文档库 最新最全的文档下载
当前位置:文档库 › 负荷计算依据(超全的冷热湿负荷计算公式)

负荷计算依据(超全的冷热湿负荷计算公式)

负荷计算依据(超全的冷热湿负荷计算公式)
负荷计算依据(超全的冷热湿负荷计算公式)

室内游泳馆池厅的空气状态参数的确定和通风量的计算方法

浅谈室内游泳池暖通设计的几点体会 相关标签: ?通风量 ?气流组织 ?空气状态 ?防结露 摘要:本文分析了室内游泳馆池厅的空气状态参数的确定和通风量的计算方法,介绍了防止围护结构结露的措施,并对池区与观众区空调系统划分、气流组织以及提高人员热舒适感等问题 进行了探讨。 随着人民生活水平的提高,一些星级宾馆、一些小区或体育健身中心,往往配建室内游泳池。为此,小型室内游泳池空调设计,也就越来越普遍。室内游泳池由于其高湿,因此需重点解决其结露和闷热的问题,本文就本人所做的某学校室内游泳馆工程,谈对游泳池设计的几点体会。 一、工程概况 该游泳馆总建筑面积为4000㎡,它包括一个50×25m的标准游泳池及一座600人的看台及一些辅助用房。它主要是为满足校内学生教学训练的要求,同时又能举办小型的体育比赛。 二、室内空气参数的确定 为保证人员在出水后和入水前的舒适性,按国际游泳池设计标准规定,池厅空气温度应高于池水温度1~2℃,相对湿度一般为50~70%,但不超过75%,风速控制在0.2m/s左右。同时,为防止冬季围护结构结露,国际游泳池设计标准规定池厅内空气含湿量不大于14g/kg。本工程池水温度设定为26℃,因此室内空气温度取27℃。由于空气湿度对人们的舒适感也有密切的关系。 相对湿度低,空气干燥同时空气中水蒸汽分压力低,会使刚出水面的润湿皮肤表面水份蒸发加速,从人体带走蒸发潜热,容易使人产生寒冷的感觉。同时水份蒸发多,室内空气含湿量增加,使消除室内余湿所需的通风量增加,则相应增加冬季加热送入室内新风的负荷。若相对湿度过高,则室内空气含湿量过大,会使空气露点提高,使围护结构内表面产生结露现象,综合以上利弊分析,本工程采用60%,此时室内空气的含湿量为13.3g/kg,露点温度为18℃。由于观众区同池区同处一个大空间,在确定空气参数时,在满足运动员舒适感的前提下,也要兼顾观众的舒适感,若冬季观众区温度取27℃的话,则明显太热了,因此观众区温度根据舒适性空调要求取22℃。、 三、通风量的计算 室内游泳池中,由于水池表面不断蒸发水份,防止潮湿问题便显得非常重要,同时大多数游泳池池水采用氯消毒方法,因此必须采取有效的通风措施,把室内的蒸发水份排走。室内通风量 的计算方法如下: 1:首先计算室内散湿量,室内散湿量包括敞露水面散湿量和人体散湿量两部分。 敞露水面散湿量计算公式为 式中F--蒸发面积,M2 P q.b--相应于水表面温度下的水蒸汽分压力, P a P b--室内空气的水蒸汽分压力,Pa B--标准大气压力,101325Pa B'--当地大气压力,Pa β--蒸发系数,Kg/㎡.h.Pa β=(α+0.00013v) α--不同水温下的扩散系Kg/㎡.h.Pa

某小型游泳池供热系统计算及设备选型

某小型游泳池供热系统计算及设备选型

————————————————————————————————作者: ————————————————————————————————日期: ?

游泳池恒温设备选型及方案 一、现场概况 现场位于地下室,封闭场所,游泳池长20米,宽8米,水深为1.7米。游泳池总水量约272m3/h。水表面面积为160㎡。恒温要求26-28℃。 二、负荷计算 参考室内游泳池热负荷,根据现场情况,计算耗热量。 1.游泳初次加热时间:(24H~48H),客户现场初次加热采用锅炉加热,暂时不考虑此耗热量。 2.使用运行中间的热量需要,主要为以下几个方面: ①水表面蒸发和传导损失的热量。 根据《全国民用建筑工程设计技术措施给水排水2009版》,计算公式为: Q1=C*R(0.0174Vi+0.0229)(Pb-Pq)*A*(B/B1) Q1:游泳池表面热量损失(kw/h)。 C:水的比热容,4.18×103J/(kg·℃)。 R——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg)风,取值581。 Vi——游泳池水面上的风速(m/s)室内0.2~0.5m/s ,取值0.2。 Pb——与游泳池水温相等的饱和空气的水蒸汽压力(mmHg),取值28.3(28℃)。 Pq——游泳池的环境空气的水蒸汽压力(mmHg) ,查焓湿图,取值18.4(相对湿度65%)。 A——游泳池的水表面面积(㎡,取值160㎡。 B/B1—标准大气压/当地的大气压力)。

将参数代入公式,Q1=1Kcal/h*581*(0.0174*0.2+0.0229)(28.3-18.4)*160*1 =24278Kcal/H=28KW/H ②补充水加热需要的热量。 Q2=ρ·Vb·c·(Tl-T2)/Th Q2:游泳池补充水加热所需的热量(kw/h) ρ:水的密度(kg/L) ,取值1g/l Vb:游泳池每日的补充水量(L),室内游泳池为总水量3%-5%。取值3%,计算为8250l。 c:水的比热,4.1876kJ/ kg·℃ T1:游泳池水的设计温度(℃),(室内游泳池24-29℃)取值28℃。 T2:补水的温度。取值10℃。 Th:设备加热时间(h),取值12h。 将参数代入公式

