文档库 最新最全的文档下载
当前位置:文档库 › HL_1M多发弹丸加料等离子体的特性

HL_1M多发弹丸加料等离子体的特性

HL_1M多发弹丸加料等离子体的特性
HL_1M多发弹丸加料等离子体的特性

第19卷第3期核聚变与等离子体物理V ol.19,No.3 1999年9月N uclear F usion and Plasma Physics Sep.1999

HL-1M多发弹丸加料等离子体的特性

肖正贵 李 波 刘德权 李 立 郑银甲

郭干城 邓中朝 董贾福 王恩耀

(核工业西南物理研究院,成都610041)

对HL-1M装置在一次放电中注入3-8粒氢弹丸的欧姆加热等离子体密度分布和扰动特征进行了研究。实验表明,器壁再循环对高密度的获得有重要的影响。在再循环较高的条件下连续注入3粒 1.0mm弹丸,获得了加料实验的最好参数:等离子体中心密度n e(0)= 5.3×1013cm-3,总体储能W p= 6.0kJ, e=26ms。用CCD相机拍摄了弹丸消融云的照片,并对消融过程进行了简要的分析。结果证实,消融的不对称和弹丸轨迹的偏转是电子侧消融强于离子侧的结果,弹丸发射间隙及完整性对密度扰动有重要的影响。

关键词 弹丸加料 密度分布 消融云

1 引言

多发弹丸加料是国际受控核聚变研究的重要内容之一,已经在世界各国主要托卡马克装置上普遍进行[1—3],其实验数据都已录入国际弹丸消融数据库[4]。多发弹丸加料已在HL-1M 装置上进行过,在早期的实验中,仅有1—4粒尺寸较小( 1.0mm)的弹丸注入等离子体[5],由于杂质的原因,放电常出现破裂。1998年对弹丸发射系统进行了仔细安装调试,加料实验成功率大为提高。对弹丸等离子体的密度特性及演变规律、弹丸发射参数(尺寸、间隙)对密度扰动的影响进行了深入的研究。第一次用CCD相机拍摄到弹丸在等离子体中的消融云照片,对消融过程进行了简单的分析,结果证实,弹丸在等离子体中不同位置的消融过程受到靶等离子体温度和密度的影响。

2 实验条件概述

多发弹丸加料实验主要在欧姆加热条件下进行,装置主要参数如下:R= 1.02m,a= 0.26m,I p=140-160kA,B T= 2.2—2.4T,靶氢等离子体初始密度n e=(0.2—0.6)×1013cm-3,电子温度T e=700—800eV,离子温度T i=350—400eV,放电持续时间约1000ms。

氢弹丸(1粒 0.9mm,3粒 1.0mm和4粒 1.4mm)通常按先小后大的顺序,逐步增加丸粒数的方法,以600—1050m?s-1的速度在等离子体电流的平顶段注入。

弹丸在等离子体中消融过程,主要由H 光谱发射来监测,同时由中心及边缘电子密度和 国家自然科学基金(19789501)资助

160 核聚变与等离子体物理 第19卷

温度的变化来监测。在弹丸发射线进入等离子体后的极向正上方装有多道H 发射光谱测量阵列,以测量弹丸注入深度。在发射线连接法兰轴线上端8.3o处装有CCD相机,进行弹丸消融云的拍摄。在弹丸注入口右侧大环方向112.5o处装有6道HCN激光干涉仪,测量等离子体密度分布的变化。

3 实验结果

HL-1M弹丸加料实验通常都是在装置硅化处理和氦辉光放电清洗刚刚结束、壁很干净的情况下开始的,一直到下一次放电清洗。随着放电次数的增加,器壁条件变化,加料实验结果也随之改变。

3.1 放电清洗刚结束时的放电

由于器壁很干净,放电本底密度较低(n e<0.3×1013cm-3),再循环较小,多发弹丸加料能顺利进行。在下列的数据中,密度的各测量通道对应的等离子体小半径位置分别是:ch1,

r=-6cm;ch2,r=0cm;ch4,r=7cm;ch5,r=11cm;ch6,r=15cm。

3.1.1 少量弹丸注入

当只注入2—3发 1.0m m的小弹丸时,弹丸注入后电子密度的变化值n e呈急剧上升和快速衰减(特征时间约25ms)的特点。平均密度上升较小,密度分布呈明显峰化。而密度快速衰减是由壁的吸附造成的。中心ch2与内侧ch1区域的n e值相差无几,是外侧ch6n e值的4倍左右,但仅是ch5数值的1.4倍。它表明弹丸注入到了中心区域,密度峰化中心离开磁轴而靠向强场侧,且峰化区域较窄。该次放电等离子体储能上升了3.5kJ,能量约束时间 E由8m s 上升到15m s左右。其密度分布波形如图1所示。

3.1.2 注入多发弹丸

放电清洗结束后的干净器壁允许7—8粒弹丸注入。以第5463次放电为例,分别在放电的150、200、250、300、350、450、550、650ms时刻触发发射快阀,滞后6—8ms弹丸到达等离子体。多道电子密度监测结果如图2所示。结果表明,第一粒弹丸( 0.9mm)可能已经破碎,整体等离子体密度变化很小。在r=15cm以外的区域都未曾见到密度扰动的痕迹。扰动仅发生在很窄(r=11cm到r=-6cm)的范围,没有峰化现象。由H 阵列信号监测显示,弹丸消融区域仅发生在r=50mm到-40m m区间。第二粒( 1.0mm)弹丸注入时,各测量通道上的密度直线上升,然后按约30ms的特征时间指数衰减。密度最高峰产生在外侧(r=7cm)。从第3、4粒弹丸注入开始,由于前两粒弹丸加料的影响,放电密度波形有所改变。各测量通道密度先陡峭上升,紧接着在外侧(r=15—11cm)区域约在5—10ms时间内,密度有一个小的下降,然后缓慢上升,但其极大值没有超过第一尖峰。而中心区域ch4、ch2和ch1密度只有第一尖峰值,而后呈指数衰减(特征时间约50—80m s),但信号变坏降到零值以下(故在图2中没有显示出该三道密度值)。当第5、6、7、8粒弹丸( 1.4mm)注入时,外侧ch6密度上升尖峰已难以测出,其紧接着的密度缓慢上升清晰可见。中心区域可能是密度上升值过快过高,其差拍条纹信号已丢失,同样测不出上升值,但其缓慢过程仍能观察到。从另一次放电(第5460次)多发注入可以看出,中心ch1、ch2密度也只有陡峭上升后的缓慢下降,没有二次上升过程。这说明中心区域密度上升完全由弹丸加料引起,且密度峰化以后主要向弱场侧扩散,这种密度的扩散速率大于器

