文档库 最新最全的文档下载
当前位置:文档库 › 函数

函数

函数
函数

1.(2011北京朝阳区期末)

要得到函数sin

24

y x π

=-()的图象,只要将函数sin 2y x =的图象 (C)

(A )向左平移4π

单位

(B )向右平移

单位 (C )向右平移8

π

单位

(D )向左平移8

π

单位

27.(2011

杭州质检)在ABC ?中,角

A,B,C 所对应的边分别是a ,b ,c ,已知

():():()4:5:6b c c a a b +++=,给出下列结论

①ABC ?的边长可以组成等差数列

0AC AB ?<②

753A B C ==③

④若b+c=8,则ABC ?的面积是1534

其中正确的结论序号①②④ 5.设α为第二象限角,其终边上一点为P (m ,5),且cos α=

2

4

m ,则sin α的值为 ________.

解析:设P (m ,5)点到原点O 的距离为r ,则m r =cos α=24m ,∴r =22,sin α=5

r

522

=104.

答案: 104

18.(2011

福州期末)在ABC ?中,5,3,sin 2sin BC AC C A ===,则AB 的

长为 25 。 22. (2011广州调研)

若把函数()=y f x 的图象沿x 轴向左平移4π

个单位,

沿

y 轴向下平移1个单位,然后再把图象上每个点的

横坐标伸长到原来的2倍(纵坐标保持不变),得到函数 sin =y x 的图象,则

()

=y f x 的解析式为(B)

A.

sin 214??=-+ ???y x π B. sin 21

2?

?=-+ ???y x π C.

1sin 124??=+- ???y x π D. 1

sin 1

22??=+- ???y x π

2.(浙江理6)若

02π

α<<

,02πβ-<<,

1cos()43πα+=,3

cos()423πβ-=,则cos()2

β

α+

=

A .33

B .33-

C .539

D .6

9-

【答案】C

35、(2011·淮南一模)已知ABC ?中,2=AB ,

=

C ,则ABC ?的周长为

( C )

A .2)3sin(34++πA

B .2

)6sin(34++π

A C .2)6sin(4++πA D .2)3sin(8++π

A

16.(上海理8)函数

sin(

)cos(

)

2

6

y x x π

π

=+-的最大值为 。

【答案】23

4+

2.若sin θ·cos θ=1

2,则tan θ+cos θsin θ

的值是________.

解析:tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1

sin θcos θ

=2. 答案:2

45.(2011·金华十二校一联)函数()sin cos f x x x =是

( C )

A .最小正周期为2π且在[0,]π内有且只有三个零点的函数

B .最小正周期为2π且在[0,]π内有且只有二个零点的函数

C .最小正周期为π且在[0,]π内有且只有三个零点的函数

D .最小正周期为π且在[0,]π内有且只有二个零点的函数

5.(苏州市高三教学调研测试)已知α为钝角,sin α=1

3

,则tan α=________.

解析:tan α=

sin αcos α=sin α

-1-sin 2α

=13-

1-1

9

=-24.

答案:-

24

2.已知cos ????π6-α=3

3,求cos ????56π+α-sin 2???

?α-π6的值. 解:cos ????56π+α-sin 2????α-π6=cos ????π-????π6-α-sin 2????α-π6 =-cos ????π6-α-????1-cos 2????π

6-α=-2+33

. 18.C5、C2、C3[2012·重庆卷] 设f (x )=4cos ????ωx -π

6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域;

(2)若f (x )在区间???

?-3π2,π

2上为增函数,求ω的最大值. 18.解:(1)f (x )=4???

?32cos ωx +1

2sin ωx sin ωx +cos2ωx

=23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin2ωx +1.

因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].

(2)因y =sin x 在每个闭区间?

???2k π-π2,2k π+π

2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间????

k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.

依题意知????-3π2,π2?????k πω-π4ω,k πω+π

4ω对某个k ∈Z 成立,此时必有k =0,于是 ?