采暖热负荷的计算方法

采暖热负荷的计算方法((0 目前绝大多数企业为节省时间,采用的热负荷确定方法均为估算法,即用房间面积乘以每平方米的设计热负荷指标。通常为朝南房间为120W/m2,其它房间为120W/m2-150W/m2不等,全凭设计人员的经验和感觉。为了设计效果,尽可能往大值选取。最终导致一些散热器型号选取过大,大马拉小车的现象在目前供暖设计中屡见不鲜,导致用户的初投资增加,整个供暖系统的花费加大。 站在为客户省钱的角度,尽可能规范选取散热器型号,我们的热负荷选择只需在充分满足房间温度的要求下,上下有轻微浮动即可。 以本公司原本设计的锦苑天元坊15幢的某户家庭暖气系统为例。该设计说明中缺少一些关键的技术参数,如:建筑物所处楼层(是否有屋顶),整个建筑物的维护结构资料(外墙,外窗,地面的材质和传热系数),扬州市的气象参数等,导致估算出来的某些房间热负荷太大。以书房为例,书房面积8.2m2,选取的是雅克菲钢制板式散热器,规格型号22K-600-800,热量1399W,算下来单位设计热负荷高达170W/m2,以北方比较成熟的供暖工艺来说,从节能角度出发,某户用热的单位面积热量超过98W/m2就要罚款,由此可见我们的设备选型不太合理,需要改进。 仍以该住宅的书房为例,采用常规的热负荷计算方法,其中维护结构:层高3m,外墙:双面抹灰24空心砖墙,传热系数为1.47W/m2·K,外窗:金属框 经过计算,在保证房间温度18o C的情况下,最东北角的房间热负荷为957W。单位面积平均负荷为116 W/m2,其他房间由于朝向等因素,该值会相应降低。而本设计选择的散热器其单位设计热负荷高达170W/m2,选择稍大,如选择小一号的散热器22K-600-600,热量1061W即可满足要求。 但是这种计算相对复杂,每个房间的外墙,外窗都要计算,如果是底层或者是顶层还需计算地面和顶层的散热量。工作量很大,对于企业设计不太适用。

泳池加热计算参考

第一部分设计方案 第一节工程概况 1、工程概况 本项目是美格瑞平板太阳能集热器水上综合训练中心泳池恒温、过滤设备改造项目,项目位于美格瑞平板太阳能集热器水上综合训练中心泳池。 2、气候参数 2.1 环境气象参数 工程现场所广州属南亚热带海洋性季风气候,风清宜人,降水丰富。常年平均气温22.4℃,极端气温最高36.6℃,最低1.4℃。平均相对湿度79%,平均气压103.4KPA。 广州市太阳辐射量丰富,年太阳辐射量为5225 兆焦耳/ 平方米。一年中,以7 月为最多,2 月最少,太阳辐射的年变化曲线呈单峰型。与广东省其它地区相比,广州市的年太阳辐射量属于较多的地区,而且偏多部分并非分布在总量较多的7 ~8 月份,而是分布在2 ~6 月和9 ~12 月。 2.2 设计参数 设计冷水温度为15℃,设计环境温度10℃,设计热水温度55℃,恒温游泳水温度为27±1℃。

3、热量获取方式 热量获得方式采用:平板型太阳能配空气能热泵热水机组实现制热量。 4、过滤方式 采用砂滤方式,投药消毒。 5、环境除湿 采用吊顶式除湿机,消除室内凝结水。 第二节设计依据 GB50015-2003《建筑给排水设计规范》 GB50364-2005《民用建筑太阳能热水系统应用技术规范》 GB/T 18713-2002《太阳能热水系统设计、安装及工程验收技术规范》 GB50332-2002《给水排水工程管道结构设计规范》 GB/T184302-2001《蒸气压缩循环冷水(热泵)机组户用和类似用途的冷水(热泵)机组》GBT21362-2008《商业或工业及类似用途的热泵热水机》 JGJ/16-92《民用建筑电气设计规范》 GBJ131-90《自动化仪表安装工程质量检验评定标准》 GB4272-92《设备及管道保温技术通则》 ISO/TR12596:1995《太阳能游泳池加热设计和安装指南》 美格瑞平板太阳能集热器水上综合训练中心游泳池现场条件。

游泳池及生活热水系统计算

第一部分体育馆游泳池热水负荷计算 a、水池启用前第一次加热所需供热量: 考虑水池传导蒸发热损失,取补偿温度1℃。从冷水温度(15℃)加热到使用温度(28℃),若考虑首次加热时间为24个小时,则每小时加热量为:L25m×W17m×H2m(平均水深)=850 m3 850m3×(28℃-15℃+1℃)÷24h×0.1万kcal / m3·℃=49.58万kcal/h L51×W26m×H2m(平均水深)=2652 m3 2652m3×(28℃-15℃+1℃)÷24h×0.1万kcal / m3·℃=154.7万kcal/h 考虑水池传导蒸发热损失,取补偿温度1℃。从冷水温度(10℃)加热到使用温度(28℃),若考虑首次加热时间为24个小时,则每小时加热量为:L25m×W17m×H2m(平均水深)=850 m3 850m3×(28℃-10℃+1℃)÷24h×0.1万kcal / m3·℃=67.3万kcal/h L51×W26m×H2m(平均水深)=2652 m3 2652m3×(28℃-10℃+1℃)÷24h×0.1万kcal / m3·℃=209.95万kcal/h b、游泳池加热所需热量计算: 一、水面蒸发和传导损失的热量 二、池壁和池底传导的热量 三、管道的净化水设备损失的热量 A、水面蒸发和传导损失的热量 游泳池水表面蒸发损失的热量。按下式计算: Qx=α·у(0.0174vf +0.0229)(Pb-Pq) A(760/B) 式中 Qx——游泳池水表面蒸发损失的热量(kJ/h); α——热量换算系数,α=4.1868 kJ /kcal; у——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(kcal/kg); vf ——游泳池水面上的风速(m/s),一般按下列规定采用:室内游泳池