壁的吸附率,导致ch5、ch6密度的缓慢二次上升。

3.1.3 再循环较大时的放电

HL-1M 装置内壁表层覆盖有大约6%的石墨。随着放电次数的增加,石墨由开初的吸气(再循环小)到后来的放气(再循环变大),成为新的粒子源。放电本底密度自动逐步上升,本底的辐射及杂质谱线水平也逐步升高。这种再循环较高条件下的弹丸加料放电的密度特性有所变化。以第5455次放电为例,如图3所示。在第1粒( 1.0m m )弹丸注入后,每一道密度变化都呈现陡峭上升到第一峰值后的紧接下降现象。在外侧密度下降约10ms 后出现二次上升15m s,然后再缓慢下降,二次上升的极大值小于第一峰值;中心的密度下降时间仅5ms,且下降幅值较小,之后保持平缓状态约15ms ,再出现缓慢下降;而ch 1区域密度陡峭上升到第一峰值后几乎一直呈下降趋势,没有发生二次上升过程。随着第2粒第3粒弹丸注入,外侧密度的二次上升时间更长,上升值更大,甚至超过第一峰值。中心区密度已出现平缓上升后缓慢下降的特点。随着弹丸注入数增加,中心ch2和内侧ch1密度增加,其值已达ch6的2倍。密度峰值中心在r =0—-6cm 之间,密度峰化区变宽,等离子体总体储能W p 增加,能量约束 E 变长。本次放电的W p 已达5.5kJ; E 值达23ms 。类似的放电特性在第5290次放电中也出现,获得了加料实验的最好值:W p = 6.0kJ, E =26ms,n e (0)≈5.3×1013cm -3。边界的朗谬尔探针测量表明,高再循环条件下弹丸注入后,外侧密度升值通常是内侧密度升值的2—3倍。这种中心的高密度峰化和边界再循环提供的粒子的结合,是等离子体整体密度升高、峰化区变宽、约束

改善的主要原因。

 图1 低再循环条件下少量弹丸注入时

电子密度分布的变化 图2 低再循环条件下多发弹丸注入时电子密度分布的变化

3.2 发射间隙与密度

实验表明,无论是放电清洗后还是放电清洗前的弹丸注入实验,其每粒弹丸的发射间隙既不能过大,也不能过小,而要根据器壁状态进行调整。发射间隙过小(<25ms)容易产生破裂;

161第3期 肖正贵等:HL -1M 多发弹丸加料等离子体的特性

 图3 高再循环条件下三发弹丸注入时电子密度分布的变化

发射间隙过大(>50ms)很难实现密度按梯形上

升。为了实现密度按梯形上升,小弹丸的发射间

隙以25—35ms 为宜,大弹丸的发射间隙以

50—70ms 为好。在目前的放电参数(I p ≈

150kA ,B T = 2.2- 2.4T )下,连续注入大弹丸

获得高密度的成功几率较小。本次实验为了实

现多发连续注入,大弹丸发射间隙都控制在

80—100ms 之间,因而8发弹丸注入时未能实

现密度连续上升。如果发射间隙太小,则第2粒

大弹丸注入时就出现内破裂直到大破裂,不仅

密度上升变化值无法测出,还要影响下一次放

电。

3.3 弹丸消融云的拍摄

用CCD 相机拍摄弹丸在等离子体中消融云的照片,是研究弹丸消融过程极其有效的手段。我们拍摄到了弹丸在等离子体边缘、小半径一半区及中心区的消融照片,如图4

所示。图4 等离子体中弹丸消融云的照片a 小弹丸破裂;b 弹丸在等离子体外侧消融;c 弹丸在等离子体中心消融。

在边缘区弹丸消融云的辐射十分微弱,在小半径靠外侧区消融云基本是圆形对称,在中心区消融云沿纵场磁力线方向拉长及云中心轴倾斜的现象与ASDEX-U 的结果非常相似[6]

。基于边界磁探针测量,把消融云中心轴倾斜角数值作为附加数据输入一平衡编码,将能为等离子体中心区域q (r )的精确测量提供有力的依据。由这些照片可见,小弹丸注入时发生了弹丸破裂,在图片上是几个小亮点,对应等离子体密度扰动值较小。大弹丸在等离子体中心区域形成完整的消融云,对应等离子体密度扰动值很大,有时使得密度测量得不到正确信号。消融云轨迹初步分析表明,其明显地偏离直线,向等离子体电流的相反方向偏转。由消融云的光强等值曲线发现,云的发光强度在电子侧强于离子侧。这一非对称性被认为是放电中超热电子具有更长的自由程,可以从电场获得足够的能量来加强电子侧的速率分布,从而加剧了电子侧的消融,结果使弹丸轨迹发生偏转。162 核聚变与等离子体物理 第19卷

所用CCD 相机曝光时间为微秒量级。设弹丸出口到等离子体边缘的距离为L ,从弹丸触发到弹丸加速脱离枪口所用的时间为t 1,拍摄到照片的时间为t 2,则弹丸飞行的平均速度v p =L /(t 2-t 1)。本次实验中推动弹丸加速的快阀贮罐气压为3.0MPa ,小弹丸速度为600—700m ?s -1,大弹丸速度为850—1050m ?s -1

。我们用安装在弹丸发射线极向顶部的多道H 光谱测量阵列的H 信号捕获时间来计算v p ,也得到相同的结果。靶等离子体密度较低和弹丸速度较高是本次实验中大部分弹丸能沉积到等离子体芯部的主要原因。4 结论

通过初步分析本次多发弹丸加料物理实验结果得出如下结论:

a.HL-1M 装置经过壁硅化处理和放电清洗后,在适当的发射间隙范围内能接受8发弹丸连续注入。

b .在放电参数(I p 、

B T )确定的条件下,器壁再循环是制约本装置放电获得更高密度的重要条件。壁很干净时,尽管弹丸注入到中心区引起密度峰化,但峰化持续时间短,峰化区域窄,能量约束时间只达到15m s 左右,总体储能约为3.5kJ;再循环较大时,弹丸也可以注入到等离子体中心,甚至超过磁轴,引起中心密度峰化。这时峰化区域宽,持续时间长,等离子体储能可达6kJ 以上,相应能量约束时间 E 可达26ms 左右,这是典型的峰化密度分布改善约束的放电。

c .本次实验等离子体放电参数I p 、

q (a )未作较大的变动。实验结果表明,150kA 左右的放电通道较窄,限制了加料实验参数的进一步提高。应进一步增大电流,提高中心区电子温度,以适应大弹丸连续密集注入的需要。

d .进一步努力精确测出弹丸在进入等离子体之前的飞行速度和质量,为加料效率和消融过程的更精确研究提供数据。

e.HCN 测量电子密度变化时,在大弹丸注入后由于内破裂的产生而使干涉条纹信号丢失,以至于影响下一粒弹丸注入的数据采集。采取措施改进,使之适应快速大扰动信号的采集是有待解决的问题。

本实验得到等离子体诊断实验室、HL -1M 装置运行室同事的大力支持。

实验中与秦运文、严龙文进行了有益的讨论,罗俊林、崔正英、付荟文提供了有益的数据,作者在此一并表示深切的谢意。

参考文献

1 Frigione D,Pieroni L ,Zan za V,et al.High Dens ity Oper ation on Frascati Tokamak Upgrade.Nucl.Fusion,1996,36

(11):1489.