??

-3π2≥-π4ω

,π2≤π4ω

解得ω≤16,故ω的最大值为1

6

.

50.(2011·九江七校二月联考)(本小题满分12分)已知角A 、B 、C 是ABC ?的

内角,c b a ,,分别是其对边长,向量)2cos ,2sin 32(2A A m = ,)2,2

(cos -=A

n ,

m n ⊥。

(1)求角A 的大小; (2)若,3

3

cos ,2=

=B a 求b 的长。

解:(1) m n ⊥

()223sin ,cos cos ,23sin cos 1222A A A m n A A ????

∴?=?-=-+= ? ?????

1cos sin 3=-∴A A ……4分

216sin =??? ?

?

-∴πA ……6分

∵,6

6,656

6

,0π

πππ

π

π=-∴<

-

<-

∴<

(2)在ABC ?中,3

π

=

A ,2=a ,3

3

cos =

B 3

6311cos 1sin 2=-

=-=∴B B ……10分 由正弦定理知:

,sin sin B

b

A a =……11分 ∴A

B

a b sin sin =

=3242

3

36

2=?

=.∴=b 324……12分

2.函数y =3sin ?

???2x +π

4,x ∈[0,π]的单调递减区间________. 解析:由2k π+π2≤2x +π4≤2k π+3π2,得k π+π8≤x ≤k π+5π

8(k ∈Z).

由x ∈[0,π]得0≤k π+π8且k π+5π8≤π,于是-18≤k ≤3

8,∵k ∈Z ,

∴k =0,∴y =3sin ????2x +π4在[0,π]上的单调递减区间为????π8,5π8. 答案:????

π8,5π8

2.已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈R ,求:

(1)函数f (x )的最大值及取得最大值的自变量x 的集合; (2)函数f (x )的单调增区间. 解:(1)解法一:∵f (x )=

1-cos 2x 2+sin 2x +3(1+cos 2x )

2

=2+sin 2x +cos 2x =2+2sin ????2x +π4,∴当2x +π4=2k π+π2(k ∈Z),即x =k π+π

8

(k ∈Z)时,f (x )取得最大

值2+ 2.因此,f (x )取得最大值的自变量x 的集合是{x |x =k π+π

8,k ∈Z}.

解法二:∵f (x )=(sin 2x +cos 2x )+sin 2x +2cos 2x =1+sin 2x +1+cos 2x =2+2 sin ?

???2x +π4, ∴当2x +π4=2k π+π2(k ∈Z),即x =k π+π

8

(k ∈Z)时,f (x )取得最大值2+ 2.因此,f (x )

取得最大值的自变量x 的集合是?

???

??x ?

?

x =k π+π

8,k ∈Z . (2)f (x )=2+2sin ????2x +π4.由题意得2k π-π2≤2x +π4≤2k π+π

2

(k ∈Z), 即k π-38π≤x ≤k π+π

8(k ∈Z).因此,f (x )的单调增区间是????k π-3π8,k π+π8(k ∈Z). 15.C3、K3[2012·湖南卷] 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图1

-5所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

(1)若φ=π6,点P 的坐标为?

???

0,332,则ω=________;

(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.

图1-5

15.(1)3 (2) π

4

[解析] 考查三角函数f (x )=sin(ωx +φ)的图象与解析式,结合导数和

几何概型,在陈题上有了不少的创新.作为填空题,第二问可在第一问的特殊情况下求解.

(1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点?

???

0,332代入得

ωcos ????0+π6=332解得ω=3.

(2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ????3x +π6,求得A ???

9,0, B ????5π18,-3,C ????4π9,0,故△ABC 的面积为S △ABC =12×3π9×3=π

2

,曲线段与x 轴所围成的区域的面积S =-

??f (x ) 4π9π

9

=-sin ????4π3+π6+sin ????3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π

4

.

5.若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的对称中心为

________.

解析:∵f (x )=sin ax +cos ax =2sin ?

