文档库 最新最全的文档下载
当前位置:文档库 › 管道系统设计流量和蓄水池选择要求注意事项

管道系统设计流量和蓄水池选择要求注意事项

管道系统设计流量和蓄水池选择要求注意事项
管道系统设计流量和蓄水池选择要求注意事项

管道系统设计流量和蓄水池选择要求注意事项

(1)当建筑物内采用外网直接供水方式或虽采用二次提水方式,但是不设水箱。蓄水池,只设吸水井,以及部分直供,部分用泵提升直供的方式供水时,应该按照其负担的卫生器具的给水当量数,计算设计秒流量作为引入管的设计流量。

(2)当采用单设水箱(夜间进水)供水方案时,其引入管的设计流量应该按照下列式子计算;Ql=Qd/T

式中Ql——引入管的设计流量

Qd-----最高用水时用水量

T―――晚间水箱进水时间

(3)当建筑物内部的全部用水都经过蓄水池调节后用泵升压供给是,引入管的设计流量应该为蓄水池的设计补水量

(4)当建筑内的生活用水既有室外管网直供,又有二次加压供水,二次加压部分的供水是经过蓄水池调节的,则需要分别计算。直供部分为所担负的卫生器具的设计秒流量;提升部分为调节池的补水量,两者之和为引入管的设计流量。

(5)当采用泵-水箱联合供水时,管道系统设计流量按照下列规定确定;

1.全楼都由水箱供水时,泵和由泵转至水箱的输水管都由全楼的最大是流量计算。

2.当建筑物内部由室外管网直供时,部分由水箱供水时,泵和由泵至水箱的输水管都按照需水箱供水的那部分最大小时用水量计算。

3.由水箱至各生活用水店的给水管按照设计流量计算。

4.当采用水箱串连供水时,各区按照本区所负担供水的最大小时用水量,确定本区提升泵流量;下区还应该设与上区提升泵相匹配的转述泵,其泵和由泵至水箱的输水

管都按照需水箱供水的那部分最大小时用水量计算。

蓄水池设备选择要求

(1)蓄水池一般都采用钢筋混凝土结构。蓄水池的池体应该采用独立的结构形式,不能利建筑物的本底作为水池的池壁。

(2)蓄水池与化粪池,污水处理构筑物的净距不宜小于10m。

(3)蓄水池设有进水管,出水管,溢流管,泻水管和水位信号装置,溢流管应该比进水管大一号,溢流口底标高应该高出室外地坪100mm。

(4)容积大于500m的蓄水池应该分为两座,且两水池设连接管。

流量计的选型和管道安装要求20100725

流量计的选型和管道安装要求 沼气是一种混合气体,根据发酵原料以及发酵时间的不同,气体成分有所差异,但是其主要成分都是甲烷和二氧化碳。在正常稳定产气阶段,甲烷占总气体体积的45%~60%,二氧化碳占35%~45%,,还含有少量的水蒸气、硫化氢、氢气、一氧化碳、氨气、碳氢化合物、氮气、氧气和甲硫醇等,另外还含有少量的颗粒状杂质。 气体流量计的选型一般需要综合考虑以下几方面的因素:一、仪表性能(精确度、重复性、线性度、测量范围、压力损失、上下限流量)。二、流体特性(流体压力、温度、密度、粘度、润滑性、化学性质、腐蚀、脏污、气体压缩系数、等熵系数、比热容、混相流、脉动流等)。三、安装要求(管道布置方向、流动方向、上下游直管段长度、管径、维护空间、管道振动、过滤、排污等)。四、维护需求以及价格等因素(购置费、安装费、维护费、校验费、运行费、使用年限、备件备品)。除了要考虑以上因素外,非常重要的是对被测量对象(沼气的实际情况)的确切了解。 一般流量取在流量计的最大流量的70%-80%左右,实际最大流量一般不超过流量计允许最大流量的120%,持续时间不允许超过0.5小时,同时对流量计流量范围的超下限要重视,因它对计量误差影响较大。 根据老虎坑环境园沼气利用CDM项目的实际情况,流量计选型

主要在涡轮流量计、涡街流量计和V锥流量计中选择。 涡街流量计的主要有如下优缺点。一、优点:结构简单而牢固,无可动部件,可靠性高,长期运行十分可靠;安装简单,维修十分方便;检测传感器不直接接触介质,性能稳定,寿命长;输出是与流量成正比的脉冲信号,无零点漂移,精度高,并方便和计算机联网;测量范围宽,量程比可达1:10;压力损失较小,运行费用低,更具节能意义;在一定的雷诺数范围内,输出信号频率不受流体物理性质和组份变化影响,仪表系数仅与漩涡发生体的形状和尺寸有关测量流体的体积流量无需补偿,调换配件后无需重新标定仪表的系数;应用范围广,蒸汽、气体、液体的流量均可测量;检定周期为二年。二、缺点:涡街流量计是一种速度式流量计,漩涡分离的稳定性受流速分布影响,故它对直管段有一定的要求,一般是前10D,后5D;测量气体时,上限流速受介质可压缩性变化的限制,下限流速受雷诺数和传感器灵敏度的限制,一般气体的流速范围10-70m/s,蒸汽的流速范围为8-50m/s;应力式涡街流量计对振动较大敏感,故在振动较窄的管道安装涡街流量计时,管道要有一定的减震措施;应力式涡街流量计采用压电晶体作为检测传感器,故其受温度的限制,一般长期工作温度为-40℃~+350℃和-10℃~+250℃。 V锥流量计主要有如下优缺点。作为一种传统的差压式流量计,它的技术是很成熟的,当然也没有多少神奇之处,但是它的结构上的突破性设计,使它具有了传统的差压式流量计所不能比拟的优点。一、