2 Pecquet A L ,C ristofani P ,M attioli M ,et al .Snake -L ike Phen om ena in T ORE SUPRA Follow ing Pellet In jection .Nu-cl.

Fusion ,1997,37(4):451.

3 Baylor L R ,Sch midt G L ,Batha S H ,et al .Pellet Fueling Enhanced Confinem ent IC RH Dis charges in TFT R .Nucl .Fusion,1997,37(1):127.

4 Baylor L R,Geraud A,H ou lberg W A,et al.An International Pellet Ablation Database.Nucl.Fusion,1997,37(4):163第3期 肖正贵等:HL -1M 多发弹丸加料等离子体的特性

164 核聚变与等离子体物理 第19卷

445.

5 肖正贵,刘德权,李波等.HL-1M装置多发弹丸加料实验观测.核聚变与等离子体物理,1999,19(1):21.

6 M uller H W,Lang P T,Bu chl K.,et al.Improvem ent of q-Profile M easuremen t by Fast Obs ervation of Pellet Ab ation at ASDEX Up grade.Rev.Sci.Ins trum.,1997,68(11):4051.

编辑部1998年12月11日收稿

1999年4月22日收到修改稿

PLASMA PERFORMANCE WITH MULTI-SHOT PELLET FUELING

IN THE HL-1M TOKAMAK

XIAO Zhengg ui LI Bo LIU Dequan LI Li ZHENG Yinjia GUO Gancheng

DENG Zhongchao DONG Jiafu WANG Enyao

(S ou th w estern In stitute of Physics,Chengdu610041)

ABST RACT

Three to eig ht hydrog en pellets have been injected into the HL-1M tokamak under ohmi-cally heated plasma condition.T he essential features o f pellet-fuelled plasm a,including the electron density pro file and its evolution and the per turbation in the plasm a core,have been inv estig ated.T he relations of electro n density pro file with the pellet size,the launching in-terv al and the recycling of the first w all,have been studied.T he r ecycling o f the first w all play s an im po rtant ro le in achieving high density discharge.Discharge parameters of n e(0)= 5.3×1013cm-3,W p= 6.0kJ, E=26m s are o btained under hig h recycling co ndition w ith in-jectio n of three smaller pellets( 1.0m m).The pellet ablation cloud imag e frames w ere o b-tained ith CCD camera.Brief analy ses o f the pellet ablation pro cess show that asymm etry ab-latio n and track bending of pellet clouds ex ist and are the results of str ong er ablatio n in the electron side than in the io n side.T he improtant effect of pellet size and integ ratio n on the density turbulence is observ ed also.

Key words Pellet fueling Density pr ofile A blation cloud

等离子体特性实验

实验简介 等离子体是由大量的带电粒子组成的非束缚态体系,是继固体、液体、气体之后物质的第四种聚集状态。等离子体有别于其他物态的主要特点是其中长程的电磁相互作用起支配作用,等离子体中粒子与电磁场耦合会产生丰富的集体现象。气体放电是产生等离子体的一种常见形式,在低温等离子体材料表面改性、刻蚀、化学气相沉积、等离子体发光等方面有广泛的应用,同时也是实验室等离子体物态特性研究的重要对象。气体放电实现的方式可以千差万别,但产生放电的基本过程是利用外(电)场加速电子使之碰撞中性原子(分子)来电离气体。 本实验的目的是领会气体放电的基本原理和过程;掌握常规的静电探针诊断方法;了解等离子体中离子声波的激发、传播、阻尼等基本特性。 实验原理 ?气体放电原理与实验装置 ●利用电子对中性气体的轰击使气体电离是产生等离子体的一种 常见的方法。在直流放电情况下,当灯丝(钨、鉭)达到足够高 的温度时,许多电子会克服表面脱出功而被发射出来。这些初始 电子在外加的直流电场中加速,获得足够的能量与中性气体碰撞 并使之电离。室温下大多数常用气体的第一电离能在20eV左右, 故而施加于阴极(灯丝)与阳极(本实验中为真空室壁)之间的 电位差必须高于20V。遭轰击而被剥离的电子称为次级电子,与 初始电子相比,次级电子的能量较低。等离子体中大多数电子是 次级电子。电子碰撞电离截面在能量为几十电子伏左右达到最大, 通常在阴极与阳极之间施加30~100V电压就可以形成稳定的直流 放电。 ●有几种因素限制了电极间产生的放电电流的大小。首先是阴极的 电子发射能力的限制,阴极表面的发射电流密度由理查森 (Richardson)定律给出:

等离子体实验

一、等离子体-物质第四态 如果给物质施加显著的高温或通过加速电子、加速离子等给物质加上能量,中性的物质就会被离解成电子、离子和自由基。不断地从外部施加能量,物质被离解成阴、阳荷电粒子的状态称为等离子体。将物质的状态按从低能到高能的顺序排列依次为固体、液体、气体,等离子体。 等离子体是宇宙中物质存在的一种状态,称为物质第四态.其中含有电子、离子、激发态粒子、亚稳态粒子、光子等,既有导电性又可用磁场控制,而且能为化学反应提供丰富的活性粒子,总体上是电中性的导电气体。自然界中,等离子体普遍存在,地球大气外层的电离层、太阳日冕、恒星内部、稀薄的星云和星际气体都存在等离子体,地球上自然存在的等离子体虽不多见,但在宇宙中却是物质存在的主要形式,估计宇宙中有99%以上的物质以等离子体的形式存在。 二、等离子体的产生 获得等离子体的方法和途径是多种多样的。通常把在电场作用下气体被击穿而导电的物理现象称之为气体放电,如此产生的电离气体叫做气体放电等离子体。人们对气体放电的研究己有相当长的一段历史,目前世界各国有很多研究者正从各个方面研究和发展气体放电。现代气体放电的研究大致可分为两个发展时期:第一个时期是1930年左右,人们从理论上集中对各种气体放电的性质进行了分析和研究,Langmuir首次提出等离子体(plasma)的概念[1] Tonks L, Langmuir I. Oscillations in ionized gases. Phys.Rev., 1929, 33

