文档库 最新最全的文档下载
当前位置:文档库 › 4随机过程的功率谱

4随机过程的功率谱

4随机过程的功率谱
4随机过程的功率谱

计算机与信息技术学院验证性实验报告

1、使学生了解随机过程的功率谱及功率谱分析;

2、并利用MA TLAB 语言对随机过程的功率谱进行仿真。

3、掌握随机信号的分析方法。

二、实验仪器或设备

装有 MATLAB 软件的电脑一台

三、总体设计(设计原理、设计方案及流程等)

功率型信号:平均功率有限,能量无限的信号。

随机信号的样本函数的能量是无限的,但功率往往是有限的。

可表示为公式(其中i 为随机变量):

21lim ()2T P s t dt T +∞-∞

→∞=<∞? {

()0()i x t t T Ti t T x t <≥= ()()jwt Ti Ti X w x t e dt +∞--∞

=? 22211lim ()lim ()2411lim ()22T i i Ti T T T Ti T P x t dt X w dw T T X w dw T

ππ+∞--∞

→∞→∞∞-∞→∞===??? 21()lim ()2Xi Ti T G w X w T

→∞= 1()2i Xi P G w dw π

∞-∞=? 四、实验步骤(包括主要步骤、代码分析等)

源代码如下:

Fs=600;

n=0:1/Fs:1;

xn=cos(2*pi*40*n)+3*cos(2*pi*90*n)+randn(size(n));

nfft=512;

window=boxcar(100); %矩形窗

window1=hamming(100);

window2=blackman(100) ;%blackman 窗

noverlap=20; %数据无重叠

range='half'; %频率间隔为[0 Fs/2], 计算一半的频率[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);

[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);

[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);

plot_Pxx=10*log10(Pxx);

plot_Pxx1=10*log10(Pxx1);

plot_Pxx2=10*log10(Pxx2);

figure(1)

plot(f,plot_Pxx);

title('加矩形窗');

figure(2)

plot(f,plot_Pxx1);

title('加海明窗');

figure(3)

plot(f,plot_Pxx2);

title('加blackman 窗');

一、结果分析与总结

本次实验运用到了随机信号分析,数字信号处理,概率论,matlab等课程知识。让我了解到随机过程的功率谱的分析方法并模拟了功率谱图像。其次,也锻炼了我的动手能力,这次实验也让我深化学习了matlab语言的应用,为以后的学习提供了很多的方便。

教师签名:

年月日

功率谱密度

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

随机振动(振动频谱)计算(Random Vibration)

Random Vibration 1. 定义 1.1 功率谱密度 当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。 功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。 1.2 均方根 均方根(RMS)是指将N项的平方和除于N后,开平方的结果。均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。 2. 加速度功率谱密度 2.1 单位 加速度单位:m/s^2或g 加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz Hz单位为:1/s, 所以加速度功率谱密度单位也可写为:m^2/s^3 2.2功率谱密度函数 功率谱密度函数曲线的纵坐标是(g2/Hz)。功率谱曲线下的面积就是随机加速度的总方差(g2): σ2= ∫Φ(f)df 其中:Φ(f)........功率谱密度函数 σ ............. 均方根加速度 3. 计算示例 随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下: σ2=0.01*(2000-100)=19 σ=4.36g 峰值加速度不大于3倍均方根加速度:13.08g

4、SAE J 1455 随机振动要求 4.1功率谱图 4.1.1 Vertical axis 4.1.2 Transverse axis 4.1.3 Longitudinal axis

4.2 Vertical axis加速度计算 功率谱曲线下的面积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不大于3倍均方根加速度:6.18g 5. FGE随机振动要求 5.1功率谱图