除尘管道设计与计算

除尘管道设计与计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

除尘管道设计与计算 工业除尘管道的设计,虽然在《采暖通风手册》和《劳动保卫》等杂志中均有介绍,但都不系统。对初次搞防尘设计的人员来说,看过后,也无法进行设计,经过这次防尘管道的设计,我的体会如下:——防尘管道设计所必须经过的几个主要环节: (1)根据现场确定扬尘点的位置,以相邻的5-6个扬尘点编排为一组。 (2)确定除尘器与风机的位置。 (3)根据空间的位置确定管道的走向,画出管道走向图,并注明管道的长度及所需的弯管.三通角度。 (4)计算各管道的直径,弯道阻力及阻力平衡。 (5)依扬尘点的性质及密封程度确定扬尘点所需的排风量。 (6)根据所需处理风量的大小和排尘情况确定除尘器的类别,形式,及规格。 (7)根据总风量与总阻力选择除尘风机。 ——下面介绍每一环节所应注意的事项及所需的表格。 铸造车间生产环境较差,扬尘产生一般在物料运输,转运和有落差的地方(皮带机转运点处和接板下砂处等)另一种情况是物料受冲击或吹动时也产生扬尘(例如:落砂机落砂时喷砂,吹砂时)因此确定扬尘点的位置就应深入现场作调查研究,并考虑如何进行密封除尘。确定除尘点所需风量的多少,风量的确定可查《工厂采暖通风手册》以后简称“工厂采通手册”附表1-1或在调研中了解到其他厂采用的合理风量作参考。 根据扬尘的性质确定排尘罩的位置。假设的排尘罩应靠近或对准扬尘散发的方向,为避免排走过多的粉料,罩面风速为Vo=~3m/s

选择的原则,细粉选风速的小值,粗颗粒选大值。排尘罩的规格可参考“工厂采通手册”表1-55。 也可根据风量,风速计算界面积,公式 F=Q/3600v[F-界面积(米2 ) ,Q-风量(米3/时),V-风速(米/秒)] 另一方面,在同一条除尘管道系统中所设置的排尘点不得超过5~6个。以上是对扬尘点的确定及注意事项。下面介绍除尘管道设计中所应注意的问题: 除尘管道应尽量减短及减少过多的转弯。管道应明设避免地厂敷设,这样便于管理和维修。管道应尽量设计成垂直的或倾斜的,防止灰尘降落堵塞管道。但大部分达不到这种要求,水平走向的管道较多。为了防止灰尘降落堵塞管道,风道内的风速一般选择较大值,见“工厂采通手册”表1-56。根据实际调查的情况水平管道的风速对于型砂除尘一般采用22-25米/秒。为了便于清理管道,可在水平管道的侧面、弯头、三通、异形件处增设清扫孔。为了减少弯道的阻力,管道在转弯处的弯曲半径=~3d(d-风管的直径),风管的截面一般采用圆形,所用的材料一般为~2毫米厚的铁板卷制而成。在计算管道的阻力时为了使各支管除尘效果一致,应使主管道与各相应的支管道的阻力损失平衡。平衡的方法见下面的管道设计实例。 l—为分管道长度(米) d—为分管道直径(毫米) h—为分管道阻力(毫米水柱高) l—为扬尘点的排风量(米3/时) 〈2〉根据扬尘点的情况选择所需的排风量: 查《工厂采通手册》附表1-1当皮带宽500毫米时派风量为:1000米3/小时。

流量计的安装要求

淮安嘉可自动化仪表有限公司 流量计的安装要求 各种流量计由于测量原理不同,则对安装条件提出不同要求。例如有些仪表(如差压式、涡轮式)需要长的直管段,以保证仪表进口端流动达到充分发展,而另一些仪表(如容积式、浮子式)则无此要求或要求很低。安装条件需考虑的因素包括:仪表的安装方向、流动方向、上下游段管道状况、阀门位置、防护性配件、脉动流影响、振动、电气干扰和维护空间等。 管道安装布置方向应遵守仪表制造厂家规定。有些仪表水平安装和垂直安装对测量性能有较大影响;在水平管道可能沉积固体颗粒,因此测量浆体的仪表最好装在垂直管道上。通常在仪表外壳表面标注流体流动方向,必须遵守,因为反向流动可能损坏仪表。为防止误操作可能引起反向流动,有必要安装止回阀保护仪表。有些仪表允许双向流动,但正向和反向之间的测量性能也可能存在差异,需要对正反两个流动方向分别校验。 理想的流动状态应该是无旋涡、无流速分布畸变。大部分仪表或多或少受进口流动状况的影响,管道配件、弯管等都会引入流动干扰,可以适当调整上游直管段改善流动特性。对于推理式流量计,上下游直管段长度的要求是保证测量准确度的重要条件,具体长度要求参照制造厂家的建议。流量计校准是在实验室稳定流条件下进行的,但是实际管道流量并非全是稳定流,如管路上装有定排量泵、往复式压缩机等就会产生非定常流(脉动流),增加测量误差。因此安装流量计必

淮安嘉可自动化仪表有限公司 须远离脉动源处。工业现场管道振动对流量计(涡街流量计、科里奥利质量流量计等)的测量准确性也有影响。可以对管道加固支撑、加装减震器等。仪表的口径与管径尺寸不同,可用异径管连接。流速过低仪表误差增加甚至无法工作,而流速过高误差也会增加,同时还会因使测量元件超速或压力降过大而损坏仪表。