游泳池恒温热量计算

摘要:去年11月,江西省抚州市体育馆游泳池2000吨热水项目圆满竣工,并正式投入使用。抚州市体育馆位于抚州市临川大道中段的北侧与新石抚路西侧围合处,是抚州市一个现代化的、开放式的市级体育中心,集体育比赛、休闲娱乐、大型文艺演出和多功能开发利用为一体的综合性活动中心。抚州市体育馆总占地面积460亩,总建筑面积56500平方米,游泳馆建筑面积8000平方米,拥有800个观众座位,设有20米×50米标准泳道,并配有先进的循环水处理设备。江西抚州体育馆游泳池空气能热泵工程的顺利竣工,开启空气能热泵作为节能低碳热水产品的发展新篇章。空调制冷大市场专家称,在此前,空气能热水器在北京奥运会、上海世博会、深圳大运会、南昌七城会的应用,标志着空气能热水器已在国家级盛事中成助力低碳节能的主力军之一。该工程为江西抚州体育馆2000吨游泳池恒温系统,按要求在规定的使用月份内提供恒温热水,共采用10台中广欧特斯KFXRS-75II机组。 关键词:泳池、恒温、系统、中广欧特斯 一工程项目概况 根据贵方提供的资料,游泳池长50m,宽25m,平均深度1.6 m,游泳池总水量约2000m2,要求水温保持在26℃。 使用空气能热泵热水机组作为热源设备,为该游泳池提供恒温热水。本工程内容为热水设备系统工程,包括现场勘察、测量数据,设备的运输、吊装到位等准备工作,热水系统的安装、调试,完成热水供水管的对接、热水回水管的对接、冷水补水管的对接等施工调试工作,最终完整地交用户使用。 二工程设计方案简介 根据现场实际情况,本方案将热水机组放置在合适位置,可安装于地面、屋顶、专用平台或其它任何便于安装并可承受机组运行重量的地方。 游泳池恒温热水系统制热设备恒温加热采用10台中广欧特斯空气能热泵热水机组KFXRS-75II组成,游泳池恒温热水系统首次对游泳池加热时,加热设备启动工作,将游泳池中的水加热恒温至26℃。 本方案的控制系统控制方式如下:

游泳池暖通设计

游泳池暖通设计 随着人民生活水平的提高,一些星级宾馆、一些小区或体育健身中心,往往配建室内游泳池。为此,小型室内游泳池空调设计,也就越来越普遍。室内游泳池由于其高湿,因此需重点解决其结露和闷热的问题,本文就本人所做的某学校室内游泳馆工程,谈对游泳池设计的几点体会。 一:工程概况 该游泳馆总建筑面积为4000㎡,它包括一个50×25m的标准游泳池及一座600人的看台及一些辅助用房。它主要是为满足校内学生教学训练的要求,同时又能举办小型的体育比赛。 二:室内空气参数的确定 为保证人员在出水后和入水前的舒适性,按国际游泳池设计标准规定,池厅空气温度应高于池水温度1~2℃,相对湿度一般为50~70%,但不超过75%,风速控制在0.2m/s左右。同时,为防止冬季围护结构结露,国际游泳池设计标准规定池厅内空气含湿量不大于14g/kg。本工程池水温度设定为26℃,因此室内空气温度取27℃。由于空气湿度对人们的舒适感也有密切的关系。相对湿度低,空气干燥同时空气中水蒸汽分压力低,会使刚出水面的润湿皮肤表面水份蒸发加速,从人体带走蒸发潜热,容易使人产生寒冷的感觉。同时水份蒸发多,室内空气含湿量增加,使消除室内余湿所需的通风量增加,则相应增加冬季加热送入室内新风的负荷。若相对湿度过高,则室内空气含湿量过大,会使空气露点提高,使围护结构内表面产生结露现象,综合以上利弊分析,本工程采用60%,此时室内空气的含湿量为13.3g/kg,露点温度为18℃。由于观众区同池区同处一个大空间,在确定空气参数时,在满足运动员舒适感的前提下,也要兼顾观众的舒适感,若冬季观众区温度取27℃的话,则明显太热了,因此观众区温度根据舒适性空调要求取22℃。 三:通风量的计算

恒温游泳池厅室内除湿负荷计算

设计说明: 1、自来水温度应以当地地面水温度计算,如成都7℃; 2、游泳池水温以27±1℃计算,游泳池厅空气温度以29℃计算。(规范要求高出池水温度 1~2℃); 3、游泳池厅相对湿度以60%计算,相对湿度范围为60%~65%; 4、游泳池厅空气换气次数应以4~6次对除湿热泵风量进行复核,并核实除湿热泵风压是否 满足; 5、1个标准大气压=1.01*105Pa=760mmHg; 6、使用着需熟悉天正暖通内焓湿图的灵活运用,即可方便查出以下参数。 恒温游泳池厅室内除湿负荷计算 ①泳池水面蒸发量 L W=(0.0174V f+0.0229)(P b-P q)×F池×760/B 式中:L W-泳池水面蒸发量 V f-泳池池面风速,0.2-0.5m/s F池-室内泳池水面面积m2 B-当地大气压力mmHg P b-27℃水表面温度饱和空气水蒸汽分压,26.7 mmHg(空气已经饱和,因此与相对湿度无关) P q-29℃泳池空间空气的水蒸气分压,18 mmHg(以空气干球温度29℃,相对湿度60%,焓湿图可查出) L W=46.94Kg/h ②人体散湿量 L人=ngφ 式中:L人-人体散湿量 n-泳池综合服务人数,n=F池/ S人 S人-人均所占游泳池面积,2.5m2/人(池深<1m,2.0m2/人;池深1.0~1.5m, 2.0m2/人) n=180÷2.5=72人 g -为人体散湿量,120g/人

