文档库 最新最全的文档下载
当前位置:文档库 › 振动分析实例

振动分析实例

振动分析实例
振动分析实例

旋转机械诊断监测管理系统(TDM)在电厂的应用

摘要:介绍了应用旋转机械诊断监测管理系统(TDM)的硬件及软件组成;深入分析了#4汽轮机组9瓦轴振异常的原因,获取包括转速、波德图、频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供数据及专业的图谱,协助机组诊断维护专家深入分析机组运行状态,并成功处理了9瓦的轴振异常。

关键词:应用旋转机械诊断监测管理系统(TDM),组成,异常振动,分析,解决

The Application of the Turbine Diagnosis Management (TDM) on Shanxi Zhangshan Electric Power co., Ltd

Li Gang He Xiao Ming Kou Delin

(The College of Power and Mechanical Engineering Wuhan University Wuhan 430072)

Abstract: Introduce the hardware and software of the Turbine Diagnosis Management (TDM). Analysis the reasons of #9 bearing’s abnormal vibration of unit 4.Receives the characteristic data of the speed, Bode diagram, frequency phase, mult-frequency’s value and phase.Offers the professional data ,charts to the experts. Helps the experts diagnosis deeply the status of the unit 4. And solve the problem successfully.

Key words:Turbine Diagnosis Management (TDM), Composition, abnormal vibration, Analysis, solution

引言

汽轮机轴系监测系统(TSI)可以对汽轮机轴系参数起到基本的监测和安全保护作用,但TSI 缺少对机组振动数据的深入挖掘,使得许多振动方面的问题停留在表面,如在机组冲转、在负荷变化,主、调汽阀门进行切换和单/顺阀切换等工况变化时振动的分析研究。而旋转机械诊断监测管理系统(TDM)则填补了此项功能。它的主要作用在于对机组运行过程中的数据进行深入分析,获取包括转速、振动波形,频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供波德图、频谱图、瀑布图、级联图、轴心轨迹等专业的数据及图谱,协助机组诊断维护专家深入分析机组轴系运行状态,解决机组在实际运行中遇到的问题。

1. TDM 的硬件及软件的组成

漳山电厂采用北京英华达公司生产的EN8001旋转机械振动监测分析故障诊断专家系统EN8001系统是由硬件系统和软件系统组成,硬件系统主要由下位高速智能数据采集、信息处理、信息数据存储管理系统和服务器、上位机工程师站及附件构成,硬件系统采用积木式模块化的结构,配置灵活,上下位硬件系统通过工业以太网络集成。系统软件由三大部分构成:数据采集软件,数据库软件和分析诊断软件构成。数据采集软件负责数据采集,它能自动识别机组的运行状态,如开停机、升降速及正常或异常状态,并根据机组的状态进行数据采集。在稳定运行状态下,数据硬件采集系统以定时方式进行采集,而在升降速状态下则根据转速的变化进行采集。数据库软件负责数据的存储,它由升降速数据库、历史数据库及事件数据库等组成,它根据机组的不同状态把有关数据存到不同的数据库中,以便于后续分析。分析诊断软件主要用于对各种数据进行在线或离线分析,以判断机组的运行状态并能自动给出机组故障原因和处理

1

意见。上位机可以和多个数据采集箱通讯,并可以通过以太网络或互联网WEB服务器,就可以很方便地组成远程监测诊断。如图1所示。

图1:EN8001硬件结构原理图

2. TDM 接收的信号和主要功能

2.1 TDM要从主机DEH系统接受以下的信号:

1).轴振动:汽轮机轴振动的缓冲信号由本特利3500/20模块的后背板的2个25针插头引入EN8001的智能高速数采箱。

2).键相:汽轮机轴系的键相信号由25模块后面的缓冲输出引入EN8001智能高速数采箱。

3).此外机组的偏心、轴位移、胀差、主汽温度、主汽压力、有功功率、无功功率、润滑油压等参数通过4-20MA信号引入EN8001智能高速数采箱。

2.2 系统主要功能

1).实时监测: 以监视图、轴系仿真运动图、棒表、数据表格、曲线等方式实时动态显示所监测的数据和状态;能够自动识别盘车、升降速、定速、带负荷和正常运行等状态。如图2所

示:

2

图2:EN8001主要监测画面

2).趋势分析: 可分析任一个或多个参量相对某个参量的变化趋势,其中横轴和纵轴可任意选定,时间段可任意设定。

3).报警、危急状态的识别和事故追忆(包括动态数据),设有事件数据库,可追忆事故前5分种和事故后10分钟的详细数据。

4).振动分析: 具有强大的振动分析功能,包括

5).时域分析:波形、幅值、轴心轨迹、轴心位置;相关趋势分析(振动特性值与过程量之间的关系曲线);轴系仿真图(形象直观显示各轴承之间的动态轨迹);

6).频域分析:频谱、相位、瀑布图(包含波形和相位); 频谱靶图、矢量靶图;

7).变速过程;伯德图、极座标图、级联图。

8).故障诊断可诊断的故障有不平衡、初始弯曲、对中度不好、轴瓦不稳定、油膜振荡、汽流激振、电磁激振、参数激振、摩擦、

轴承座松动、共振和高次谐波共振;系统要有故障诊断知识库,允许用户添加、修改各种规则。

9).动平衡计算: 具有多种平衡计算方法; 具有多平面、多测点、多转速计算方法。

10).时序分析: 对重要开关量严格区分动作先后时序,分辨率为小于1ms。

11).事件列表: 记录每一事件的详细资料

12).数据管理和传输自动存储数据,形成历史数据库、升降速数据库、黑匣子数据库等;实时显示数据存储状态,异常时要提示用户;各种类型的数据库可以有选择的进行备份,并提供备份手段;

13).报表打印: 可定时打印运行报表、自动打印操作记录、屏幕拷贝等。

14).完善的帮助系统齐全的系统操作说明;提供典型的故障案例,故障图谱的实例讲解。

3

15).具备远程通讯及管理,提供振动咨询。

16).提供与SIS和DCS的网络的通讯接口,并遵从SIS和DCS网络供货商对于数据通讯软件、硬件的要求,负责与SIS和DCS网络供货商配合,最终保证两个系统无缝连接。

17).能灵活地进行通道、数据存储等配置,并能实时在线配置,且不影响数据采集,每一个通道能自动适应(位移、速度、加速度传感器)各种信号类型;允许设置不同管理权限的用户;自动生成系统日志。

3.漳山电厂#4机组9瓦振动的问题

漳山电厂的二期工程2×600MW汽轮机为上海汽轮机有限公司制造的亚临界、一次中间再热、反动式、单轴、三缸四排汽、直接空冷

凝汽式汽轮机。型号为:N600-16.7/538/538。

汽轮发电机组为室内纵向顺列布置,机头朝向固定端,汽机房运转层标高为13.7m。高中、低+低均为双层缸壳体,高中压部分采用合缸结构,低压部分采用双流反向结构。有七级非调整抽汽。共有9个支持轴承(包括发电机),一个推力轴承,两个双流环形密封瓦(发电机),汽轮机三个转子同发电机转子由刚性联轴器联接成一个刚性轴系,总长为40m. 其中,发电机的机端、励端轴承和滑环碳刷处的轴承分别为#7、#8和9轴承。

3.1#4机组9瓦异常振动情况

2008年4月25日,4#机组首次冲转,在定速3000RPM后#9瓦X方向轴振最大70μm,20分钟后上升至90μm,2小时后最大升至142μm,复合轴振最大达138μm。如图3、图4所示。

4

图3:#4汽轮机首次冲转后9瓦轴振的表现

5

图4:#4汽轮机9Y方向的轴振频谱图(未处理前)

3.2#4机组9瓦异常轴振的初步分析、处理及处理后轴振的表现

6

从图3、图4分析认为:#4汽轮机在转速稳定的情况下,其它轴承处的轴振保持稳定并在优良范围内。只有#9瓦的轴振定速后爬升到138μm。从图4的9瓦频谱图可以看出:其振动分量存在一倍频分量、二倍频分量和高倍频分量。并且9瓦处的轴相对细长,处于发电机末端,用以支承滑环。碳刷、密封瓦及电磁激振其振动有额外的影响作用。所以为减少振动,经讨论后作出以下决定:

1).垫高9瓦轴承的高度,以增加轴承的对轴的支持力,克服碳刷对其的影响;

2).不间断检查发电机台板联系螺栓膨胀情况及个别碳刷磨损情况;

3).利用停机机会检查9瓦的紧力、滑环短轴的中心偏差、联轴器下张角和瓦顶间隙等安装参数;

4).检查滑环处配重块的坚固情况;