除尘器管道的设计原则

除尘器管道的设计原则 一、除尘通风管道的分类 除尘通风系统通常叫通风网路,简称风网。风网一般有两种形式,一种是单独风网,它是一部机器或一个吸点单独用一台通风机进行吸风的网路(如图1#)。另一种是集中风网,它是两个或两个以上的吸点共用一台通风机进行吸风的网路(如图2#)。集中风网在现实中应用较为普遍。 二、单独风网与集中风网的比较。 单独风网管道一般比较简单,风量容易调节和控制。但是设备投资较大,每台机器设置一台风机和电机,相对增加了占地面积和安排的困难。 集中风网管道动力消耗、设备造价和维护费用都比较经济,粉尘处理和回收较简单。但集中风网运行调节比较困难,当一个风网吸点的风量发生变化时,就会影响到整个网路。 单独风网与集中风网各有优缺点,在应用中需要根据实际情况而确定。 三、集中风网的组合原则(单独风网略过。。。。。) 1、组合在同一风网中的机器设备内吸出的粉尘在品质上应该是相类似的。各机器设 备的工艺任务是不同的,它们产生的粉尘在品质与价值上也就不一样。例如(在 饲料加工厂),在清理车间中初步清理时所形成的粉尘大都是泥、沙等无机粉尘 利用价值低;而后来清理时产生的粉尘则含有一些皮壳和破碎原料等有机物质, 有一定的利用价值,因此前后清理过程的吸风在可能条件下应分开装设。 2、机器工作的间隙时间应该相同即组合在同一网中的机器设备,工作的时间应该相 同。这样可以使通风机的符合保持稳定。如果风网中的机器或吸点因不时停歇而 关闭吸风时,则会造成其它风管中风速的频繁变化,从而影响工艺效果。对于相 互交错进行工作的机器设备也可接在同一风网上,但它们的风量应该相同。

3、管道设计力求简单经济合理 这个原则要求组合在同一风网中的机器之间的距离要短;为防止粉尘在管道内沉 积,风管尽可能垂直铺设,尽量减少弯曲和水平部分。 4、风机的安放位置合适 风机一般应安装在除尘器之后(采用吸气式),以减少粉尘对风机的磨损。 当然,上面几个原则有时有相互的,例如,吸出物相同的机器在组合成一个风网时,有时管道配置却并不简单。满足了一个原则,有时可能会牺牲另一个原则。所以在设计风网时就应权衡轻重,全面考虑。对于复杂情况,可草拟几个组合方案,进行比较,然后订出最经济、最适宜的组合网路。

质量流量计安装要求汇总

质量流量计安装使用要求汇总 1.质量流量计安装要求 1.1安装位置的选择 (1)安装位置应远离能引起管道机械振动的干扰源,如工艺管线上的泵等。如果传感器在同一管线上串联使用,应特别防止由于共振而产生的相互影响,传感器间的距离至少大于传感器外 形尺寸宽度的三倍。 (2)传感器的安装位置应注意工艺管线由于温度变化引起的伸缩和变形,特别不能安装在工艺管线的膨胀节附近。如果安装在膨胀节附近,由于管道伸缩会造成横向应力,使得传感器零点发 生变化,影响测量准确度。 (3)传感器的安装位置应远离工业电磁干扰源,如大功率电动机、变压器等,否则传感器中测量管的自谐振动会受到干扰,速度传感器检测出来的微弱信号有可能被淹没在电磁干扰的噪声中。 传感器应远离变压器、电动机至少5 米以上的距离。 (4)测量液体时的质量流量计安装位置 传感器的安装应能保证液体满管,以便能降低密度变化对测量精确度的影响。而当过程管道需清洁时,安装位置应能保证完全排空液体。为不使传感器内部聚集气体,应避免将传感器安装在管 道系统的最高端。 (5)测量气体时的质量流量计安装位置 为不使传感器内部聚集液体,应避免安装在管道的低点。 1.2 安装方式的选择 传感器的安装方式主要根据流体的相别及其工艺情况确定,有三种安装方式。 (1)若被测流体是液体,一般采用外壳朝下安装传感器,避免空气聚积在传感器振动管内, 从而达到准确测量质量流量的目的 (2)如果被测流体是气体,一般采用外壳朝上安装传感器,避免冷凝液聚积在传感器振动管 内。 (3)如果被测流体是液体、固体的混合浆液时,将传感器安装在垂直管道上,这可避免微粒聚积在传感器科氏力测量管内。此外,如果工艺管线需要用气体和蒸汽清扫,这种安装方式还可以便于清扫,但这种安装方式较前二种难于固定,且压损较大。 1.3 安装的流向 无论何种流向,流量传感器都能精确测量流量。一般传感器上均用箭头指明流体正常的流向。

涡街流量计的安装注意事项

1.安装地点的选择:应避免电磁干扰。流量计的安装 地点应尽量远离强电磁场,如大功率马达、变压设施、变频设备等。 2.正式安装涡街流量计之前,请勿将流量计进、出口 的保护套除去,以防损坏流量计。 3.安装时应注意流量计外壳上的流向标志,切勿装 反。 4.直管段:涡街流量计的上、下游均要求有一定长度 的直管段。上游一般要求有40D 左右的直管段,下游要求有5D 的直管段。上游直管道的具体要求请参 见操作手册。 5.工艺管道的中心应对齐(以肉眼观察无明显偏 离)。不能在安装时用流量计硬行拉直上、下游工 艺管道,以避免损坏流量计。流量计上、下游工艺 管道近法兰处应有支撑以防止震动,影响测量精 度。 6.垫片:垫片的材料应与被测介质相应。垫片的内径 应稍大于流量计的内径(约1-2mm)。安装时应注意 对准中心,切勿装歪垫片,否则将破坏原有的直管段,影响测量精度。 7.流量计上游应装有过滤器,以防杂物进入流量计 损坏漩涡发生器或缠绕在漩涡发生体上影响测量 精度。 8.流量计上下游应装有手动阀门和旁路以方便维 护、保养。 9.在测量易汽化介质时,流量计下游最好装有压力 表,以读取在线压力,用以控制适当的背压,防止 汽化。若在流量计中发生汽化,将影响测量精度, 严重的汽蚀现象还有可能损坏流量计。 最小要求背压P:P=2.9△P + 1.3Pv △P 为流量计压损

Pv 为介质在工作状态时的汽化压力。 10.接线:电源线,流量计的输出信号线应走各自独立 的管线,以防止互相干扰。接线完成后,应盖紧接 线盖,并密封穿线孔,以防潮气进入影响测量。 11.涡街流量计有法兰式与夹持式两种。安装夹持式 流量计时必须使用随表装箱的对中环。