φ-为群体系数,0.92 L人=7.95 Kg/h ③池边散湿量 L池=0.0171(t干-t湿)Fn 式中:L池——散湿量(Kg/h) t干——室内空调计算干球温度(29℃); t湿——室内空调计算湿球温度(22.8℃)(室内干球温度29℃,空气相对湿度60%,焓湿图可查出); F——池边面积(m2)(以池厅面积-水体面积即可得出); n——润湿系数,取0.2-0.4为宜; L池=0.0171*(29-22.8)*(430-180)*0.3=7.95Kg/h ④夏季新风最大增湿量 L新=(dw-dn)×Q新×ρ 式中:dw -夏季室外空气含湿量,17.2g/Kg(在焓湿图中,根据当地夏季室外干球、 湿球空气调节计算参数可查出); dn -室内空气含湿量15.7g/Kg(游泳池厅内,干球温度29℃,相对湿度60%可,焓湿图中可查出); ρ-空气密度1.1kg/m3; Q新=q×n q -每人所需新风量,30m3/h/人 n-泳池综合服务人数,72人 =30*72=2160m3/h L新=1.5*1.1*2160/1000=3.56Kg/h ⑤总湿负荷 最大湿负荷:Lw+L人+ L池+L新=66.4Kg/h 最小湿负荷:46.94Kg/h 平均湿负荷:(66.4+46.94)÷2=56.67Kg/h。

室外游泳池设计计算说明书

一、室外泳池循环流量计算书: 1、泳池专业循环水泵的设计 项目参数循环水泵选型计算 室外泳池尺寸面积:900㎡ 容积:1650m3 1.拟采用循环水泵参数 H=15M ,Q=70m3/h ,N=6.7 KW 2.拟选用水泵数量 245.6m3/h÷70m3/h.台≈4台 3.结论 采用4台9HP(H=15M,Q=70m3/h )水泵能 够满足室外泳池循环处理流量要求。 循环周期6h/次 循环流量275m3/h 给水流速2m/s 2、室外泳池过滤系统的确定: 项目参数过滤器选型计算 室外泳池尺寸 面积:900㎡容 积:1650m3 1. 拟采用硅藻土过滤器参数 DE1200:选用硅藻土滤料,滤速≤5m/h,取值5m/h, 过滤面积20.5m2, 过滤流量102.5m3/h.台 2. 拟选用硅藻土过滤器 275m3/h÷102.5m3/h.台≈3台 3. 结论 采用3台DE-1200硅藻土过滤器能够满足室外泳池池循环处理流量要求。 循环周期6h/次 循环流量275m3/h 滤速5m/h

3、室外泳池消毒系统计算 项目参数投药系统选型计算 泳池尺寸 面积:900㎡容 积:1650m3 1.消毒剂采用次氯酸纳溶液,药剂有效成分20%,设计投加率3mg/L,投加浓度10%,次氯酸钠投加总量为: (275m3/h×3 mg/L)/ (15%×1 Kg/L×20%)/1000 =27.5L/h 2. PH值调整剂采用Na2CO3和HCL溶液:Na2CO3溶液投加浓度10%,设计投加率3mg/L;HCL溶液投加浓度3%,设计投加率2mg/L; Na2CO3投加量为:275m3/h×3 mg/L) /(10%×1Kg/L)=7.4L/h HCL投加量为:(275m3/h×2 mg/L) /(3%×1 Kg/L)=16.4L/h 3. 选最大投药药量30L/h混凝剂计量泵1台、次氯酸纳计量泵1台、PH调整剂计量泵1台。 循环周期6h/次 循环流量275m3/h 二、室内恒温泳池循环流量计算书: 1、泳池专业循环水泵的设计 循环泵选型: 项目参数循环水泵选型计算 室内泳池尺寸面积:200㎡ 容积:320m3 1.拟采用循环水泵参数 H=15M ,Q=32m3/h ,N=3.4KW 2.拟选用水泵数量 64m3/h÷32m3/h.台≈2台 3.结论 采用3台3.4KW(H=15M,Q=32m3/h )水泵, 两用一备,能够满足室外泳池循环处理流量 要求。 循环周期6h/次循环流量64m3/h 给水流速2m/s

采暖热负荷详细计算表采暖计算公式

采暖负荷计算书 一、工程信息 项目名称0采暖形式传统形式 地理位置0建筑层数5建筑高度 18 二、基本计算公式 计算原理参照《实用供热空调设计手册》陆耀庆,中国建筑工业出版社1.通过围护结构的基本耗热量计算公式 —基本耗热量 K —传热系数 F —传热面积 —室内空气计算温度—室外供暖计算温度α —温差修正系数 2.附加耗热量计算公式 —考虑各项附加后,某围护的耗热量—某围护的基本耗热量—朝向修正—风力修正 —两面外墙修正—窗墙面积比过大 —房高附加—间歇附加 α )(w n j t t KF Q -=j Q n t w t ) 1)(1)(1(.1j g f m li f ch j Q Q ββββββ++++++=1Q j Q ch βf βli βm βfg βj β