(2):195-210,即由电子、离子和中性原子组成的宏观上保持电中性的电离物质;第二个时期是1950年左右,人们对受控热核反应的研究。近年来,随着微电子、激光、材料的合成与改性等高新技术的发展,气体放电得到了越来越广泛的研究与应用。运用气体放电获得等离子体是一种直接、有效的方法。迄今为止,人们在实验室和生产实践中产生了各式各样的气体放电形式。按工作气压的不同,气体放电可分为低气压放电和高气压放电;按激励电场频率的不同,可分为直流放电、低频放电、高频放电和微波放电;按放电形式及形成机制可分为汤森放电、辉光放电、弧光放电、电晕放电和介质阻挡放电等。 在等离子体发展的不同阶段和从不同的研究角度,它的分类方法也不同,下面介绍按温度分类的等离子体[2](见下表)

生物化学超详细复习资料图文版

一。 核酸的结构和功能 脱氧核糖核酸( deoxyribonucleic acid, DNA ):遗传信息的贮存和携带者,生物的主要遗传物质。在真核细胞中,DNA 主要集中在细胞核,线粒体和叶绿体中均有各自的DNA 。原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。 核糖核酸(ribonucleic acid, RNA ):主要参与遗传信息的传递和表达过程,细胞的RNA 主要存在于细胞质中,少量存在于细胞核中。 DNA 分子中各脱氧核苷酸之间的连接方式(3′-5′磷酸二酯键)和排列顺序叫做DNA 的一级结构,简称为碱基序列。一级结构的走向的规定为5′→3′。 DNA 的双螺旋模型特点: 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成。 ?磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于侧,链间碱基按A —T ,G —C 配对(碱基配对原则,Chargaff 定律) ?螺旋直径2nm ,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对(base pair, bp )重复一次,间隔为3.4nm DNA 的双螺旋结构稳定因素 ? 氢键 ?碱基堆集力 ?磷酸基上负电荷被胞组蛋白或正离子中和 DNA 的双螺旋结构的意义 该模型揭示了DNA 作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA 复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。 DNA 的三级结构 在细胞,由于DNA 分子与其它分子(主要是蛋白质)的相互作用,使DNA 双螺旋进一步扭曲形成的高级结构. RNA 类别: ?信使RNA (messenger RNA ,mRNA ):在蛋白质合成中起模板作用; ?核糖体RNA (ribosoal RNA ,rRNA ):与蛋白质结合构成核糖体(ribosome ),核糖体是蛋白质合成的场所; ?转移RNA (transfor RNA ,tRNA ):在蛋白质合成时起着携带活化氨基酸的作用。 rRNA 的分子结构 特征:? 单链,螺旋化程度较tRNA 低 ? 与蛋白质组成核糖体后方能发挥其功能

液晶电光效应实验报告

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。取两张偏振片贴在玻璃的

等离子体实验讲义

气体放电中等离子体的研究 一、 实验目的 1.了解气体放电中等离子体的特性。 2.利用等离子体诊断技术测定等离子体的一些基本参量。 二.实验原理 1.等离子体及其物理特性 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度λD 。当系统尺度L >λD 时,系统呈现电中性,当L <λD 时,系统可能出现非电中性。 2.等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为 i n ,在等离子体中 e i n n 。 (3)轴向电场强度 L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率Fp 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102P a时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2.3-1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)辉区(即正辉柱),(7)阳极暗区,(8)阳极辉

生物化学基本知识

第六章生物化学实验基本知识 主编:齐锦生编委: 孔德娟齐锦生许丽辉杨崇辉周秀霞罗湘衡君智炜张晓玲王芳 实验室要求 一、实验课的目的 1、加深理解:加深对生物化学基本理论的理解。 2、掌握技术:掌握生物化学的基本实验方法和实验技术(四大基本技术:离心、电泳、层析、比色)及分子生物学的一些基本技术和方法。 3、培养能力:培养学生的思维能力、动手能力和表达能力。 4、掌握精髓:科学的精髓是实事求是、敢于探索、善于创新的精神,要对实验中出现的一切反常现象进行讨论,并大胆提出自己的看法。 二、生化实验室规则和要求 1、预习:课前要预习实验教材,了解实验目的、原理,熟悉操作规程。 2、秩序:自觉遵守纪律,维护教学秩序,不准迟到、早退,保持安静,严禁谈笑打闹,听从教师指导,未经教师同意,不得随意离开实验室。 3、整洁:搞好实验环境和仪器的卫生整洁,实验台面必须保持整洁,仪器药品要井然有序,公用试剂用毕,应立即盖严放回原处,勿使药品试剂撒在实验台面和地面。实验完毕,需将药品试剂排列整齐,仪器要洗净倒置放好。固体废物,如滤纸、棉花、血块不得倒入水池中,以免堵塞下水道;一般性废液可倒入水池中冲走,但强酸强碱或有毒有害溶液必须用水高度稀释后,方可倒入水池中,同时放水冲走,以免腐蚀水管。全体同学由班长安排轮流值日,负责当天实验室卫生、安全和一些服务性工作,经教师验收合格后,方可离开实验室。 4、节约:使用仪器、药品、试剂及各种物品必须厉行节约,并节约水电。应特别注意保持药品和试剂的纯净,严防混杂、乱用和污染。使用和洗涤仪器应小心仔细,防止损坏,贵重仪器使用前应熟悉使用方法,严格遵守操作规程,严禁随意开动,发现故障后应立即报告指导教师,不要自己动手检修,如有损坏按学校规定赔偿。 5、安全:注意人身和国家财产安全是至关重要的,要时刻注意防火、防水、防电、防危险品、防事故,以免发生意外。实验室内严禁吸烟。使用乙醚、苯、乙醇、丙酮等易燃品时,不允许在电炉、酒精灯上直接加热。实验中须远离火源,如有危险发生,应首先关掉电源;有机溶剂着火时,勿用水泼,以免扩大燃烧面积,可用沙土、灭火器具灭之。用火时必须严格做到:火着人在,人走火灭。用毕电器后及时切断电源。加热试剂、液体时,管口不要对人,要十分小心操作,避免灼伤人。实验室内一切物品未经本室负责教师批准,严禁携带出室外,有毒物品尤其如此。借物必须办理登记手续。

表面等离子体共振实验

表面等离子体共振实验 姚付强 2012326690046 应用物理学12(2)班 实验目的: 1. 了解全反射中消逝波的概念。 2. 观察表面等离子体共振现象,研究共振角随液体折射率的变化关系。 3. 进一步熟悉和了解分光计的调节和使用。 实验原理: 当光线从光密介质照射到光疏介质,在入射角大于某个特定的角度(临界角)时,会发生全反射现象。但在全反射条件下光的电场强度在界面处并不立即减小为零,而会渗入光疏介质中产生消逝波。若光疏介质很纯净,不存在对消逝波的吸收或散射,则全反射的光强并不会衰减。反之,若光疏介质中存在能与消逝波产生作用的物质时,全反射光的强度将会被衰减,这种现象称为衰减全反射。 如果在这两种介质界面之间存在几十纳米的金属薄膜,那么全反射时产生的消逝波的P 偏振分量将会进入金属薄膜,与金属薄膜中的自由电子相互作用,激发出沿金属薄膜表面传播的表面等离子体波。表面等离子体共振原理如图所示。 对于某一特定入射角,消逝波平行于金属(电介质)界面的分量与表面等离子体波的波矢(或频率)完全相等,两种电磁波模式会强烈地耦合,消逝波在金属膜中透过并在金属膜与待测物质界面处发生等离子体共振,导致这部分入射光的能量被表面等离子体波吸收,能量发生转移,反射光强度显著降低,这种现象被称为表面等离子体波共振。 当发生共振时,表面等离子体共振角与液体折射率的关系由以下公式表示 2 2 122 10Re Re )sin(n n n sp +=εεθ 其中 sp θ 为共振角, 0n 为棱镜折射率,2n 为待测液体折射率,1Re ε 为金属介电