车间除尘设计方案

第一章总论 项目名称:车间粉尘治理工程 建设单位:新疆中油型材有限公司 设计施工单位:新疆旭日环保股份有限公司 第二章项目概况与设计依据 1.0 项目概况 新疆中油型材有限公司在“蓝天、碧水、绿地”的中国西部城市乌鲁木齐市(头屯河区)。车间需要对型材原料进行深加工,各种粉料掺杂扬尘而起,型材车间进行切割、钻削、刨削、打磨等,在生产过程中产生的粉尘扩散进入周围环境,严重影响了员工的工作环境及身心健康,因此,公司领导决定对该粉尘进行集中治理,特委托我公司为其生产工序所产生的废气进行治理方案设计,执行乌鲁木齐地方标准《大气污染物排放限制》和《工业企业厂界环境噪声排放标准》(GB12348-2008). 2.0 设计依据 2.0.1 贵公司提供的有关资料 2.0.2《中华人民共和国环境保护法》 2.0.3《机械设备安装工程施工及验收规范》(TJ231-87) 2.0.4《工业管道工程施工及验收规范》(GBJ235-82) 2.0.5《通风与空调工程施工及验收规范》(GBJ243-82) 2.0.6《建筑安装工程质量检验评定标准》(通用机械设备安装工 程)

(TJ305—75) 2.0.7《低压、配电装置及线路设计规范》(GBJ54-83) 2.0.8《通用用电设备配电规范》(GBJ50055-93) 2.0.9《三废处理工程技术手册》(废气卷) 2.0.乌鲁木齐地方标准《大气污染物排放限制》 第三章工程设计原则、设计范围和设计目标 1.0 工程设计原则 符合国家环境保护法有关标准规定; 采用成熟可靠、技术先进的工艺,在保证废气排放达标的前提下; 尽可能减少投资,降低成本; 外购设备选用国内知名品牌的优良产品; 非标设备应符合国家或行业相关规范、并保证性能稳定、外表美观; 设备应采用必要的防腐措施,延长使用寿命; 2.0工程设计范围 2.0.1工艺流程的选择和设计; 2.0.2非标设备的制造、安装与标准设备的选型; 2.0.3工程设备的运输、安装、调试及操作人员的培训; 2.0.4管网、电器、自控的设计与安装; 2.0.5 我方只负责由电控箱至风机的电源(甲方须提供电源至电 控箱内); 2.0.6 我方所安装、设计的设备及管道从车间内管道至风机出风

涡街流量计安装十大要求

涡街流量计安装十大要求 涡街流量计可广泛用于大、中、小型各种管道给排水、工业循环、污水处理,油类及化学试剂以及压缩空气、饱和及过热蒸汽、天然气及各种介质流量的计量并可作为流量变送器应用于自动化控制系统中,使用寿命长。 涡街流量计安装注意的要点: 1、合理选择安装场所和环境。 避开强电力设备,高频设备,强电源开关设备;避开高温热源和辐射源的影响,避开强烈震动场所和强腐蚀环境等,同时要考虑安装维修方便。 2、上下游必须有足够的直管段。 若传感器安装点的上游在同一平面上有二个90。弯头,则:上游直管段≥25D,下游直管段≥5D 。 若传感器安装点的上游在不同平面上有二个90。弯头,则:上游直管段≥40D,下游直管段≥5D 。 调节阀应安装在传感器的下游5D以外处,若必须安装在传感器的上游,传感器上游直管段应不小于50D,下游应有不小于5D。 3、安装点上下游的配管应与传感器同心,同轴偏差应不小于0.5DN。 4、管道采取减振动措施。 传感器尽量避免安装在振动较强的管道上,特别是横向振动。若不得已要安装时,必须采取减振措施,在传感器的上下游2D处分别设置管道紧固装置,并加防振垫。 5.在水平管道上安装是流量传感器最常用的安装方式。 测量气体流量时,若被测气体中含有少量的液体,传感器应安装在管线的较高处。测量液体流量时,若被测液体中含有少量的气体,传感器应安装在管线的较低处。6.传感器在垂直管道的安装。 测量气体流量时,传感器可以安装在垂直管道上,流向不限。若被测气体中含有少量的液体,气体流向应由下向上。 测量液体流量时,液体流向应由下向上:这样不会将液体重量额外附加在探头上。 7、传感器在水平管道的侧装。 无论测量何种流体,传感器可以在水平管道上侧装,特别是测量过热蒸汽,饱和蒸汽和低温液体,若条件允许最好采用侧装,这样流体的温度对放大器的影响较小。 8.传感器在水平管道的倒装。 一般情况下不推荐用此安装方法。此安装方法不适用于测量一般气体、过热蒸汽。可用于测量饱和蒸汽,适用于测量高温液体或需经常清洗管道的情况。 9.传感器在有保温层管道上的安装。 测量高温蒸汽时,保温层最多不能超过支架高度的三分之一。 10.测压点和测温点的选择。 根据测量的需要,需在传感器附近测量压力和温度时,测压点应在传感器下游的3-5D处,测温点应在传感器下游的6-8D