2若C<=-1或m<=0,可不计算冷空气渗透耗热量 3对于大于六层的高层建筑,计算中,若h<10m 时,h=10m , 当无以上及门窗构造相关数据时,可采用换气次数法计算门窗隙缝的冷风渗透耗热量房间类型一面外墙有窗房间 二面外墙有窗房间 三面外墙有窗房间 门厅换气次数k 0.5 0.5-1.0 1.0-1.5 2 门窗隙缝的冷风渗透耗热量:Q 2=0.28*1*1.4*(t n-t w)*k*V 4.外门开启冲入冷风耗热量计算公式 —通过外门冷风侵入耗热量—某围护的基本耗热量 —外门开启外门开启冲入冷风耗热量附加率,参见[2]p128表4.1-12 三、气象参数 室外采暖计算温度℃-22风力附加系数0热压系数0.25风压系数 0.25东/西[朝向修正] 0北/东北/西北[朝向修正]0.1南[朝向修正] -0.23东南/西南[朝向修正] -0.13 kq j Q Q β?=33Q j Q kq β

泳池加热恒温解决方案

泳池加热恒温解决方案 泳池加热恒温热泵可应用于公众泳池、私家泳池、沐浴、SPA等场所。超低温泳池加热恒温热泵机组可以在北方地区冬季恒温使用。 公众泳池、私家泳池、沐浴、SPA等场所加热恒温过程受环境温度、进水温度、补充水量、表面积及池壁传热等因素有影响。在室外温度较低时,泳池水对外散发大量热量,池水温度降低快,池水加热所需耗热量较大。根据这过程这一复杂的过程,下面以某工程项目作为例子,对公众泳池、私家泳池、沐浴、SPA等场所加热恒温的计算及费用进行分析参考。 泳池热泵工作原理 泳池热泵机组系统工作过程:处于低压液态循环工质(如氟利昂R22、404a)流经泳池热泵机组的蒸发器时蒸发,此时从低温热源处吸收热量,变成蒸气后,流进压缩机,经过压缩机压缩后升温升压,变成高温、高压蒸气,排出压缩机,蒸汽流经泳池热泵机组冷凝器,在冷凝器中,将从蒸发器中吸取的热量和压缩机耗功所相当的那部分热量排出,传递给流经泳池热泵机组的钛管中的冷水,使其温度提高。循环工质蒸汽冷凝降温后变成液相,高压液体流经膨胀阀后,压力下降,变成低压液体,低压液相工质流入蒸发器,由于沸点低,因而很容易从周围环境吸收热量而再蒸发,又形成低温低压蒸汽,依此不断地进行重复循环。就能使低温热量连续不断地传递到高温热源(水)处,以满足泳池水加热恒温需求。

泳池加热恒温工程项目实例 一、工程概况 昆明市某游泳池容积:600m3 ,池平均深1.5m,面积约400 m2,初次加热按48小时,全年使用。 1)池水温度恒温温28℃。 2)冬季室外∶15℃冬季当地自来水温:10℃。 二、设计参数 1. 设计计算基本参数:〔昆明市气象参数〕 1)池水温度恒温温28℃。 2)夏季室外:30℃年平均水温20℃。大气压力1004.5hpa 冬季室外∶15℃年平均水温10℃。大气压力1019.5hpa 三、设计遵守规范和标准 1.燃气〔电气〕热力工程规范

泳池恒温热功率计算

计算依据《游泳池给水排水工程技术手册》本泳池为室内泳池,成人池面积为325平方,成人区水深 1.6米,儿童xx水深 1.0米,总水量为500立方设: 温度Td为27℃。室内气温为28℃,相对湿度60%,游泳池初次充水和使用过程补水水温(Tf)为10℃。 游泳池加热热水的加热负荷由下列的耗热量和需热量构成: 1、池水初次加热(含换水后重新加热)所需要的热量; 2、泳池正常开放使用过程维持池水“恒温”所需要的热量。 一、池水初次加热所需热量 Qc=Vc·ρ·C(Td-Tf) 试中Qc---泳池池水初次加热所需要的热量(KJ); Vc---泳池的池水容积(L),本池选用5000L ρ---水的密度( 0.9997kg/L) C----水的比热, 4.1868KJ/kg·℃; Td—泳池的池水设计温度(℃)本池设计27℃ Tf—泳池初次充水的原水温度(℃)按江苏地区地下原水10℃计根据以上参数算出泳池初次加热所需热量=KJ=KCAL,初次加热时间按48h计, 则小时需热量为

二、维持池水“恒温”所需的热量由以下耗热量和需热量的总和构成 1、泳池池水表面蒸发损失的热量 按手册公式11-1计算则 1B Qz= βρ*γ( 0.0174υw+ 0.0229)(Pb-Pq) B'As ρ---水的密度(kg/L),按10℃水的密度 0.9997计 γ---与池水温度相等的饱和蒸汽的蒸发汽化潜热(KJ/KG)υw—池水表面上的风速(m/s),按下列规定采用: 室内游泳池: 0.2- 0.5m/s; 室外游泳池: 2.0- 3.0m/s. Pb---与池水温度相等的饱和空气的水蒸汽气压(Pa),按表11-3选用;Pq---游泳池环境空气的水蒸气分压(Pa),按表11-4选用。 As---游泳池的水面面积(㎡);