常数的实部。 实验仪器 表面等离子体共振实验仪器装置如图所示。主要由分光计、激励光源、偏振片、硅 光电池、光功率计、半圆柱棱镜(内充液体介质)。 实验内容 1. 调整分光计 2. SPR传感器中心调整 3. 测量某一液体的共振角 数据处理 最大光强为126 光强126 121 115 107 97 92 91 83 86 87 88 89 93 1.0 0.96 0.91 0.85 0.77 0.73 0.72 0.66 0.68 0.69 0.70 0.71 0.74 相对光 强 63 65 66.5 68 69.5 71 72.5 73 73.5 74 75.5 77 78.5 入射角 (°)

等离子体实验报告

等离子体分析实验报告 摘要: 本文阐述了气体放电中等离子体的特性及其测试方法,分别使用单探针法和双探针法测量了等离子体参量,并简要介绍了等离子体的应用,最后对实验结果进行讨论。 关键词:等离子体、单探针、双探针 (一)引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 (二)实验目的 1,了解气体放电中等离子体的特性。 2,利用等离子体诊断技术测定等离子体的一些基本参量。 (三)实验原理 1,等离子体的物理特性 等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。

(3)宏观上是电中性的。 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为i n ,在等离子体中e i n n 。 (3)轴向电场强度L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102 Pa 时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图一所示。8个区域的名称为 (1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区, (6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。 辉光放电的光强、电位和场强分布 2,单探针与双探针法的测量原理 测试等离子体的方法被称为诊断。等离子体诊断有探针法,霍尔效应法,微

尘埃粒子及物理特性

尘埃粒子及物理特性
尘埃粒子及物理特性 (一) 、尘埃等离子体简介 等离子体和尘埃是已知宇宙空间中最为常见的两种成分,而二者的共存以及相可 作用则开辟了一个近年来非常新兴的研究领域一一尘埃等离子体。它不仅出现在等离 子体物理领域,而且也常出现在空间物理、电波传播,半导体科学、材料科学等领加 工、磁约束核聚变、空间探测等领域的应用有着重要的参考价值,同时它能够揭示等 离子体物理学以及其它相关领域中新的物理现象。b5E2RGbCAP 1.什么是尘埃等离子体 尘埃等离子体是指在等离子体巾包含了大量带电的固态弥散微粒子。尘埃粒子厂 泛存在于自然界,尤其是在宇宙空间中,例如星际空间、太阳系、地球电离层以及暂 星尾和行星环中都存在着各种尺度和密度的尘埃粒子。另外,尘埃粒子也存在于
p1EanqFDPw
实验室等离子体和工业加工等离子体中。 2.尘埃粒子的来源 在太阳系中,人们已探测到各种形态和来源的尘埃粒子,如空间物质的碎片、陨 石微粒、月球的抛射物、人类对空间的”污染”物等。在星际云中,尘埃粒子可以是 电介质,如冰、硅粒等,也可能是类金属的物质,如石墨、磁铁矿等物质。尘埃颗粒 也普遍存在与实验室装置中,在电子学实验室中,尘埃粒子来源于电极、电介质的器 壁,或来源于充入的气体等。一般尘埃粒了的可能质量范围大约为 10-2~10-15g ,
1/5

尺寸可能范围从几十纳米到几十微米不等。在等离子体中,这些尘埃粒子凶与电子、 离子碰撞而携带电荷,携带 等离子体问题的研究比较复杂。DXDiTa9E3d 3.尘埃等离子体的特性 (1) .尘埃粒子具有大的荷电特性 由于球形尘埃粒子的半径 a 远小于等离子体的德拜长度 b ,因此尘埃小球具有的 电势将使其上的电子的温度与等离子体中的电子温度同量级,即 e ~kTe ,(k 为玻 尔兹曼常数) 。对应于这个电势,尘埃粒子上的电荷通常有很大的数值,一般尘埃粒 子带有 102—106 电子电荷。“浸”在等离子体中的尘埃粒子会受到屏蔽作用,即由等 离子体中的带电粒子形成尘埃粒子的屏蔽云.RTCrpUDGiT (2).尘埃离子荷电量的可变性 当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度时,可不考虑尘埃粒子间 的相互作用,即孤立地研究单个尘埃粒子。尘埃颗粒所带的电荷是可变的,它由 尘埃粒子本身的特性(前一时刻的带电情况) 和它周围等离子体的性质(如电子离子充 电电流、二次电子发射、光电发射、尘埃粒子的速度等) 有关,同时等离子体中电荷 密度扰动、温度扰动,以及一些外界环境条件的改变都可以改变尘埃粒子的带电情 况。例如有以下几种方式:a 、等离子体中电子、离子的熟运动将形成对尘埃粒子的 充电电流。一个带负电的尘埃粒子,它将排斥电子,吸引离子,引起电子电流减小, 使离子电流增大。b 、当碰撞尘埃粒子的初次电子具有足够大的能量时,可能引起尘 埃粒子的二次电子发射,从而导致尘埃粒子电势升高。C 、在尘埃粒子处于强的紫外 辐射的环境时(如太阳系中的一些情况) ,尘埃粒子可辐射光电子,相当于存在一个正 的充电电流。d 、尘埃粒子表面的化学反应,激光或射频电磁场的作用等都可能影响 尘埃粒子的荷电状况。当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度这个条
2/5