流量计安装标准

电磁流量计安装标准 为了确保电磁流量计在安装完成后,读数准确并可长期使用,在安装及使用时要严格按照以下标准进行操作。 首先,在安装时,为保证测量管内充满被测介质,传感器垂直安装时,流向需自下而上。若现场只允许水平安装,则必须保证两电极在同一水平面,电极的轴线近似水平方向。流量计的上游最少要有5D的直管段,下游最少要有3D的直管段,为方便安装和拆卸,可在流量计后加装管道伸缩节。管道中流体的流动方向必须和流量计的箭头指示方向一致。由于管道内一旦产生负压会损坏流量计的内衬,所以正压管系应防止产生负压,应在传感器附近装负压防止阀。若测量管道有振动,需在流量计两边加装固定的支座。在安装电磁流量计时,连接两个法兰之间的螺栓应注意均匀拧紧,最好用力矩扳手。应使用与仪表衬里材质相同的垫片,避免压坏内衬。一体式电磁流量计转换器安装的室外或湿度比较大的环境中时,电源线要保证一定的弧度,接线完成后旋紧进线螺母,防止水沿着电源线进入转换器腔体。 其次,为避免影响电磁流量计的测量精准度,流量计的安装位置应尽可能远离泵、阀门等设备以及射频、强磁场、强振动等干扰源。传感器必须单独接地(一般情况下接地电阻100Ω一下,对于防爆产品和防雷击要求的安装情况,接地电阻应小于10Ω)。原则上,分体式流量计的接地应在传感器一侧,转换器接地应在同一接地点。分体式电磁流量计转换器一般安装在传感器附近或仪电室。需要注意的是,传感器与转换器连接时,为了避免干扰信号,信号电缆必须单独穿在接地保护金属管内,不能把信号和电源电缆混穿在同一金属管内。 流量计在安装在直管段时应遵循如下要求。 通常在90°弯头后、缩径后、扩径后以及全开闸阀后,上游最少5D直管段,下游最小3D直管段(当缩径锥度<15°时,无需直管段)。不同开度的阀后,上游最少10D,下游最少3D直管段。安装在水泵后面,上游最小20D直管段,下游最小3D直管段。 流量计具体安装位置说明。 流量计应安装在水平管道的较低处和垂直向上处,避免安装在管道的最高点和垂直向下处。在斜管道中应安装在上升处。在开口排放的管道安装,应安装在管道的较低处。若管道落差超过5m,在传感器的下游安装排气阀。控制阀和切断阀应安装在流量计的下游。 流量计必须安装在泵的出口处而不是进口处。如仪表安装在野外,则必须安装避雷装置。

除尘课程设计

第一章绪论 (5) 1.1车间粉尘性质 (6) 1.2 车间粉尘危害及治理 (6) 1.2.1 粉尘危害 (6) 1.2.2 碳黑治理方法 (7) 1.2.3 旋风除尘器的原理 (7) 1.3 除尘系统 (8) 1.4 课程设计背景、主要内容、意义与预期目标 (9) 1.4.1 主要内容课程设计背景 (9) 1.4.2 主要内容 (9) 1.4.3 课程设计意义 (10) 1.4.4 课程设计预期目标 (10) 第2章数据分析 (11) 2.1 已知数据 (11) 2.2 风量确定 (12) 2.3 净化设备选择或设计 (12) 第3章集气罩设计 (13) 3.1集气罩设计的设计原则 (13) 3.2设计方法选择 (13) 3.2.1控制风速法原理 (13) 3.2.2 控制风速选择 (14) 3.3 集气罩选择 (14) 3.3.1 集气罩集气原理 (14) 3.3.2 集气罩类型和选择 (15) 3.3 风量计算 (15) 3.3.1 风量计算方法选择 (15) 3.3.2 风量计算 (15) 3.4 集气罩的尺寸 (16) 第4章管道、弯头及三通设计 (17) 4.1 管道设计 (17) 4.1.1 管道速度选择 (17) 4.1.2 管径选择 (18) 4.2 弯头、三通管的设计 (20) 第5章管道阻力计算及风机的选择 (21) 5.1各管道的阻力计算 (21) 5.1.1计算最不利环路的压力损失 (21) 5.1.2 并联管路压力损失计算 (22) 5.2选择风机和电动机 (23) 第6章除尘器的设计 (25) 6.1 除尘器的分类及选择 (25) 6.1.1除尘器的分类 (25) 6.1.2 除尘器的选择 (25) 6.2 旋风除尘器尺寸 (27) 总结 (28)

不同流量计安装对直管段的要求

不同流量计安装对直管段的要求 2010-12-03 正确地选择安装点和正确安装流量计都是非常重要的环节,若安装环节失误轻者影响测量精度,重者会影响流量计的使用寿命,甚至会损坏流量计。 不同种类的流量计所要求的前后直管段长度是不一样的,流量计上下游直管段的通常要求如下: ——转子流量计,上游不小于0~5 倍管径,下游无要求; ——靶式流量计,上游不小于 5 倍管径,下游不小于3 倍管径; ——涡轮流量计,上游不小于5~20 倍管径,下游不小于3~10 倍管径; ——涡街流量计,上游不小于10~40 倍管径,下游不小于5 倍管径; ——电磁流量计,上游不小于5~10 倍管径,下游不小于0~5 倍管径; ——超声波流量计,上游不小于10~50 倍管径,下游不小于5 倍管径; ——容积式流量计,无要求; ——孔板,上游不小于5~80 倍管径,下游不小于2~8 倍管径; ——喷嘴,上游不小于5~80 倍管径,下游不小于4 倍管径; ——文丘里管、弯管、楔形管,上游不小于5~30 倍管径,下游不小于4 倍管径; ——均速管,上游不小于3~25 倍管径,下游不小于2~4 倍管径。 流量计对安装点上的上下游直管段一定的要求,否则会影响测量精度。 若流量计安装点上游有90°弯头或下行接头,流量计上游应有不小于20D 的等径直管段,下游应有不小于5D的等径直管段。 若流量计安装点上游在同一平面上有90°弯头,流量计上游应有不小于 25D的等径直管段,下游应有不小于5D的等径直管段。 若流量计安装点上的上游有渐缩管,流量计上游应有不小于15D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段。 若流量计安装点上的上游有渐扩管,流量计上游应有不小于18D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段。

流量计安装要求

电磁流量计的安装要求 安装场所的选择 为了使电磁流量计工作稳定可靠,在选择安装地点时应注意以下几方面的要求: 1.尽量避开铁磁性物体及具有强电磁场的设备(大电机、大变压器等),以免磁场影响传感器的工作磁场和流量信号。 2.应尽量安装在干燥通风之处,避免日晒雨淋,环境温度应在 -20~+60℃,相对湿度小于85%。 3.流量计周围应有充裕的空间,便于安装和维护。 安装建议 电磁流量计的测量原理不依赖流量的特性,如果管路内有一定的湍流与漩涡产生在非测量区内(如:弯头、切向限流或上游有半开的截止阀)则与测量无关。如果在测量区内有稳态的涡流则会影响测量的稳定性和测量的精度,这时则应采取一些措施以稳定流速分布: a. 增加前后直管段的长度; b. 采用一个流量稳定器; c. 减少测量点的截面。 水平和垂直安装