热水设计计算思路

一、日用水量 ()r M m q L d =? 式中 :M ——日用热水总量(L/d ); m ——用水单位数(人/床); r q ——热水用水定额【L/人(床)·d 】; 二、设计小时耗热量计算(锅炉选型依据) 全日供应热水:)(h /kw 3600)(T t t MC K Q r l r h h ρ-= 定时供应热水:()()3600 h r l r o h q t t n bC Q kW h ρ∑-= 式中:h Q ——设计小时耗热量(kW/h ); M ——日用热水总量(L/d ); C ——水の比热,C)/(187.4??=kg kJ C ; r t ——热水温度(℃),60r t =℃(加热温度); l t ——冷水温度(℃);15r t =℃(当地最冷月平均冷水计算温度); r ρ——热水密度(kg/L )(55℃时为0.986,60℃时为0.983); T ——每日使用时间(h ),24h ; h K ——小时变化系数。 h q ——卫生器具热水の小时用水定额(L/h ),按本规范表5.1.1-2采用; 0n ——同类型卫生器具数; b ——卫生器具の同时使用百分数:住宅、旅馆,医院、疗养院病房,卫生间内浴盆或 淋浴器可按70%~100%计,其他器具不计,但定时连续供水时间应≥2h 。工业企业生活间、公共浴室、学校、剧院、体育馆(场)等の浴室内の淋浴器和洗脸盆均按100%计。住宅一户设有多个卫生间时,可按一个卫生间计算; 锅炉选型方法:

先确定锅炉の制热量Q(kw/h);再用Qh除以Q,就等于所需の锅炉の数量。很多时候,锅炉是一备一用の,若两台同时开启,要保证单台の开启功率≥70%。

采暖设计热负荷指标q计算公式

采暖设计热负荷指标q计算 一、比较准确的计算方法,公式如下: (1) q=Q/A 分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2)。 式中Q,A Q=Q1+Q2 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q1=A×F×K×(tn-twn) (2) 式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热量(W)、维护结构的面积(m2)、传热系数[W/(m2·K)]、温差修正系数(采暖通风与空气调节设计规范,表4.1.8-1)是根据围护结构与室外空气接触的状况对室内外温差采取的修正系数、冬季室内计算温度(℃)、采暖室外温度(℃)。 围护结构附加耗热量Q1,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。根据采暖通风与空气调节设计规范4.2.6中规定进行修正。 2)加热由门窗缝隙渗入室内的冷空气的耗热量,计算公式为: Q2=0.28×cp×ρwn×L×(tn-twn) (3)式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、tn和twn与上同、Cp表示空气的定压比热容[kJ/(kg·K)] ,温度为250K时,空气的定压比热容 cp=1.003kJ/(kg·K),300K时,空气的定压比热容cp=1.005kJ/(kg·K),冬天可 按250K时的值算。ρwn表示采暖室外计算温度下的空气密度(kg/m3)、L表示渗透空气量(m3/h)、其计算公式如下: ×l×m×b (4) L=L 式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m·h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数(采暖通风与空气调节设计规范,附录D),b表示门窗缝渗风指数,

精确总热负荷发热量的计算

精确总热负荷的计算 按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下: 1:机房主要热量的来源 2设备负荷(计算机及机柜热负荷); 2机房照明负荷; 2建筑维护结构负荷; 2补充的新风负荷; 2人员的散热负荷等。 2其他 热负荷分析: (1)计算机设备热负荷: Q1=860xPxη1η2η 3 Kcal/h Q:计算机设备热负荷 P:机房内各种设备总功耗 η1:同时使用系数 η2:利用系数 η3:负荷工作均匀系数 通常,η1η2η3取0.6—0.8之间, 本设计考虑容量变化要求较小,取值为0.7。 (2)照明设备热负荷: Q2=CxP Kcal/h P:照明设备标定输出功率 C:每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应 大于2001x,其功耗大约为20W/M2以后的计算中,照明 功耗将以20 W/M2为依据计算。 (3)人体热负荷 Q3=PxN Kcal/h N:机房常有人员数量 P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为102Kcal。 (4)围护结构传导热 Q4=KxFx(t1-t2) Kcal/h K:转护结构导热系统普通混凝土为1.4—1.5

F:转护结构面积 t1:机房内内温度℃ t2:机房外的计算温度℃ 在以后的计算中,t1-t2定为10℃计算。 屋顶与地板根据修正系数0.4计算。 (5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。 (6)其他热负荷 除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘 器等也将成为热负荷,由于这些设备功耗小,只粗略根据 其输入功率与热功当量之积计算。Q5=860xP 机房精密空调工程总热负荷的计算 本机房主要的热负荷来源于设备的发热量及维护结构的热负荷。因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积按经验进行测算。 专业机房精密空调的设备选型 1、机房空调制冷负荷的计算方法 精确计算法" 综合考虑计算以下因素产生的负荷,使用这种计算方式对空调负荷选择而言相对比较准确:根据机房所在地区的气候条件,考虑一年中的最大负荷工况。 围护结构的外围负荷(包含墙体传热以及太阳直射所造成的空调负荷) 机房内设备发热量 机房内新风负荷 机房气流组织以及消除局部温差所需要的循环风量。 机房的扩容以及备用需求。 根据机房面积估算法" υ 按照机房内面积空间进行相应估算,在一般小型集中机房中,我们一般按照300W/m2~550W/m2来估算机房内的空调负荷,而每平方米的空调负荷量要根据机房内设备的发热及密集程度确定,一般常规小型机房选取400 W/m2就可以。 设备特别密集的机房需要单独估算机房负荷及气流方式,选取600 W/m2~1000 W/m2。υ " 根据机房设备供电量估算法 υ 按照机房内总配电功率乘以相应系数进行估算,系数大小根据机房设备的种类以及使用频率确定,一般选取0.5~0.9。 2、机房空调的风量计算方法