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

随机振动功率谱密度

701z 0102030 4050607080 0.002 0.0040.0060.0080.01 0.0120.014 0.016频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -65-60-55-50-45-40-35-30 -25-20 -15频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.1378m/s2(70km/h,z 方向,第一次试验,前排) 0.1378 0102030 4050607080 0.5 1 1.5 2 2.5 -3 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701y 0102030 4050607080 1 2 3 4 5 6 7 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -70-65-60-55-50-45-40-35 -30 -25-20频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.0164m/s2(70km/h,y 方向,第一次试验,前排) 0102030 4050607080 0.5 1 1.5 2 2.5 3 -5 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701x 0102030 4050607080 0.20.40.60.811.2 1.41.61.8 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 0102030 4050607080 -70 -65-60-55-50-45-40 -35-30 -25频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

功率谱密度

功率谱密度 不同形式的数字基带信号具有不同的频谱结构,分析数字基带信号的频谱特性,以便合理地设计数字基带信号,使得消息代码变换为适合于给定信道传输特性的结构,是数字基带传输必须考虑的问题。 在通信中,除特殊情况(如测试信号)外,数字基带信号通常都是随机脉冲序列。因为,如果在数字通信系统中所传输的数字序列是确知的,则消息就不携带任何信息,通信也就失去了意义。故我们面临的是一个随机序列的谱分析问题。 考察一个二进制随机脉冲序列。设脉冲、分别表示二进制码“0”和“1”, 为 码元的间隔,在任一码元时间内,和出现的概率分别为p和1-p。 则随机脉冲序列x(t)可表示成: 其中 研究由上面二式所确定的随机脉冲序列的功率谱密度,要用到概率论与随机过程的有关知识。可以证明,随机脉冲序列x(t)的双边功率谱公式(1): 其中、分别为、的傅氏变换,。 可以得出如下结论: (1)随机脉冲序列功率谱包括两部分:连续谱(第一项)和离散谱(第二项)。对于连续谱而言,由于代表数字信息的及不能完全相同,故,因此,连 续谱总是存在;而对于离散谱而言,则在一些情况下不存在,如及是双极性的脉冲,且出现概率相同时。 (2)当、、p及给定后,随机脉冲序列功率谱就确定了。 上式的结果是非常有意义的,它一方面能使我们了解随机脉冲序列频谱的特点,以及如何去具体地计算它的功率谱密度;另一方面根据它的离散谱是否存在这一特点,将使我们明确能否从脉冲序列中直接提取离散分量,以及采取怎样的方法可以从基带脉冲序列中获得所需的离散分量。这一点,在研究位同步、载波同步等问题时,将是十分重要的;再一方面,根据它的连续谱可以确定序列的带宽(通常以谱的第一个零点作为序列的带宽)。 下面,以矩形脉冲构成的基带信号为例,通过几个有代表性的特例对功率谱密度公式的应用及意义做进一步的说明,其结果对后续问题的研究具有实用意义。

频谱分析与功率谱分析

频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱 频谱和功率谱有什么区别与联系? 谱是个很不严格的东西,常常指信号的Fourier变换, 是一个时间平均(time average)概念 功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别: 1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。

功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的 结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变 量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密 度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。 另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

噪声功率谱密度与方差之间的关系

关于matlab 中噪声功率谱密度与方差之间的关系的理解 1. 连续时间系统 高斯白噪声的定义为:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 故对于连续时间系统,理想的高斯白噪声的功率谱密度是一个常数,设为n0,而带宽是无限宽的,其功率为: 0*n ∞=∞ (1) 在n0不是为无穷小的情况下,理想的噪声功率Pn 是无限大的。 而实际当中,噪声带宽是有限宽的,只需要在我们所关心的频带范围内,噪声功率谱密度是个常数,则我们可认为其是高斯白噪声。设噪声单边功率谱密度为0n ,低通带宽为W ,则其噪声功率为: 0*2n n P W = (2) 如图1.1所示: o W -W 幅度 频率/HZ 0 2 n 图1.1 我们知道,高斯白噪声的分布为2 ~(0,)X N σ,则其功率为: 222()()()()n P E x D x E x D x σ==+== (3) 故对于低通系统有: 20/2 n W σ= (4) 而对于带通系统,如图1.2所示,有: 200*2*2n n P W n W σ=== (5)