传感器可以水平和垂直安装,但是应该确保避免沉积物和气泡对测量电极的影响,电极轴向保持水平为好。垂直安装时,流体应自下而上流动。 传感器不能安装在管道的最高位置,这个位置容易积聚气泡。 确保满管安装 确保流量传感器在测量时,管道中充满被测流体,不能出现非满管状态。 如管道存在非满管或是出口有放空状态,传感器应安装在一根虹吸管上。

弯管、阀门和泵之间的安装 为保证测量的稳定性,应在传感器的前后设置直管段,其长度由下图给出。如做不到则应采用稳流器或减小测量点的截面积。 传感器不能安装在泵的进水口 为避免负压,传感器不能安装在泵的进水口,而应安装在泵的出水口。 传感器的进口直管段和出口直管段 比较理想的安装地点应选择测量点前后有足够的直管段。进口直管段应≥5D,出口直管段≥3D(D为传感器公称口径)。 插入式进口直管段应≥ 20 D ,出口直管段≥7D(D为传感器公称口径)。

除尘系统设计说明书

木工车间气力吸集系统 设计说明书 学生姓名: 学院班级:林学院木材科学与工程班 学生学号: 联系电话:

指导老师:唐贤明 2011年1月 目录 一、工车间气力吸集系统设计计算任务................................1 二、管道系统的设计.......................................................2(一)支管1的设计计算..................................................2(二)支管2的设计计算................................................. 2(三)支管3的设计计算.................................................2

(四)管段4的设计计算..................................................3(五)支管5的设计计算................................................. 4(六)支管6的设计计算..................................................4(七)主管段a的设计计算............................................ 5(八)管段7的设计计算..................................................6(九)主管段b的设计计算..............................................6(十)管段8的设计计算................................................6 (十一)主管段c的设计计算..............................................7(十二)支管9的设计计算...............................................7(十四)主管段d的设计计算.............................................8(十五)支管10的设计计算...............................................8(十六)主管段e的设计计算..............................................8(十七)支管11的设计计算.............................................9 (十八)支管12的设计计算.............................................9 (十九)支管13的设计计算.............................................9 (二十)主管段f的设计计算..............................................11(二十一)支管14的设计计算...............................................11(二十二)主管段g的设计计算............................................12(二十三)管道系统的总压损计算.........................................12

除尘系统中通风管道设计

除尘系统中通风管道设计应注意的几个问题 一个完整的除尘系统包括吸尘罩、通风管道、除尘器、风机四个部分。通风管道(简称管道)是运送含尘气流的通道,它将吸尘罩、除尘器及风机等部分连接成一体。管道设计是否合理,直接影响到整个除尘系统的效果。因此,必须全面考虑管道设计中的各种问题,以获得比较合理、有效的方案。 1、管道构件 1.1 弯头弯头是连接管道的常见构件,其阻力大小与弯管直径 d、曲率半径R以及弯管所分的节数等因素有关。曲率半径R越大,阻力越小。但当R大于2~2.5d时,弯管阻力不再显著降低,而占用的空间则过大,使系统管道、部件及设备不易布置,故从实用出发,在设计中R一般取1~2d,90°弯头一般分成4~6节。 1.2 三通在集中风网的除尘系统中,常采用气流汇合部件——三通。合流三通中两支管气流速度不同时,会发生引射作用,同时伴随有能量交换,即流速大的失去能量,流速小的得到能量,但总的能量是损失的。为了减小三通的阻力,应避免出现引射现象。设计时最好使两个支管与总管的气流速度相等,即V1=V2=V3,则两支管与总管截面直径之间的关系为d12+d22=d32。三通的阻力与气流方向有关,两支管间的夹角一般取15°~30°,以保证气流畅通,减少阻力损失。三通不能采用T形连接,因为T形连接的三通阻力比合理的连接

方式大4~5倍。另外,尽量避免使用四通,因为气流在四通干扰很大,严重影响吸风效果,降低系统的效率。 1.3 渐扩管气体在管道中流动时,如管道的截面骤然由小变大,则气流也骤然扩大,引起较大的冲击压力损失。为减小阻力损失,通常采用平滑过渡的渐扩管。渐扩管的阻力是由于截面扩大时,气流因惯性作用来不及扩大而形成涡流区所造成的。渐扩角а越大,涡流区越大,能量损失也越大。当a超过45°时,压力损失相当于冲击损失。为了减小渐扩管阻力,必须尽量减小渐扩角a,但a越小,渐扩管的长度也越大。通常,渐扩角a以30°为宜。 1.4 管道与风机的接口及出口风机运转时会产生振动,为减小振动对管道的影响,在管道与风机相接的地方最好用一段软管(如帆布软管)。在风机的出口处一般采用直管,当受到安装位置的限制,需要在风机出口处安装弯头时,弯头的转向应与风机叶轮的旋转方向一致。管道的出口气流排入大气,当气流由管道口排出时,气流在排出前所具有的能量将全部损失掉。为减少出口动压损失,可把出口作成渐扩角不大的渐扩管,出口处最好不要设风帽或其它物件,同时尽量降低排风口气流速度。 2、管道配件 2.1 清扫孔清扫孔一般设于倾斜和水平管道的侧面,异形管、三通、弯管的附近或端部。清扫孔的制作应严密、不漏风。 2.2 调节阀门集中式除尘系统阻力不平衡的情况在运行中是 难免的,因此,在与吸尘罩连接的垂直管段上设调节阀门。常见的调

涡轮流量计的安装技术要求范本

工作行为规范系列 涡轮流量计的安装技术要 求 (标准、完整、实用、可修改)