等离子体分析

等离子体物理 姓名: 摘要:本文简要介绍了等离子体的概念,等离子体的发展史,等离子体按焰温度和所处状态的分类,并且例举了在地球上和地球外的常见等离子体,也简单介绍了等离子体在冶炼、喷涂、焊接、刻蚀、隐身和核聚变各个方面的应用。另外,对等离子体的现状做了介绍,对其前景也做了展望。而主要介绍了等离子体物理学的理论,包括粒子轨道理论,磁流体力学和等离子体动力论三个方面,并一一展开详细介绍了这三个理论,最后得出三大理论相互联系的结论。 关键词:等离子体;粒子轨道理论;漂移;等离子体动力论;湍流;孤立子;等离子体中波; 引言: 大家早已熟知物体的固体、液体和气体三态。将固体加热到熔点时,粒子的平均动能超过晶格的结合能,固体会变成液体;将液体加热到沸点时,粒子的动能会超过粒子之间的结合能,液体会变成气体。如果把气体进一步加热,气体则会部分电离或者完全电离,则原子变成离子。如果正离子和负离子数目相等即为等离子体。自20世纪50年代以来,等离子体物理学已发展成为物理学的一个十分活跃的分支。在实验上,已经取得很大的成就。在理论上,利用粒子轨道理论、磁流体力学和动力论已经阐明等离子体的很多性质和运动规律,相信随着人们对等离子体性质研究的不断深入,我们会能够将其应用在更多领域。 一.等离子体概念 从广义上说,等离子体是泛指一些具有足够的能量自由的带电粒子,其运动以受电磁场力作用为主的物质,例如,半导体、电解液都是等离子体。 从狭义上讲,等离子体是普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体【1】。 等离子体又叫做电浆,它广泛存在于宇宙中,常被视为是除去固﹑液﹑气外,物质存在的第四态。 在现有的等离子体理论中,无论磁流体力学方程或动力论方程,

等离子体实验报告

等离子体特性研究 Research on Plasma 【教学基本要求】 1.了解计算机数据采集的基本过程和影响采集精确度的主要因素。 2.掌握气体放电中等离子体的特性与特点。 3.掌握描述等离子体特性的主要参量及各参量的影响因素。 4.理解等离子体诊断的主要方法,重点掌握单探针法。 5.了解等离子体研究实验软件的主要功能,熟练操作软件。 【授课提纲】 1.等离子体物理学科发展史和主要研究领域(1)等离子体物理学科发展简史 ●19世纪30年代起 ●20世纪50年代起 ●20世纪80年代起 (2)等离子体物理主要研究领域 ●低温应用等离子体 ●聚变等离子体 ●空间和天体等离子体 2.认识等离子体 (1)空间等离子体展示 (2)宇宙中90%物质处于等离子体态 (3)等离子体概念 (4)等离子体分类 (5)等离子体是物质第四态 (6)等离子体参数空间 (7)电离气体是一种常见的等离子体 (8)等离子体特性和主要参量 3.等离子体诊断 (1)德拜屏蔽和准中性 (2)等离子体诊断-单探针法

【板书内容】 等离子体特性研究 φφtan 11600tan == k e T e e e kT E 23= e e e m kT v π8= kT m eS I v eS I n e e e π2400= = ()? ????-== =e s p e e kT U U e I Se n e N I exp 41 ? C kT eU I e p += ln e e e e n v E T ,, ,

【实验报告】 等离子体特性研究 【实验目的】 1. 了解气体放电中等离子体的特性。 2. 利用等离子体诊断技术测定等离子体的一些基本参量。 【实验原理】 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性:① 高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。② 带正电的和带负电的粒子密度几乎相等。③ 宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。然而,电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度。 1. 等离子体的主要参量 描述等离子体的主要参量有:① 电子温度T ,它是等离子的一个主要参量,因为在等离子中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关;② 带电粒子密度,电子密度为ne ,正离子密度为ni ,在等离子体中ne ni 。;③ 轴向电场强度EL 。表征为维持等离子体的存在所需的能量;④ 电子平均动能e E ;⑤ 空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率p f 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 2. 稀薄气体产生的辉光放电 辉光放电是气体导电的一种形态。当放电管内的压强保持在Pa 2 10~10时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,分别为阿斯顿区、阴极辉区、阴极暗区、负辉区、法拉第暗区、正辉区(即正辉柱)、阳极暗区、阳极辉区。正辉区是感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多,这是一种非平衡状态。因此,虽然电子温度很高(约为105K ),但放电气体的整体温度并不明显升高,放电管的玻璃壁并不软化。

动物生物化学(1)

动物生物化学复习题 1、天然蛋白质氨基酸的结构要点? 答:在与羧基相连的α-碳原子上都有一个氨基,称为α-氨基酸。α—碳原子不是手性碳原子的是哪个氨基酸? 答:甘氨酸 具有紫外吸收特性的氨基酸有哪些? 答:酪氨酸、色氨酸、苯丙氨酸 吸收波长是多少? 答:280nm 核酸的紫外吸收波长是多少? 答:260nm 2、全酶包括哪几部分? 答:酶蛋白与辅助因子 辅基与辅酶的异同点? 答:与酶蛋白结合梳松,用透析、超滤等方法可将其与酶蛋白分开者称为辅酶;与酶蛋白结合紧密,不能用透析发分离的称为辅基。 正常情况下,大脑获得能量的主要途径是什么? 答:葡萄糖的有氧氧化 糖酵解是在细胞的是在细胞的哪个部位进行的?

答:细胞的胞液中 3、糖异生的概念和意义? 答: 概念:由非糖物质转变为葡萄糖或糖原的过程。 意义:由非糖物质合成糖以保持血糖浓度的相对恒定;有利于乳酸的利用;可协助氨基酸代谢。 生糖氨基酸、丙酮酸、乳酸、乙酰COA哪个不能异生成糖? 答:乙酰COA 4、什么是呼吸链? 答:又称电子传递链,是指底物上的氢原子被脱氢酶激活后经过一系列的中间传递体,最后传递给被激活的氧分子而生成水的全部体系。各种细胞色素在呼吸链中传递电子的顺序? 答:B-C1-C-AA3-O2 两条呼吸链的磷氧比分别是多少? 答:NADH呼吸链:P/O~2.5(接近于3) FADH2呼吸链:P/O~1.5(接近于2) 氰化物中毒是由于抑制了哪种细胞色素? 答:Cytaa3(细胞色素氧化酶) 5、为了使长链脂酰基从胞浆转运到线粒体内进行脂肪酸的β-氧 化,所需要的载体是什么? 答:肉碱

6、氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输?答:谷氨酰胺 参与尿素循环的非蛋白氨基酸有哪几种? 答:瓜氨酸和鸟氨酸 7、RNA 和 DNA 彻底水解后的产物有哪些不同? 答:DNA彻底水解产物:磷酸,脱氧脱氧核糖,鸟嘌呤,腺嘌呤, 胞嘧啶,胸腺嘧啶。 RNA彻底水解产物:磷酸,核糖核酸,鸟嘌呤,腺嘌呤,尿嘧啶,胸腺嘧啶 双链DNA 解链温度的增加,提示其中碱基含量高的是哪几种碱基?答:C和G(胞嘧啶和鸟嘌呤) 8、蛋白质一级结构的概念? 答:蛋白质的一级结构是指多肽链上氨基酸残基的排列顺序,即氨基酸序列。 维系蛋白质一级结构的化学键主要是什么键? 答:肽键 9、蛋白质变性后可出现哪些变化? 答:破坏次级键和二硫键,不改变蛋白质的一级结构。如:溶解度降低,易形成沉淀析出,结晶能力丧失,分子形状改变,酶失去活力,激素蛋白失去原来的生理功能。