暖通冷负荷热负荷计算书

XXXX大学环境工程学院课程设计说明书 课程《暖通空调》 班级 姓名 学号 指导教师 年月

第1篇采暖设计 1 工程概况 1.1 工程概况 1、本工程建筑面积约1600㎡,砖混结构,层高均为3.6M。本工程建筑所在地湖北咸宁,供暖室外计算温度0.3℃.根据设计要求供暖室内设计温度为18℃ 2、窗均为铝合金推拉窗,窗高为1.5M采用中空双层玻璃,在满足建筑节能要求的前提下查得K=4 w/(㎡.℃). 3、内门为木门,门高均为2M, 在满足建筑节能要求的前提下查得K=2 w/(㎡.℃) . 4、走廊根据要求没有做供暖设计 5、墙均为200空心砖墙,外墙做保温设计在满足建筑节能要求的前提下查得K=1 w/(㎡.℃).内墙在满足建筑节能要求的前提下查得K=1.5 w/(㎡.℃) . 6、走廊因为有两侧传热作用的存在查节能设计手册差的修正系数为0.3 7、冷风渗入由所在供暖房间窗布置情况和数量查建筑节能手册应用换气次数法计算而得。屋面为现浇为现浇板厚100MM,做保温和防漏水设计,在满足建筑节能要求的前提下查得K=0.8 w/(㎡.℃) 2 负荷计算 2.1 采暖负荷 1.围护结构耗热量 (1) 维护结构基本耗热量 Q1j=αKF(t n+ t wn) (2) 维护结构附加耗热量 ①朝向修正率: 北、东北、西北:0- +10% 东、西:-5% 东南、西南:-10%- -15% 南:-15%- -30% 2.冷风渗透耗热量 Q2=0.28c pρwn L(t wn-t n) 2.2 算例:以四层办公室(编号为401)为例 咸宁市为夏热冬冷地区,由《公共建筑节能设计标准》GB50189-2005查得夏热冬冷地区外围护结构外墙的传热系数K≦1W/(m2·k),屋面传热系数≦0.7 W/(m2·k),窗墙面积比>0.2,由《公共建筑节能设计标准》GB50189-2005查得窗的传热系数K≦3.5 W/(m2·k).

游泳池相关的计算公式

游泳池相关的计算公式 1、室内游泳池的除湿量计算 池区蒸发量: L W=(0.0174V f+0.0229)(P b-P q)×F池×760÷B 式中:L W—泳池水面蒸发量kg/hr V f—游泳池池面风速0.3m/s F池—室内泳池水面面积m2 P b—26℃水面温度饱和空气的水蒸气分压25.5mmHg P q—28℃泳池空间空气的水蒸气分压18.1mmHg B—当地大气压力765mmHg 池区服务人数: n=F池÷S人 式中:n—泳池综合服务人数 F池—泳池面积m2 S人—人均占有面积6m2/人 人体散湿量: L人=0.01nn’g 式中:L人—人体散湿量kg/hr n—泳池综合服务人数 n’—群体系数(0.92) g—单人体散湿量(120 kg/hr 新风量:

Q新=10 L/s.人×n÷1000 m3/s 式中:人均新风需求量—10升/秒 夏季新风量最大增湿量: L新=(dw-dn)×Q新×ρkg/hr 式中:dw—夏季室外空气含湿量取19.2g/kg干空气 Dn—室内空气含湿量取15.1g/kg干空气 ρ—为空气密度1.15kg/m3(夏季室外33.5℃,相对湿度65%) 夏季泳池最大湿负荷=L W+L人+L新(kg/hr)(37.9kg/hr) 2、夏季制冷冷负荷计算 室内面积m2,冷负荷取180w/m2 Q冷=室内面积m×冷负荷w/m2÷1000 kw(98.5kw) 3、冬季采暖热负荷计算 室内面积m2,热负荷取130w/m2 Q暖=室内面积m×热负荷w/m2÷1000 kw(71.1kw) 4、通风量计算 按设计规范,室内的换风次数每小时为8~10次,取8次,室内面积为m2,高度为m 泳池室内通风量为=室内面积m2×高度m×8次/hr =m3/hr (21005m3/hr) 5、除湿设备选型