编号:FS-QG-70869涡轮流量计的安装技术要求Technical requirements for turbine flowmeter installation 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1:涡轮流量计注重对磁感应部分不能碰撞安装应注意的事项: 对安装焊接的要求: a另配一对标准法兰焊在前后管道上。不允许带流量计焊接!安装前应严格清除管道中焊渣等脏物,最好用等径的管道(或旁通管)代替流量计进行吹扫管道。以确保在使用过程中流量计不受损坏。安装流量计时,法兰间的密封垫片不能凹入管道内。 b涡轮流量计接地的要求:流量计应可靠接地,不能与强电系统地线共用。对于防爆型产品的要求:为了仪表安全正常使用,应复核防爆型流量计的使用环境是否与用户防爆要求规定相符,且安装使用过程中,应严格遵守国家防爆型产品使用要求,用户不得自行更改防爆系统的连接方式,不

得随意打开仪表。选型在规定的流量范围内,防止超速运行,以保证获得理想准确度和保证正常使用寿命。 c涡轮流量计安装前应清理管道内杂物:碎片、焊渣、石块、粉尘等推荐在上游安装5微米筛孔的过滤器用于阻挡液滴和沙粒。流量计投运时应缓慢地先开启前阀门,后开启后阀门,防止瞬间气流冲击而损害涡轮。加润滑油应按告示牌操作,加油的次数依气质洁净程度而定,通常每年2-3次。由于试压、吹扫管道或排气造成涡轮超速运转,以及涡轮在反向流中运转都会可能使流量计损坏。流量计运行时不允许随意打开前.后盖,更动内部有关参数,否则将影响流量计的正常运行。小心安装垫片,确保没有突出物进入管道,以防止干扰正常的流量测量。流量计在标定时要在流量计取压口上采集压力。湿度传感器探头,,不锈钢电热管PT100传感器,铸铝加热器,加热圈流体电磁阀。 2:变送器的电源线采用金属屏蔽线,接地要良好可靠。电源为直流24V,650Ω阻抗。 3:变送器应水平安装,避免垂直安装,并保证其前后有适应的直管段,一般前10D,后5D。

涡街流量计使用说明书

一、使用时的注意事项 1.1、确认收货时 1.1.1、在您拿到本产品时,请确认运输途中有没有磕碰划伤等。 1.1.2、根据产品铭牌的标注,请确认与您要买的型号是否相符。 1.2、运输与储存时 1.2.1、尽可能的利用本公司的包装,将流量计直接运送到安装现场。 1.2.2、运送过程中不要强烈碰撞、也不要让雨水淋湿。 1.2.3、保管时尽量利用本公司的原包装进行保管,保管的地方应符合下列条件要求: 1不会有淋雨水的地方 2振动或碰撞尽量少的地方 3温度:-40℃—+55℃ 4湿度:5%—90% 1.2.4、使用过的流量计保管时,要将内部的残留液体及粘附物完全清洗干净,另外注意在电源接口处要密封,以防潮湿。 1.3、安装时 1.3.1、使用时要在流量计规定的条件下使用,超出这个规定使用是不可行的,如果因此而造成流量计损坏,维修的费用会由您自己承担。 1.3.2、流量计出现问题以后,尽可能的与我们或维修商联系,以便尽快的把问题解决。 1.3.3、安装之前必须认真阅读说明书,由于没有按照说明书操作造成的流量计损坏,维修费用自己承担。 二、产品用途及工作原理 2.1、用途 LUGB涡街流量计广泛用于石油、化工、电力、轻工等部门工业管道中测量

液体或气体的流量。由于传感器材料为1Cr18Ni9Ti,也可用于城市供水、供热、锅炉供水、医疗行业流体管道的流量测量。 防爆型涡街流量传感器,采用的是本安防爆技术。电池供电的涡街流量计其防爆标志为“Ex iaⅡBT4”,适合不高于Ⅱ类B级的0区、1区、2区含有T1~T4组的危险场所使用;靠安全栅供电的涡街流量计其防爆标志为“ExiaⅡBT5”,适于Ⅱ类B级的0区、1区、2区含有T1~T5组的危险场所使用。 2.2、工作原理 图一:卡门涡街工作原理图 LUGB涡街流量计是利用卡门涡街原理,用来测量蒸汽、气体及低粘度的液体的流量仪表。当流体流过与被测介质流向垂直放置的旋涡发生体时,在其后方两侧交替地产生两列旋涡,称之为卡门涡街,如上图1所示。在一定雷诺数范围内(2×104~7×106),旋涡所产生的频率f与介质的平均速度V及旋涡发生体的迎流面宽度d之间有下列关系: f=St式中St为斯特劳哈尔数,它是无量纲常数,当R =2×104~7×106 eD 时约为0.15~0.22,通过压电元件检测出旋涡产生的频率f,就可计算出平均流 =A*V,,其中A为管道横截面积。 速V,从而确定管道内的体积流量:Q V 三、产品的特点 我公司生产的涡街流量计是借鉴日本OVAL公司的产品设计理念结合国内企业的使用特点,经过多年的研发而推出的产品。本产品是按照日系国家标准JIS Z8766:2002《涡街流量计—流量测定方法》,进行生产的,因此我公司的涡街流量计有这国内同类产品没有的精确性和稳定性,除具备普通涡街流量计的特点外,还具有下述突出特点:

试论某金属冶炼车间除尘系统中的管道设计

目录 一、设计目的 (2) 二、绪论 (2) 三、管道设计原始资料 (4) 四、设计计算 (4) 五、系统保温 (6) 六、管道材料选择 (6) 七、热补偿设计.................................................. ..7 八、课程设计小结............................................ .. (7)