W -W 幅度 频率/HZ 0 2 n 2. 离散时间系统 对于离散时间系统而言,带宽受到抽样速率fs 的限制。设WGN 一秒内抽取的一组数据样本为: 12[],,....fs x n x x x = 22([])0;([])([])E x n D x n E x n σ=== 2.1理论分析 由于时间为单个的离散点,故理想功率为0;但有下列定义:对于序列[]x n 的能量E 定义为序列各抽样值的平方和,则数据样本的能量为: 2221()*[()]*s f s s E x n f E x n f σ===∑ (6) 将功率定义为序列能量除以序列的时间,即 2*t s b E P f T σ==(单位:J/S ) (7) 式中,Tb 为序列时间,此处等于1S 。 如果功率单位采用W/symbol ,则有: 2/s t s P P f σ==(单位:J/symbol ) 2.2另一种理解 而实际当中,抽样点是一个时间段,认为1/s s T f =时间内的幅值就等于此抽样时刻的幅值,则单位抽样时间内的噪声能量为: 22***t s s s E E T f T σσ=== (6) 则噪声功率(单位:J/symbol )为:

随机振动-试验人员必须了解的参数及设置

随机振动-试验人员必须了解的参数及设置 江苏省电子信息产品质量监督检验研究院谢杰 一.简述 近年来,随机振动试验在我院所有振动试验中的比例越来越高,原因有三:1、科学进步,此类设备的软件大量普及,一般只需在原来的电磁振动台加上一套控制软件及配套设备就可实行。2、企业随着国际标准的大量采用,许多振动试验都采用随机振动。3、随机振动相对传统的正弦振动有着无法比拟的优点,它能模拟各种实际运输条件下可能遇到的振动情况,如模拟公路运输,模拟铁路运输,模拟海运运输等等。本文主要介绍对于试验人员来说必须了解的随机振动参数及设置要求。 二.随机振动数据 上图是某一随机振动试验后的试验数据,对于试验人员来说,必须了解其中的一些参数含义。 曲线中,横坐标是频率,纵坐标是PSD,一般简称为频谱曲线。 PSD:Power spectrum density 功率谱密度 PSD单位有二种:g2/Hz,(m2/Hz)2/Hz,二者之间换算:1 g2/Hz=96(m2/Hz)2/Hz PSD是随机振动中的重要参数,可理解为每频率单位中所含振动能量的大小,其值越大,相对应的频率段振幅值会变大,在试验中提高最低频率的PSD 值可明显感觉到振幅增大。 频谱曲线的特点:1、它是对数坐标,主要是为了表述画线方便。2、它有一条平线或多条平线及斜线组成,平线和斜线之间首尾相连组成。3、试验条件中,PSD值不变的是平线,用+dB/oct表示向上的斜线,用- dB/oct 表示向下的斜线。如-3 dB/oct 表示每增加一倍频率,PSD值下降一半。 频谱曲线中,中间一条是设定曲线,上面二条和下面二条是设备的保护及中断线,附加在中间设定值上的变化曲线是振动台实际控制曲线。

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

随机振动的功率谱分析

随机振动的功率谱分析 在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD )或者谱功率分布(spectral power distribution, SPD )。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz )表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm )来表示。 功率谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。功率谱密度函数是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值与频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值与频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。谱是个很不严格的东西,常常指信号的Fourier 变换,是一个时间平均( time average )概念。功率谱指的是信号在每个频率分量上的功率,频谱其实是一个幅度谱,只是信号在各个分量上的幅度值。因为通信中一般对于信号的分析都是把信号看作电压值,所以功率就是电压的平方再除以电阻值。为了分析简单归一化,令R=1,这时候功率谱就是频谱模的平方了。模也就是实部分量和虚部分量平方和的开方,故功率谱保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 功率谱和频谱有两个重要区别:其一,功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换,对于一个随机过程而言,频谱也是一个“随机过程”;其二,功率概念和幅度概念的差别,我们只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在及其Fourier 变换是否收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier 变换是否收敛。 若一个确定信号f(t),-∞<t <∞,满足狄氏条件,且绝对可积,即满足: ?∞ ∞-∞

