从而致使RS触发器触发翻转进入另一个稳态,Q端输出 高电平,放电管导通C5的电压瞬间被拉为低电平。因在正稳 态时MT2端为高电平对C1充满了电,2脚一直处于高电平, 当RS触发器触发翻转进入另一个稳态后MT2变为低电平,此 时C1通过W1、R6、R14对地放电,调节W1可以调节放电的 时间,当C1端的电压降到1/3VCC时S端比较器翻转致使RS 触发器进入正稳态,依次循环,分别调节W2、W1可以控制正、 负稳态电路的延时长短。3脚是正、负稳态的输出端,正、负 稳态分别输出正、负电平。该电平加到电容C2上给C2充电使 输出电平稳定,该电平就是后面驱动电路的控制信号。该控制 信号经R5加到9013的基极,9013是NPN管,基极正电平时 9013的C、E极导通,而9012截止,也即是正稳态时9013导通,9013集电极被拉为低电平,再经过R7加到VT3-VT2的基极VT3导通,从而VT5、VT7导通,电流通过MT2经过电机后流经MT1。电机正转机器人向前行走、发声,闪眼睛。W2控制电机正转的时间。当555处于负稳态时输出低电平,通过R4加到VT2上,VT2、VT4、VT6、VT8导通。电流通过MT1经过电机后流经MT2。电机反转机器人后退,由于发声、闪灯电路经过一只二极管供电,正转时有电压,反转时二极管截止,发声、闪灯电路无电压停止工作。 三、装配说明 1.当拿到本套件后,请对照“元件清单”逐一将数量清点一遍,并用万用表将各个元件测量一下,特别是瓷片电容,最好用数字万用表的电容档测量,若没有数字表,只有用万用表初略估计测量一下,做到心中有数。 2.在焊接时请按先焊小元件,再焊大元件,最后再焊集成块的原则进行操作,元件尽量贴着底板“对号入座”不得将元件插错,由于集成块NE555是采用双排8脚直插式结构,它的脚排列比较密集,焊接时请用尖烙铁头进行快速焊接,如果一次焊不成功,应等冷却后再进行下一次焊接,以免烫坏集成块,焊完后应反复检查有无虚、假、错焊,有无拖锡短路造成故障,只要按上述要求焊接组装,一通电即可正常工作。 3.功能电路板部分装配完成后再来焊接电机、电源部分的引线。打开机器人后盖将里面的电机线焊下把我们配的接线焊在电机上,同时把到头部分的红线焊下串接一只1N4148的二极管。再焊接电源线:一根焊接在电池极片的负极,另一根焊接在开关的一端,电源和电机接线焊好后从后背的孔引出。装上头和摇头杠杆后,盖上后盖即可。(注意要保证里面活动部分的空间以免卡住)。把电机线焊在功能电路板的MT1与MT2焊盘上(注意红线焊MT2,绿线焊MT1上,以免后退时发声、闪光)。电源线红的焊在GB+焊盘上,绿线焊在GB-焊盘上。焊好后装上三节5号电池,电路板装在电池外边,用拆电池盖的螺丝固定,一个能行动自如的行走机器人组装成功了。调节W2、W1可调节前进、后退的时间。

移动机器人的自主导航

移动机器人的自主导航 一、研究的背景 二、移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多功 能于一体的综合系统。它集中了传感器技术、计算机技术、机械工程、电子工程、自动化控制工程以及人工智能等多学科的研究成果,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、国防、医疗、服务等行业中得到广泛的应用,而且在排雷、搜捕、救援、辐射和空间领域等有害与危险场合都得到很好的应用。 因此,移动机器人技术已经得到世界各国的普遍关注。 三、在自主式移动机器人相关技术的研究中,导航技术是其研究核心,同时也 是移动机器人实现智能化及完全自主的关键技术。导航是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动。 导航主要解决以下三方面的问题:(l)通过移动机器人的传感器系统获取环境信息;(2)用一定的算法对所获信息进行处理并构建环境地图;(3)根据地图实现移动机器人的路径规划及运动控制。 四、相关技术 五、移动机器人定位是指确定机器人在工作环境中相对于全局坐标的位置,是 移动机器人导航的基本环节。定位方法根据机器人工作环境的复杂性、配备传感器种类和数量等方面的不同而采用多种方法。主要方法有惯性定位、标记定位、GPS定位、基于地图的定位等,它们都不同程度地适用于各种不同的环境,括室内和室外环境,结构化环境与非结构化环境。 六、惯性定位是在移动机器人的车轮上装有光电编码器,通过对车轮转动的记 录来粗略地确定移动机器人位置。该方法虽然简单,但是由于车轮与地面存在打滑现象,生的累积误差随路径的增加而增大,导致定位误差的逐渐累积,从而引起更大的差。 七、标记定位法是在移动机器人工作的环境里人为地设置一些坐标已知的标记, 八、超声波发射器、激光反射板等,通过机器人的传感器系统对标记的探测来 确定机器人在全局地图中的位置坐标。三角测量法是标记定位中常用的方法,机器人在同一点探测到三个陆标,并通过三角几何运算,由此可确定机器人在工作环境中的坐标。标记定位是移动机器人定位中普遍采用的方法,其可获得较高的定位精度且计量小,但是在实际应用中需要对环境作一些改造,添加相应的标记,不太符合真正意义的自主导航。 九、GPS定位是利用环绕地球的24颗卫星,准确计算使用者所在位置的庞大卫 星网定位系统。GPS定位技术应用已经非常广泛,除了最初的军事领域外,在民用方面也得到了广泛的应用,但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS定位精度比较低、可靠性不高,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘与GPS数据进行

扫地机器人结构详细

扫地机器人结构详细 自动清扫机器人是当今服务机器人领域一个热门的研究方向。从理论和技术上讲,自动清扫机器人比较具体地体现了移动机器人的多项关键技术,具有较强的代表性,从市场前景角度讲,自动清扫机器人将大大降低劳动强度、提高劳动效率,适用于宾馆、酒店、图书馆、办公场所和大众家庭。因此开发自动清扫机器人既具有科研上的挑战性又具有广阔的市场前景。 家用智能清扫机,包括计算机、传感器、电机与动力传动机构、电源、吸尘器、电源开关、操作电位计等,在清扫机的顶部共设有三个超声波距离传感器;清扫机底部前方边沿安装有5个接近开关,接近开关与超声波距离传感器一起,构成清扫机测距系统;清扫机装有两台直流电机;在清扫机的底部安装有吸尘器机构。自动清扫机器人的功能是自动完成房间空旷地面尤其是家居空旷地面的清扫除尘任务,打扫前,要把房间里的物体紧靠四周墙壁,腾出空旷地面。清扫机完成的主要功能:能自动走遍所以可进入的房间,可以自动清扫吸尘,可在遥控和手控状态下清扫吸尘。 本文所介绍的自动清扫机器人的总体布局方案如图1所示,前后两轮为万向轮,左右两轮为驱动轮。驱动轮设计采用两轮独立且各由两台步进电动机驱动的转向方式,通过控制左右两轮的速度差来实现转向。考虑到机器人实际应用的实用性,本驱动系统设计成一个独立的可方便替换的模块,当机器人驱动系统发生故障时,只需简单步骤就可以对驱动部分进行替换。同时为了机器人能够灵活的运动,从动轮选用万向轮。 下图为自动清扫机的三维立体图:

自动清扫机器人车箱体采用框架式结构。从下至上分隔成三个空间:第一层装配各运动部件的驱动电机、传动机构;第二层为垃圾存储空间;第三层装配机器人控制系统、接线板、

相关文档