????ax +π4,∴2πa =1,∴a =2π.

∴f (x )=2sin ?

??

??

2πx +

π4, ∴对称中心为? ????k 2-18,0(k ∈Z). 答案:? ??

??k 2-18,0(k ∈Z) 9.(江苏省高考命题研究专家原创卷)已知向量m =(sin ωx ,-3cos ωx ),n =

? ??

??sin ωx ,cos ? ????ωx +π2(ω>0),若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;

(2)将函数y =f (x )的图象向左平移π

12个单位,再将得到的图象上各点的横坐标伸长到

来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数y =g (x )的单调递减区间. 解:(1)由题意得f (x )=m ·n =sin 2

ωx -3cos ωx cos(ωx +π2

)=sin 2

ωx +3cos ωx sin ωx

1-cos 2ωx 2+32sin 2ωx =32sin 2ωx -12cos 2ωx +12=sin ?

????2ωx -π6+12. 因为函数f (x )的最小正周期为π,且ω>0,所以2π

=π,解得ω=1.

(2)将函数y =f (x )的图象向左平移π12个单位,得到函数y =f ? ??

??x +π12的图象,再将所得图

象横坐标伸长到原来的4倍,纵坐标不变,得到函数y =f ? ??

??x 4+π12,即函数y =g (x )的图

象.

由(1)知f (x )=sin ?

????2x -

π6+12

, 所以g (x )=f ? ????x 4+π12=sin ??????2? ????x 4+π12-π6+12

=sin x 2+12. 令2k π+

π2≤x 2≤2k π+3π

2

(k ∈Z),解得4k π+π≤x ≤4k π+3π(k ∈Z). 因此函数y =g (x )的单调递减区间为[4k π+π,4k π+3π](k ∈Z). 2.

cos 15°-sin 15°

cos 15°+sin 15°

的值为________.

解析:原式=1-tan 15°1+tan 15°=tan 45°-tan 15°1+tan 45°tan 15°=tan 30°=3

3.

答案:

3

3

2. (2010·全国大联考江苏卷)已知向量m =(sin B,1-cos B ),且与向量n =(2,0)所成的

角为π

3,其中A ,B ,C 是△ABC 的内角.

(1)求角B 的大小;(2)求sin A +sin C 的取值范围. 解:(1)m ·n =2sin B =|m |·|n |cos π

3

=sin 2B +(1-cos B )2=2-2cos B ,∴4sin 2B =2-2cos B ,∴2-2cos 2B =1-cos B , 又∵cos B ≠1,∴1+cos B =12,B ∈(0,π),∴cos B =-12,∴B =2π3.

(2)由(1)知A +C =π

3,∴sin A +sin C =sin A +sin ????π3-A =sin A +32cos A -12sin A =sin ????A +π3,∵0

3

, ∴

32

2

6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域;

(2)若f (x )在区间???

?-3π2,π

2上为增函数,求ω的最大值. 18.解:(1)f (x )=4????32cos ωx +1

2sin ωx sin ωx +cos2ωx

=23sin ωx cos ωx +2sin 2ωx +cos 2

ωx -sin 2ωx =3sin2ωx +1.

因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].

(2)因y =sin x 在每个闭区间?

???2k π-π2,2k π+π

2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间????

k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.

依题意知????-3π2,π2?????k πω-π4ω,k πω+π

4ω对某个k ∈Z 成立,此时必有k =0,于是 ?

??

-3π2≥-π4ω

,π2≤π4ω

解得ω≤16,故ω的最大值为1

6

.

2. 已知α是第一象限的角,且cos α=

5

13,则sin ???

?α+π

4cos(2α+4π)

的值为________.

解:∵α是第一象限的角,cos α=513,∴sin α=12

13

. ∴sin ???

?α+π4cos(2α+4π)=22(sin α+cos α)cos 2α=22(sin α+cos α)cos 2α-sin 2

α=22cos α-sin α=2

2

513-12

13= -13 2

14

. 答案:-13 2

14

2.已知函数f (x )=1-2sin(2x -π

4

)

cos x

.