通信技术概论信号的能量谱密度与功率谱密度

2.2.3 功率谱密度 我们定义信号()t f 的能量(作用归一化处理): 由电压()t f (或者电流()t f )在Ω1电阻上消耗的能量: ?∞ ∞-=dt t f E )(2, (注释:22u R u i u E ==?=/) 积分值存在,信号的能量为有限值,称()t f 为能量信号。 对于能量无限大的信号(如周期性信号),我们考虑能量的时间平均值,这显然就是信号的平均功率。这种信号称作(平均)功率信号。 我们定义信号()t f 的平均功率,为电压()t f 在Ω1电阻上消耗的平均功率(简称功率): ()?-∞→=22 21T T T dt t f T S lim 式中,T 是为求平均的时间区间。 为了更好地描述能量信号、功率信号,我们引入能量谱密度和功率谱密度概念。 能量谱密度、功率谱密度函数表示信号的能量、功率密度随频率变化的情况。 我们知道,非周期性信号的频谱宽度是无限的,然而,实际上信号的大部分功率是集中在某个有限的频谱宽度内。 通过研究功率谱密度,可以帮助了解信号的功率分布情况,确定信号的频带等。 对于能量信号()t f ,根据付里叶反变换有 ()()?∞+∞-ωωωπ =d e F t f t j 21 则信号的能量: ()()???∞∞-∞+∞-ω+∞∞-ωωπ ==dt d e F t f dt t f E t j ])[(21 2 ()()()()???∞+∞-∞+∞-∞+∞-ωωω-?ωπ =ω?ωπ=d F F d dt e t f F E t j *21 21 当()t f 为实信号时,)()(*ω=ωF F 。今后如无特别说明,都是指实信号,

功率谱密度机器实现

1. 基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

谱密度,功率谱密度,能量谱密度

谱密度, 功率谱密度, 能量谱密度 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。 解释 在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。 尽管并非一定要为信号或者它的变量赋予一定的物理量纲,下面的讨论中假设信号在时域内变化。 定义 能量谱密度 能量谱密度描述的是信号或者时间序列的能量或者变化如何随着频率分布。如 果是一个有限能量信号,即平方可积,那么信号的谱密度就是信号连续傅里叶变换幅度的平方。 其中是角频率(循环频率的倍),是的连续傅里叶变换。是的共轭函数。 如果信号是离散的,经过有限的元素之后,仍然得到能量谱密度: 其中是的离散时间傅里叶变换。如果所定义的数值个数是有限 的,这个序列可以看作是周期性的,使用离散傅里叶变换得到离散频谱,或者用零值进行扩充从而可以作为无限序列的情况计算谱密度。

乘数因子经常不是绝对的,它随着不同傅里叶变换定义的归一化 常数的不同而不同。 功率谱密度 上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示 为: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 属性 ? 的谱密度和 的自相关组成一个傅里叶变换对(对于功率谱密度和能量谱密度来说,使用着不同的自相关函数定义)。 ?通常使用傅里叶变换技术估计谱密度,但是也可以使用如Welch法(Welch's method)和最大熵这样的技术。 ?傅里叶分析的结果之一就是Parseval定理(Parseval's theorem),这个定理表明能量谱密度曲线下的面积等于信号幅度平方下的面积,总的能量是: :上面的定理在离散情况下也是成立的。另外的一个结论是功率谱密度下总的功率与对应的总的平均信号功率相等,它是逐渐趋近于零的自相关函数。 相关概念 ?大多数“频率”图实际上仅仅表示了谱密度。有时完整的频率要用两部分来表示,一部分是对应于频率的“幅度”(它就是谱密度),另外一部分是

相关文档
相关文档 最新文档