直流辉光等离子体系列实验报告-复旦大学物理教学实验中心

直流辉光等离子体系列实验报告 陈金杰合作者张帆指导老师乐永康 (复旦大学物理系上海 200433) 摘要:利用直流辉光等离子体实验装置,获得等离子体。并研究直流低气压放电现象,测量等离子体伏安曲线,测定气体击穿电压验证帕邢定律,利用Langmuir单探针和Langmuir双探针测量等离子体的密度、温度和德拜长度等参数。并就相关现象进行讨论。 关键词:直流辉光等离子体气体放电伏安特性击穿Langmuir探针 引言:关于等离子体 等离子体(Plasma)是一种由大量正、负带电粒子和中性粒子组成的准中性气体,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体(plasma)”一词引入物理学,用来描述气体放电管里的物质形态。严格来说,等离子是具有高位能动能的气体团,等离子的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的的自由电子。等离子体可通过放电、加热、光激励等方法产生,它有以下特点: [1] (1) 电子温度高于离子温度 由于电子和离子的质量差别悬殊,电子更容易从电场中获得能量,因此电子的平均动能远大于离子的平均动能,即电子和离子有各自独立的不同平衡温度。电子温度比离子温度高得多,而离子温度与等离子体中中性粒子温度一样。引入等离子体中的极板也可以保持较低的温度。等离子体高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2) 具有丰富的活性粒子 通过与电子的非弹性碰撞,各种粒子得到活性激发。这些活性粒子具有不同能量,可在固体表面发生各种物理和化学效应。所以需要在很高温度下才能进行的化学反应在等离子体中很容易完成。 (3) 存在等离子体鞘层 在等离子体中引入负(或正) 电极,为屏蔽外电势对等离子体的影响,在电极周围形成正(或负) 电荷层,称为等离子体鞘层。以等离子体电位为零电位,则外加电压完全降落在这一鞘层上。进入这一鞘层的正离子受到加速,得到数值上相当于电势能的动能。调节外加负电压的数值,正

2013 生物化学(乙)

中国科学院大学 2013年招收攻读硕士学位研究生入学统一考试试题 科目名称:生物化学(乙) 考生须知: 1.本试卷满分为150分,全部考试时间总计180分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 一、选择题(共40分,每小题1分) (第1~30小题,请从4个选项中选出1个正确答案;第31~40小题,请从4个选项中选出2个正确答案) 1、天冬氨酸的pK1(-COOH)=2.09,pK2(-NH3+)=9.82,pK3(-R)=3.86,其等电点是 A、(pK1+pK2)/2 B、(pK2+pK3)/2 C、(pK1+pK3)/2 D、(pK1+pK2+pK3)/2 2、对具四级结构的蛋白质进行一级结构分析时 A、有一个自由的α-NH2和一个自由的α-COOH B、只有自由的α-NH2 C、只有自由的α-COOH D、有一个以上自由的α-NH2和α-COOH 3、蛋白质变性在于 A、一级结构被破坏 B、亚基的解聚 C、空间构象的破坏 D、辅基的脱落 4、下列氨基酸中哪些不是蛋白质的组分? A、组氨酸 B、鸟氨酸 C、谷氨酸 D、亮氨酸 5、免疫球蛋白是一种 A、糖蛋白 B、脂蛋白 C、简单蛋白 D、铜蛋白 6、酶制剂纯度的主要指标是 A、蛋白质的浓度 B、酶的总量 C、酶的总活力 D、酶的比活力 7、变构酶一般是一种 A、单体酶 B、寡聚酶 C、多酶复合体 D、米氏酶

8、tRNA在发挥其功能时的两个重要部位是 A、反密码子臂和反密码子环 B、氨基酸臂和D环 C、C环和可变环 D、氨基酸臂和反密码子环 9、哺乳动物细胞核糖体的大亚基沉降系数为 A、30S B、40S C、60S D、70S 10、下列哪个试剂常用于鉴定肽链N端的氨基酸 A、溴化氰 B、尿素 C、苯异硫氰酸酯 D、胰凝乳蛋白酶 11、对DNA片段做物理图谱分析,需要用 A、核酸外切酶 B、DNA连接酶 C、限制性内切酶 D、DNA聚合酶 12、可预防夜盲症的维生素是 A、维生素B B、维生素A C、维生素D D、维生素C 13、下列激素中不是由垂体前叶分泌的是 A、生长激素 B、加压素 C、促黄体生成激素 D、促卵泡激素 14、生理条件下,膜脂大都处于什么状态? A、液态 B、固态 C、液晶相 D、凝胶相 15、胆固醇是 A、苯的衍生物 B、17-酮类胆固醇 C、酸性固醇 D、所有类固醇的前体 16、α-淀粉酶的特征是 A、耐70o C左右高温 B、不耐70o C左右高温 C、在pH为3.3时活化 D、在pH为3.3时活性高 17、酵解过程中的限速酶是 A、醛缩酶 B、磷酸果糖激酶 C、烯醇化酶 D、3-磷酸甘油脱氢酶 18、在动物细胞中,下列物质不能转变为糖的是 A、草酰琥珀酸 B、甘油 C、乙酰辅酶A D、3-磷酸甘油醛 19、氰化物中毒时呼吸链中受抑制的部位存在于

气体放电中等离子体的研究实验报告 南京大学

南京大学物理系实验报告 题目实验2.3 气体放电中等离子体的研究 姓名朱瑛莺 2014年4月4日学号 111120230 一、引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 二、实验目的 1、了解气体放电中等离子体的特性。 2、利用等离子体诊断技术测定等离子体的一些基本参量。 三、实验原理 1、等离子体及其物理特性 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。(2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 2、等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为n e ,正离子密度为n i ,在等离子体中n e ≈n i 。 (3)轴向电场强度E L 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee 。 (5)空间电位分布。 3、稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10-102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。 如图1所示,其中正辉区是我们感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是,由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多。这是一种非平衡状态。因此,虽然电子温度很高(约为105K),但放电气体的整体温