(1)求f (x )的定义域;

(2)设α是第四象限的角,且tan α=-4

3

,求f (α)的值.

解:(1)由cos x ≠0,得x ≠k π+π2(k ∈Z),故f (x )的定义域为{x |x ∈R 且x ≠k π+π

2,k ∈Z}.

(2)∵tan α=-43且α是第四象限的角,∴sin α=-45,cos α=3

5.

∴f (α)=1-2sin(2α-π4)cos α=1-2(22sin 2α-2

2

cos 2α)

cos α

1-sin 2α+cos 2αcos α=(1+cos 2α)-sin 2α

cos α

=2cos 2α-2sin αcos αcos α=2(cos α-sin α)=2(35+45)=14

5.

7.C6[2012·全国卷] 已知α为第二象限角,sin α+cos α=3

3

,则cos2α=( ) A .-

53 B .-59 C.59 D.53

7.A [解析] 本小题主要考查三角函数中和角公式与二倍角公式的运用,解题的突破口为原式两边平方后转化为二倍角结构及任何情况下均要考虑“符号看象限”.

由sin α+cos α=33及α为第二象限角有2k π+π2<α<2k π+3π

4

(k ∈Z ),∴4k π+π<2α<4k π+

3π2(k ∈Z ).原式两边平方得2sin αcos α=sin2α=-23,∴cos2α=-5

3,故选A.

实变函数证明题全套整合(期末深刻复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c αβ∞ =>=,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>= <<= ><因为g 在2E 上可 测,因此22[],[]n n E g E g αβ><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2, ,n n A A n n n -==求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

函数的证明方法

一般地,对于函数f(x) ⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。 ⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。 ⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 ⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 定义域互为相反数,定义域必须关于原点对称 特殊的,f(x)=0既是奇函数,又是偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言。 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。 ④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。 ⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x3【-∞,-2】或【0,+∞】(定义域不关于原点对称) ⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0 注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

导数运用极大值与极小值(含答案)

极大值与极小值 一、基础过关 1.函数y =f (x )的定义域为(a ,b ),y =f ′(x )的图象如图,则函数y =f (x )在开区间(a ,b )内取得极小值的点有________个. 2.下列关于函数的极值的说法正确的是________.(填序号) ①导数值为0的点一定是函数的极值点; ②函数的极小值一定小于它的极大值; ③函数在定义域内有一个极大值和一个极小值; ④若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数. 3.函数y =x 3-3x 2-9x (-20,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________. 9.若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是________. 10.求下列函数的极值:

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

函数f(x)一致连续的条件及应用解读

函数f (x)一致连续的条件及应用 (数学与应用数学2003级 张志华 指导教师 刘敏思) 内容摘要:本文比较全面的总结了判断函数的一致连续性的条件,并结合具体例子对这些方法加以应用,而且对基本初等函数的一致连续性作了较为完整的讨论,还将一元函数的一致连续性推广到二元函数上去. 关 键 词:一致连续 拟可导函数 基本初等函数 二元函数 Abstract :This paper is more completely to summarize the methods of judging uniform continuity of functions, and apply them to analyze some examples, moreover, we discuss uniform continuity of fundamental primary functions in detail, and extend these methods to the case of functions of two variables. Key words: uniform continuity perederivatable functions fundamental primary functions functions of two variables 1.引言 函数的一致连续性是数学分析课程的重要理论,弄清函数的一致连续性的概念和熟练掌握判断函数一致连续的方法是学好这一理论的关键.一般的数学分析教材中只给出一致连续的概念和判断函数在闭区间上一致连续的.G 康托定理,内容篇幅较少,不够全面和深入;虽然有些论文对函数一致连续性的判断作了一些拓展和补充,但是显得不够系统和应用得不够广泛.因此,对一般数学分析教材中这一部分内容并结合一部分论文资料,作一个比较系统和全面的总结,并作适当的拓展,如将一元函数的一致连续性推广到二元函数上去,无疑这一工作是十分必要和具有现实意义的. 2.预备知识 2.1一致连续和非一致连续的定义 一致连续:设()f x 为定义在区间I 上的函数.若对任给的0ε>,存在()0δδε=>,使得对任何,x x I '''∈,只要x x δ'''-<,就有()()f x f x ε'''-<,则称 函数()f x 在区间I 上一致连续.