热电厂热负荷的数理统计计算方法

热电厂热负荷的数理统计计算方法(1) 日前,我国北方大中城市已普遍建有热电厂,很多大型工业企业也建有自备热电厂,甚至一些中小型企业也建有以裕压发电形式的小型自备热电站。这些以供热为主、热电联产的热电厂,已成为我国电力事业的一个重要组成部分。 按照热电联产的理论计算结果,利用供热抽汽或背压排汽进行热电联产的发电煤耗率应为O.1 5~0.2kg标准煤/千瓦时,即使再考虑蓟抽汽式汽轮机内凝汽发电的低效率和其它汽 水损失,热电厂的综合发电煤耗率也不应超过O.3.kg标准煤/千瓦时。但是很多热电厂实际运行结果都高于这个指标. 其原因是多方面的,其中非常重要的一条就是热电厂在设计阶段对热电联产的最基本设计参数——最大热负荷及其变化特性估算不准,还有热化系数取值过高,导致热电厂规模偏大,甚至供热机组的设计热负荷值大大高于实际最南热负荷。这样,热电厂只好加大凝汽发电份额或降低设备容量利胃率,对背压式机组的运行往往带来困难。 热电联产有两个显著特点一是热负荷的供需应基本保持适时平衡;二是以热定电。要使热电联产取得较好的节能效果,必须在热电厂设计的前期就应比较准确地计算出它的最大热负荷,总供热量以及绘制出全年热负荷持续时间曲线. 在此基础上再考虑适当的热化系数,列举出若干可行的方案,进行技术经济比较计算,最后确定出最优方案。 目前对栗暖热负荷的测算已有了比较可靠的算法,但对工业热负荷的测算尚无较有效盼方法。以往对热电厂工业热负荷的估算方法有以下几种, (1)按各个热用户原有供热锅炉的容量来估算,通常是取各个容量之和作为热电厂工业热负荷的设计值; (2)根据各个热用户自报的热负荷数据,取各用户避大热负荷之和作为热电厂热负荷的最大值; (3)根据各热用户生产产品的单位热鞠和产量情况,估算热电厂的最大热负荷; (4 )根据热用户进行过的企业能量平衡测试数据来估算热电厂的最太热负荷; (5)对各热用户的用热情况作简单的潮试,并通过简单的现场调查来决定热电厂的最大热负荷。 这些估算方法都不够合理,特别是前三种方法误差极大,因此都不能比较准确可靠地估算出热电厂的最大热负荷值,其主要问题是。 1、未考虑各热用户最大热负荷的同时出现率一般来说,各用户的最大热负荷并不在一日内同一时刻出现所以热电厂的最大热负荷并不等于各用户最大热负荷之和,而是小于这个数. 热电厂最大热负荷与各用户最大热负荷之和的比值可定义为用户最大热负荷的同时出现率γ, γ= 通常,γ< 1。它的大小与热用户的多少、各用户热负荷的波动特性等多方面因素有关。由

关于室内游泳池恒温方案设计

室内游泳池热泵方案 1.1客户基本情况 我公司通过前期对贵公司沟通,根据贵单位提供相关数据及现场情况分析: 热水现况: 贵公司室内游泳池:约365平方*1.6M=584立方,按26~28℃恒温,参考“室内泳池热负荷”的计算方法来进行计算。 (一)耗热量的计算: 1、游泳初次加热时间:(24H~48H) Q初=V×1000×(T1-T2)/T /860 其中: v—池水总容积 T1—池水温度水温28℃ T2—广州自来水冬季温度10℃ T—加热时间 带入计算Q初=584×1000×(28-10)/30 /860 = 407kw 584×1000×(28-10)/(400KW×860) = 30H 2、水面蒸发损失的热量: Q1=1.163υ(0.0174υf+0.0229)(Pb-Pq)F*760/B kW (7.12.) 其中:Q1—池面蒸发损失热量 kW v—与池水温度相等时,水的蒸发汽化潜热(kal/kg)此值查581.4 vf—池水面上风速:取风速0.5m/s Pb—与池水温度相等时的饱和空气的水蒸汽分压力mmHg Pq—空气的水蒸气分压力mmHg F—池水表面积 365 B—当地的大气压力 mmHg 根据广州气象参数,查焓湿图,数据如下: vf= 0.5m/s, Pb=28.3mmHg Pq=15.6mmHg ;υ=581.4(kal/kg) B=744225 mmHg 带入计算:Q1=1.163*581.4(0.0174*0.5+0.0229)(28.3-15.6)*365*760/744225= 101kw 3、池底和池壁损失的热量、水面传导损失的热量管道和设备损失的热量应按游泳池水表面蒸 发损失的热量的20%计算确定: Q2 =Q1×20% 带入计算:Q2 =Q1×20%=101kw×20%= 20.2kW 4、补充水加热所需的热量: Q3=αγqb(ts-tb)/t kJ/h 其中:Qb-补充水加热所需的热量 kJ/h

用天正计算冷热负荷

天正怎么算 B 14:11:52 不是说都用鸿业计算吗 A 14:13:52 哦,都行鸿业以上算的比较烦索,数据偏多,比较浪费纸,要不我教你天正吧,B 14:14:02 行 B 14:14:10 我那鸿业也有问题 A 14:14:51 A 14:15:00 这个 B 14:15:05 打开了 A 14:15:41 先起个工程名 B 14:15:53 好 A 14:16:06 定义地区参数 A 14:16:27 选城市 B 14:16:40 好了 A 14:16:54 那样 B 14:17:09 B 14:17:45 楼一共9层,我只计算3层 B 14:17:58 用建立9层吗 A 14:18:26 不用 B 14:18:30 哦 A 14:18:53 选中一层 A 14:19:02 添加房间 A 14:19:18 右键 B 14:19:22 B 14:19:48 B 14:20:02

B 14:20:09 按小房间添加 A 14:20:45 看不清 B 14:21:14 内外共9个小房间 A 14:21:41 先给房间编个号吧,免得你自己弄乱了B 14:21:46 好的 A 14:22:24 每一间都单算 B 14:22:32 好的 A 14:22:41 你做空调还是采暖 B 14:22:45 我现在输入一间。空调 B 14:22:50 还不一样 B 14:23:31 A 14:23:47 B 14:23:55 这样不能显示内墙外墙 B 14:24:19 是这个界面 A 14:24:50 点右边的名称 B 14:25:07 看见了 A 14:25:10 输入房间名 A 14:25:35 点下面的修改 B 14:25:43 好的 B 14:26:18 B 14:26:35 按照右面的一个个设置吗 A 14:26:40 修改的时候一定要把房间选中 A 14:27:17 我看看你到那了 B 14:27:39 还在房间

热负荷及散热量计算..

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 a t t KF q w n )(''-= 式中 ' q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t ' —供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: ) (Q ' '' 1w n t t KF q -==∑∑ 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 1.2.1朝向修正耗热量 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。

相关文档
相关文档 最新文档