动物生物化学 期末复习资料 超准

生化复习资料 考试: 名:10个(三、四) 选:10个(不含1、6、11、12) 3章重点维生素的载体、作用,嘌呤、嘧啶合成区别,核糖作用,一碳基团载体,ACP,载体蛋白,乙酰辅酶A缩化酶,生物素 填:20空(1、2、8) 简答:3个(1、6、7、8) 简述:3个(9、10、11、12) 血糖来源和去路,葡萄糖6-磷酸的交叉途径 实验与计算:(1、7) 一、名词解释 1、肽键:是一分子氨基酸的羧基与另一分子氨基酸的氨基脱水缩合而成的酰胺键(-CO-NH-),称为肽键。是蛋白质结构中的主要化学键(主键) 2、盐析: 3、酶的活性中心:在一级结构上可能相距甚远,甚至位于不同肽链上的基团,通过肽链的盘绕、折叠而在空间构象上相互靠近,形成的具有一定的构象,直接参与酶促反应的区域。又称酶活性部位 4、米氏常数:是反应最大速度一半时所对应的底物浓度,即当v = 1/2Vm时,Km = S 意义:Km越大,说明E和S之间的亲和力越小,ES复合物越不稳定。米氏常数Km对于酶是特征性的。每一种酶对于它的一种底物只有一个米氏常数。 5、氧化磷酸化:是在电子传递过程中进行偶联磷酸化,又叫做电子传递水平的磷酸化。 6、底物水平磷酸化:是直接由底物分子中的高能键转变成A TP末端高能磷酸键叫做底物水平的磷酸化。 7、呼吸链:线粒体能将代谢物脱下的成对氢原子(2H)通过多种酶和辅酶的链锁反应体系逐步传递,最后与激活的氧结合为水,由于该过程利用氧气与细胞呼吸有关,所以将这一传递体系叫做呼吸链。 8、生物氧化:糖类、脂肪和蛋白质等有机化合物在生物体内经过一系列的氧化分解,生成CO2和水释放能量的总过程叫做生物氧化。 9、葡萄糖异生作用:由非糖前体物质合成葡萄糖的过程。 10、戊糖磷酸通路:指机体某些组织以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程。 11、激素敏感激酶: 12、酮体:脂肪酸在肝脏中氧化分解所生成的乙酰乙酸、β-羟丁酸和丙酮三种中间代谢产物,统称为酮体。 13、饲料蛋白质的互补作用:把原来营养价值较低的不同的蛋白质饲料混合使用,可能提高其营养价值和利用率。 14、氮平衡:是反映动物摄入氮和排除氮之间的关系以衡量机体蛋白质代谢概况的指标。 15、从头合成途径:利用氨基酸等作为原料合成 16、补救合成途径:利用体内游离的碱基或核苷合成

等离子体物理

在强激光等离子体相互作用中正电子束的发射 第一个测量强激光产生正电子束的装置已经制成。在不同的激光产生条件下通过测量不同的正电子能量峰值下的正电子发散和源尺寸得到发射值。对于其中一个激光产生条件,我们使用了一个空间paper-pot 技术来改善发射值。相比于使用在现在加速器上的正电子源,在100和500mm.mard之间激光产生正电子有一个几何发射。在5-20Mev能量范围中,每束 1010-1012个正电子中,这种低的束流发射度是准单能的,这可能在未来加速器中能作为替代正电子源。 最近的实验表明,在FWHM中大约20-40度的发散角下,用强短脉冲激光照射富含高Z的目标靶可以产生数量众多的准单能兆电子伏特的正电子。这个实验表明了可以使用激光产生正电子作为直线加速器中的替代源的可能性。使用激光产生正电子作为新的替代源取决于一些潜在的优势,大大减小的物理尺寸,更少的成本和束流品质的提高比如每个脉冲的粒子数,能量范围,束流发射度。这些优势正是基于激光尾场的电子加速器概念所追求的。 传统的正电子源通常包含高能量的电子束和富含Z的目标靶。例如,SLC使用了一个120 Hz, 30 GeV, 30kW的电子束和一个24mm厚,水冷却式W(90%)-Rh(10%)目标靶来产生正电子。一个两千米长的直线加速器需要产生电子驱动束。在2-20 MeV范围内,大约500mm.mrad的几何发散度下,在加速系统中 可以捕捉到每束5×1010的正电子束。在被放进加速器之前,被收集到的正电子 束要先被加速到 1.2 GeV并且被传送到一个发射制动环中。 用强激光产生正电子的同时会在高Z目标靶中产生相似的电子。用一个持续 的非常短强激光脉冲照射一个1mm厚,直径2mm的金制目标靶,产生1010-1012个 5-20MeV的准单能正电子。既然这是总电子能量其中包含了决定正电子产量的兆电子伏特电子,所以激光的功率会比激光的强度更重要。相同的物理过程在基于正电子源的的加速其中是有优势的。在BH过程中,激光产生热电子制造能产生和原子核相互作用的正负电子对的轫致辐射光子。考虑到对比每个脉冲的粒子数和粒子能量,这篇文章会阐述激光产生正电子束的几何发射度,和与在SLC 中~500mm.mard的比较结果。 几何发散度 ,被定义为,其中x和x'表示在x轴上的 粒子的位置和发散,代表一束中粒子的平均数。发散角的上限,其中和分别是原尺寸和发散角度的平方根。这篇文章说明了四个驱动激光正 电子能量6,12,17,28MeV的发射度上限。我们展示的发散度是通过1-D方法得到的。 考虑到非常小的激光焦点的结合和在20至40度范围内测量正电子束的发散,可能会预期正电子发射度可能小于10mm.mard。然而,实际的源尺寸和激光产生正电子束的发散度比预想的更大,如图1a所示。在激光中产生的热电子通过目标靶传送,所以,在目标靶任意深度中,正电子构成的区域都会比激光中焦点区域大。小部分有足够动能的正电子可以跃出目标靶并且成为有用的作为正电子源。跃出表面的正电子在目标靶背面的横向分布决定了原尺寸大小。源

ICP-AES实验报告

实验目的: (1)掌握电感耦合等离子体原子发射光谱仪的原理与结构; (2)掌握ICP-AES进行微量元素测定的方法; (3)了解标准溶液以及它的保存和使用方法; 实验原理: ICP光源具有环形通道、高温、惰性气氛的特点。因此,ICP-AES具有检出限低,精密度高,线性范围宽、基体效应小等优点,可用于高、中、低含量的70种元素的同时测定。 ICP-AES包括:1.高频发生器2.等离子体炬管3.试样雾化器4.光谱系统ICP-AES的原理:当高频发生器接通电源后,高频电流通过感应线圈产生交变磁场。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成"雪崩"式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES特点:(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性;(2)"趋肤效应",涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。也有效消除自吸现象,线性范围宽(4~5个数量级);(3)ICP中电子密度大,碱金属电离造成的影响小;(4)Ar气体产生的背景干扰小;(5)无电极放电,无电极污染;ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电。 实验仪器: 电感耦合等离子体原子发射光谱仪、计算机 实验步骤: (1)依次打开电源、稳压器开关,预热五分钟,打开冷却循环水、空气压缩机和排风开关,打开氩气钢瓶调节分压表压力为0.6Mpa左右。 (2)开主机。打开显示器,计算机和打印机。 (3)打开iTEVA软件的plasma status对话框,进入点火界面,确认status状态正常(无红色图标),点击开启等离子体键。 (4)点着火使等离子体稳定15-30分钟,并在观察CID温度<-40℃。RF和光室温度稳定。建立分析方法。

相关文档
相关文档 最新文档