函数的极大值和极小值

4.3.2 函数的极大值和极小值 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=. 对于一般的函数()y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 二.新课讲授 1.问题:图 3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数 2() 4.9 6.510 h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是 增函数.相应地,' ()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是 减函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图 3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 搜集整理,仅供参考学习,请按需要编辑修改

函数的极大值、极小值

【学习目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 【重点与难点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤 【学法提示】 讲练结合 【课前预习】 用导数法求下列函数的单调区间. (1) 2()2f x x x =-- (2)311433 y x x = -+ 1.极大值: 2.极小值: 3.极大值与极小值统称为极值 取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念由定义,并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即函数在某区间上或定义域内极大值或极小值可以不止一个 (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足 0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数/()f x (2)求方程/()f x =0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查/()f x 在方程根左右的值的符号,若左正右负,那么f (x )在这个根处取得极大值;若左负右

实变函数(复习资料,带答案).doc

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。 2、若0=mE ,则E 一定是可数集. 3、若|()|f x 是可测函数,则()f x 必是可测函数 4.设()f x 在可测集E 上可积分,若,()0x E f x ?∈>,则 ()0E f x >?

函数的单调性证明

函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)内是增函数. 4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 7.证明:函数y=在(﹣1,+∞)上是单调增函数. 8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.

10.已知函数f(x)=x+. (Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.11.证明:函数f(x)=在x∈(1,+∞)单调递减. 12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性. 14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

15.求函数f(x)=的单调增区间. 16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.17.求函数的定义域. 18.求函数的定义域. 19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+(2)f(x)+2f()=3x.20.若3f(x)+2f(﹣x)=2x+2,求f(x).

21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x) 22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

用定义证明函数极限方法总结[1]

用定义证明函数极限方法总结: 用定义来证明函数极限式lim ()x a f x c →=,方法与用定义证明数列极限式类似,只是细节 不同。 方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x a h ε-<,从而得()h δε=。 方法2:将()f x c -放大成() x a ?-,解() x a ?ε-<,得()x a h ε-<,从而得 ()h δε=。 部分放大法:当 ()f x c -不易放大时,限定10x a δ<-<,得 ()()f x c x a ?-≤-,解()x a ?ε-<,得:()x a h ε-<,取{}1min ,()h δδε=。 用定义来证明函数极限式lim ()x f x c →∞ =,方法: 方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x h ε>,从而得 ()A h ε=。 方法2:将()f x c -放大成() x a ?-,解() x a ?ε-<,得()x h ε>,从而得 ()A h ε=。 部分放大法:当()f x c -不易放大时,限定1x A >,得() ()f x c x a ?-≤-,解 ()x a ?ε-<,得:()x h ε>,取{}1max ,()A A h ε=。 平行地,可以写出证明其它四种形式的极限的方法。 例1 证明:2 lim(23)7x x →+=。 证明:0ε?>,要使: (23)722x x ε+-=-<,只要 22x ε-<,即022 x ε <-< , 取2 εδ= ,即可。 例2 证明:22 112 lim 213 x x x x →-=--。 分析:因为,22 11212 213213321 x x x x x x x --+-=-=--++放大时,只有限制

函数证明问题专题训练

函数证明问题专题训练 ⑴.代数论证问题 ⑴.关于函数性质的论证 ⑵.证明不等式 6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根. (Ⅰ)当x >a 时,求证:()f x <x ; (Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); (Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

相关文档
相关文档 最新文档