九、参考文献 (7) 某金属冶炼车间除尘系统中的管道设计 1、设计目的 课程设计的目的在于进一步巩固和加深课程理论知识,并能结合实践,学以致用。 本设计为某金属冶炼车间的净化系统中的管道设计,能使自己得到一次综合训练,特别是: 1、工程设计的基本方法、步骤,技术资料的查找与应用; 2、基本计算方法和绘图能力的训练; 3、综合运用本课程及其有关课程的理论知识解决工程设计中的实际问题; 4、熟悉、贯彻国家环境保护法规及其它有关政策。 2、绪论 金属管道种类繁多、数量大,使用工况千差万别。我国不同行业采用不同的应用标准体系,标准之间差别很大。当然,由于金属管道的工况,如温度、压力、介质、环境等不同,标准有差距是客观存在的。例如,电力电站管道高压、高温、蒸汽介质居多;石化、石油管道受压、腐蚀介质居多;化工行业管道还有剧毒介质(如氯气);机械行业压力容器,按使用情况及工况分成低压、中压、高压、超高压,按容器类别分成第一类压力容器、第二类压力容器、第三类压力容器。船舶管道有高压的蒸汽管道、主机冷却的海水管道(承压及受腐蚀)、污水管道(承压及受高温)、燃油输送管道、压缩空气管道等,在不同的工况条件下运行。以下择要介绍一些基本标准。 1、压力管道分类 1. 压力管道的定义 压力管道是指在生产、生活中使用的可能引爆或中毒等危险性较大的特种设备及管道。 ①输送GB5044①《职业性接触毒物性危害程度分级》中规定的毒性程度为极度危害介质的管道。 ②输送GB5016②《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类介质的管道。

LUGB系列涡街流量计使用说明文书

LUGB系列涡街流量计 使用说明书

目录 一. 概述工作原理 - - - - - - - - - - - - - - - (3) 二. 技术参数 - - - - - - - - - - - - - - - - - - - (4) 三. 流量范围- - - - - - - - - - - - - - - - - - - (4) 四. 安装结构图- - - - - - - - - - - - - - - - - - (5) 五. 安装及接线 - - - - - - - - - - - - - - - - - - (6) 六. 流量计参数整定 - - - - - - - - - - - - - - - - (9) 七. 流量计信号检测、调整和校验方法 - - - - - - - - - (10) 八. 维护及故障排除 - - - - - - - - - - - - - - - - (10) 九. 订货须知 - - - - - - - - - - - - - - - - - - - (11) 十. 智能流量计操作说明 - - - - - - - - - - - - - - (12)

一概述 LUGB系列涡街流量计是一种采用压电晶体作为检测元件,输出与流量成正比的标准信号的流量仪表。该仪表可以直接与DDZ-Ⅲ型仪表系统配套,也可以与计算机及集散系统配套使用,对不同介质的流量参数进行测量。该仪表根据流体涡街的检测原理,其检测涡街的压电晶体不与介质接触,仪表具有结构简单、通用性好和稳定性高的特点. LUGB系列涡街流量计可用于各种气体、液体和蒸汽的流量检测及计量。 LUGB系列涡街流量计可以与本公司生产的智能流量积算仪配套使用,也可以和其它仪表厂商生产的智能仪表配套使用,具有通用性强的特点。 二工作原理 涡街流量计的基本原理是卡门涡街原理,?即“涡街旋涡分离频率与流速成正比”。 流量计流通本体直径与仪表的公称口径基本相同。如图一所示,?流通本体内插入有一个近似为等腰三角形的柱体,柱体的轴线与被测介质流动方向垂直,底面迎向流体。 当被测介质流过柱体时,在柱体两侧交替产生旋涡,旋涡不断产生和分离,?在柱体下游便形成了交错排列的两列旋涡,即“涡街”。理论分析和实验已证明,?旋涡分离的频率与柱侧介质流速成正比。 式中: f──柱体侧旋涡分离的频率(Hz); V──柱侧流速(m/s); d──柱体迎流面宽度(m); Sr ──斯特劳哈尔数。是一个取决于柱体断面形状而与流体性质和流速大小基本无关的常数。 图一圆管内的涡街 三产品特点 传感器测量探头采用特殊工艺封装,耐高温可达350℃ 敏感元件封状在探头体内,检测元件不接触测量介质,使用寿命长 传感器采用补偿设计,提高仪表抗震性 结构简单、无可动件,耐用性高 在规定雷诺数范围内,测量不受介质温度、压力、粘度影响

流量计安装规范

转子流量计安装要求: 1、实际的系统工作压力不得超过流量计的工作压力。 2、应保证测量部分的材料、内部材料和浮子材质与测量介质相 容; 3、环境温度和过程温度不得超过流量计规定的最大使用温度; 4、转子流量计必须垂直地安装在管道上,并且介质流向必须由下 向上; 5、流量计法兰的额定尺寸必须与管道法兰相同。 6、为避免管道引起的变形,配合的法兰必须在自由状态对中,以 消除应力; 7、为避免管道振动和最大限度减小流量计的轴向负载,管道应有 牢固的支架支撑; 8、截流阀和控制流量都必须在流量计的下游。 9、支管段要求在上游侧5DN,下游侧3DN (DN是管道的 通径); 质量流量计安装 1、传感器的刚性和无应力支撑 2、避免把传感器安装在管道的最高位置,因为气泡会集 结和滞留,在测试系统中引起测量误差; 3、如果不能避免过长的下游管道(一般不大于3M ),应多装一

个通流阀; 4、与输送泵的距离至少要大于传感器本身长度的 4 倍(两法兰 之间距离),如果泵引起多余的振动,必须用绕性管或连接管进行隔离。 5、调节阀、检查观察窗等附加装置都应安装在离传感器 至少1X “ L”远处(L为传感器安装法兰之间距离) 6、支架不能安装在法兰或外壳上,一般离法兰的距离为 20~200mm; 电磁流量计安装 1、电磁流量计,特别是小于DNIoomm(4‘的小流量计,在搬运 时受力部位切不可在信号变送器的任何地方,应在流量计的本体。 2、按要求选择安装位置,但不管位置如何变化,电机轴必须保持 基本水平。 3、电磁流量计的测量管必须在任何时候都是完全注满介质的; 4、安装时,要注意流量计的正负方向或箭头方向应于介 质流方向一致 5、安装时要保证螺栓、螺母与管道法兰之间留有足够的空间,便 于装卸;

相关文档