5).检查发电机密封瓦的磨损、定位情况。

6).将9瓦自由端测速盘取掉

4月26日10:54电气试验结束后机组打闸,在盘车状态下在#9瓦轴承座底部增加0.10mm的不锈钢垫片。14:20冲转,定速后#

9瓦Y方向最大仍达110μm,9瓦瓦温由58℃升至59.4℃。试将碳刷全部拨出后#9瓦Y轴振很快降至70μm左右,如图5所示。#4汽

轮机在汽门严密性试验结束后停机。

7

8

图5:拆除滑环上碳刷前后#4机9X的轴振瀑布图

4月27日在盘车状态下将9瓦轴承座下原加0.10mm的垫片取出,换加0.25mm的钢垫,并同时检查了9瓦紧力、瓦顶间隙,均在要

求范围内,并将9瓦自由端测速盘取掉,并检查滑环轴配重块并无松动。13:17机组重新定速为3000RPM,#9瓦瓦温为60.3℃左右,9

瓦的轴振虽然在优良范围之内,但是其轴振在76-85μm之间不正常波动。

在#4机组试运至168期间,不间断地检查发电机台板联系螺栓膨胀情况及个别碳刷磨损情况,#9瓦Y方向轴振维持在65μm以下稳定运行。在整个过程中#9瓦就地测量各个方向的瓦振均很小,最大为10μm。

3.3#4机组9瓦异常轴振的再次分析、处理和问题的解决。

6月10日3:33左右9瓦X向、Y向及复合轴振均缓慢爬升,至6月21日, 9瓦Y方向增至140μm,复合轴振最大增至160μm。邀请发电机厂振动专家到场协助分析处理。6月21日12:00左右,将发电机氢侧密封油温由40℃快速升至50℃后又稳至42℃,将空侧密封油温由37℃快速升至48℃后又稳至43℃,复合轴振由160μm快速降至100μm,至14时30分,稳定在73μm左右。在整个过程中各个方向的瓦振均很小,与168前一致。以后为能维持9瓦的振动在可接受范围之内,发电机的密封瓦供油温度均保持在50~58℃之间运行。但其轴振仍在72-140μm之间波动。如图6所示。

9

图6:9瓦轴振随密封油温度变化图

10

图7:#4汽轮机9Y方向的轴振频谱图(加垫片后)

经分析认为,在对9瓦的轴承加高垫片以后,相对于加强了轴承对轴的紧力,固定了轴的振动,初期达到效果,但其轴振的波动是分析的疑点。并且振动的根源并未消除,是“治标不治本的”权宜之计。经过去四十几天的运行以后,轴振再次增大,并呈以下特征:

11

1).与密封油温关系密切,提高密封油温,振动明显下降,幅值达100μm以上,甚至可降至优良范围以内。但随着机组启停次数的增多,起初提高油温至50℃时振动便明显下降,后来发展至提高至55℃以上时振动才明显下降。振动对油温的敏感性变弱,但仍起主导因素。

2).9瓦的临界转速越来越接近工作转速,由起初的2640r/min变为2800r/min左右,且临界转速下的振动也越来越大,最大至220μm。

3).快速升负荷时,9瓦振动有突升现象,复合轴振最大升至180μm左右。

4).起初9X方向轴振动变化不大,且较小,9Y方向及复合轴振较大;后来9X方向轴振较大,最大至105μm,但9Y方向及复合轴振很小,甚至达优良。即轴振的相位反复无常,从图7可以看出其振动的频率主要有:一倍频分量、二倍频分量及高倍频分量。

提高密封油的温度,即减少密封油的粘度后,9瓦轴振快速降低,说明密封瓦的工作情况变化后,对其轴振有较大的影响。但在工况变化时,其轴振又呈现不稳定的快速变化。相位也有波动,甚至超出报警值;并且9瓦的轴振表现为不稳定,具体体现为临界转速的变化和轴振方向的波动等现象。分析认为:

1).密封瓦存在一定的问题,影响了处于发电机末端的9瓦的轴振,待停机后对密封瓦进行检查,

2).由于机组在低速600RPM时,9瓦处的轴振为32μm,趋于初弯值,即转子的初弯曲变不大,同时从频谱图可以看出,9

瓦处的一倍频为:30μm。同时存在二倍频:50μm及高倍频。所以滑环短轴存在质量不平衡的可能性不大。

3).虽然碳刷拔出后,对其振动的影响很大.但经过长时间的磨合,和对碳刷、碳刷架和滑环的检查,其工作正常,对振动的影响在正常范围内,不是主要因素。

4).要利用检修机会检查轴和轴承的安装参数,以最终确定振动大的原因。

8月1日,#4机组停机检修。对#9轴承、发电机密封瓦、滑环短轴的联轴器进行了详细的检查,检查发现以下问题:

1).轴瓦与轴承座之间设计紧力为0-0.05mm,安装时为0.06mm,现测量为间隙0.35mm,且轴瓦定位防转销有明显磨损痕迹,表明轴瓦基本已不受轴承座的固定作用,在轴承座内确有运动。进一步检查发现A列侧下瓦枕绝缘垫片与瓦枕之间有0.65mm的间隙,其瓦枕螺栓用手即可拧动,其它瓦枕螺栓也有松动现象。如图8所示:

12

#轴承简图

列侧列侧

瓦温测点

此处发现间隙0.65

图8:9瓦轴承故障简图

2).轴颈晃度要求为≤0.05mm,安装时为0.01mm,现测量悬空时为0.06mm,吊起复位为0.15mm。晃度超标。

3).联轴器接合面中心:要求为下张口0.10-0.12mm,安装时为0.105mm,现为上张口0.02mm,向B列张口0.02mm,滑环轴偏A列0.10mm,低0.05mm。联轴器无下张口,无预紧力。

4).密封瓦:检查发现空侧密封瓦有明亮磨擦黑印,但不严重,氢侧密封瓦正常。

5).检查了滑环轴配重块,共5块,均没有移位现象。

6).8瓦油封环正常,没有卡涩现象,径向及轴向间隙均正常。

针对上述情况,对汽轮机组进行了检修,调整结果如下:

1).9瓦A列侧下瓦枕加0.60mm的垫片,B列侧下瓦枕加0.30mm的垫片,B列侧上瓦枕加0.10mm的垫片,并将下瓦枕及进油口绝缘垫圈与瓦座进行研刮,测量紧力为0.05mm。

2).将轴系重找中心,下张口为0.09mm,左右张口及中心均控制在±0.02mm之内,滑环轴与台板水平差为0.03mm。

3).对轮螺栓力矩为1700-1850N.m,调晃度时将轴瓦下瓦翻出,再用钢丝绳将转子抬起,将其复位,在此状态下将晃度调整为0.03mm。

4).将空侧密封瓦明亮磨擦黑印进行轻微修刮,并用金相砂纸进行打磨后回装。

4.漳山电厂#4机组9瓦振动的问题分析及解决

结合TDM提供的图谱工具分析研究后,对#9轴承、滑环短轴、发电机密封瓦等进行了检修,发现了#9轴承的瓦枕存在问题,其瓦枕螺栓松动,导致瓦枕下沉,9瓦处轴没有紧固作用,轴瓦定位销磨损。从振动上表现为轴振振幅呈波动状态,相位也发生变化;轴振振

13

幅、相位在受到如升降负荷、改变励磁电流、改变密封油温和拔除碳刷等干扰后变化敏感,在扰动结束后又趋于稳定;一倍频振幅值不大,但二倍频、三倍频、四倍频和高倍频振幅并存;经过检修机组重新启动后,9瓦过临界(约2890r/min)时轴振为81μm,复合振动为99μm,定速3000RPM后9X方向为38μm,9Y方向为52μm,复合轴振为64μm,当时密封油温均小于40℃;带负荷400MW后轴振稳定在:9X为45μm,9Y为56μm,复合轴振为65μm,均达到优良。问题得到圆满解决。

5.结论

旋转机械诊断监测管理系统(TDM)是一门快速发展的交叉学科。它集力学、结构强度摩擦学、测试技术、计算机技术信号处理、模式识别、人工智能、决策科学、信息科学等众多现代科学技术于一体,成为既注重理论研究又重视实际应用的现代工程学科,并逐步形成一个体系完整理论严谨的新学科。

它目前的主要研究热点领域有从产生故障的原因、故障形成过程和表现层次上研究故障的机理。继续研究和探索新的诊断理论和方法,在现有的诊断理论和诊断方法的基础上研究基于多传感器多技术方法和多信息融合的综合诊断方法,对于视情和预测维修的故障处理和决策方法,具有重大工程意义。

参考文献:

[1] EN8001振动监测分析专家系统使用说明书北京英华达电力电子工程科技有限公司 2004.6

[2] 闻邦椿,刘树英,张纯宇。机械振动学。冶金工业出版社,2006.9

[3] 沈士一庄贺庆康松庞立云汽轮机原理水利电力出版社,1992,6

14

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

振动分析

振动分析 常见故障类型及频谱 一、常见的故障主要包括以下几类: 1)共振2)不平衡3)不对中4)轴弯曲 5)机械松动6)电动机问题7)滑动轴承问题 8)滚动轴承问题9)齿轮问题10)皮带问题11)风机问题12)泵的问题 二、频谱 1、共振 1.1 判断依据: 共振是旋转机械常见的问题。旋转部件如转轴的共振通常叫做临界转速。共振存在于一个结构的所有部件,甚至在管路和水泥地板等,重要的是要避免机器运行在导致共振的频率上。识别共振的简单方法是比较同一轴承三个方向水平、垂直和轴向的振动值,如果某一方向的振动大于其它方向的振动三倍以上,机器则可能在该方向存在共振。 1.2 频谱现象: 1.3 解决方法: 在可能的条件下改变机器的转速,常用的解决方法是改变机器结构的质量或刚度。 2、不平衡 2.1 判断依据: 当旋转部件的重心与旋转中心不一致,即质量偏心时产生不平衡。不平衡的转子产生离心力使轴承损坏,导致轴承寿命降低。仅仅百分之几毫米的重心位移可引起非常大的推动力。不平衡引起明显的转频振动。 2.2 频谱现象:

2.3 解决方法: 找动平衡 3、不对中 3.1 判断依据: 不对中是指两个耦合的轴的中心线不重合,如果州中心线平行称为平行不对中,如果轴中心线在一点相交则称为角不对中,现实中的不对中是两种类型的结合。 3.2 频谱现象: 4、轴弯曲 4.1 判断依据: 轴弯曲引起的振动类似不对中,轴弯曲可能是电动机转子笼条故障引起的转子受热不均导致的。如果弯曲发生在轴中心位置,主导振动是1 x RPM,如果弯曲发生在接近、连轴器,主导振动频率会是2 x RPM。 4.2 频谱现象: 5、机械松动 5.1 判断依据: 有两种机械松动,旋转和非旋转,旋转松动指在机器旋转和固定部件间存在太大的空间;非旋转松动指两个固定部件之间间隙太大。二者都在三个测量方向产生过大的1x RPM 谐频振动。 5.2 频谱现象:

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

3.1需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取 代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴 露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

大机组振动原因分析与处理

大机组振动原因分析与处理 摘要简述了引起大型机组振动的几种原因,并对部分原因以现场实际工作经验为例进行了剖析,附以解决方案,对从事该类型工作的设备管理人员解决现场振动问题,具有一定的借鉴意义。 关键词大型机组;振动;轴承;底脚 1 引言 大型压缩机组因其单位效率高,在石油化工行业被越来越多的用户使用,而且朝着大型化,模块化的趋势发展。与此同时,因化工行业连续生产的特殊性,大型机组必须满足长周期、安全、稳定运行的条件。保证大型机组安全稳定的首要条件则是对大型机组的运行状态进行跟踪监控,并实时做好记录,分析机组的状态是否正常,以此来判断机组是否能够继续运行或者确定机组的检修时间等。其中,机组状态检测中首要跟踪的参数便是机组的振动、温度等,很多情况下,振动与温度是有关联的。因此,在测得振动参数后,对比温度参数需要进行深入的分析才能准确判断出原因。 大型机组的振动问题是比较复杂的一个课题,涉及到许多方面。比如,转子动静平衡不好,联轴器不对中,地脚螺栓存在虚脚,轴承间隙不合适,管线应力等其它非机组本身的附加振动源等。一个机组振动超标后,首先要找出振动源,并分析排除可能的情况。有些时候引起振动的原因并不是唯一的,可能存在多项引起振动的原因,这个时候判断问题就比较困难一些,但是只要我们仔细排查,便能最终找到问题所在。 2 引起振动的几种原因 现以某厂5台大型制冷压缩机组为例简要分析一下振动产生的原因以及在现场实际排查的过程和最终解决方案。该厂有汽轮机驱动的离心式制冷压缩机1台,6000V高压电机驱动的喷油双螺杆压缩机4台。这些制冷压缩机组为聚合反应提供冷媒,鉴于生产的连续性,这五台机组必须同时保持高效稳定的运行。监测振动对跟踪与分析机组的运行状态至关重要。振动分为三个方向的振动,水平,垂直,轴向。这三个方向的振动分别能反应机组的不同状态。水平方向振动大,一般反应的是机组转子不平衡或者是联轴器对中不好。垂直振动大则一般反应机组有虚脚,找正不好。轴向振动大从通俗的解释上是存在较大的轴向波动力,如果是压缩机轴向振动大,则可能是由于平衡组件存在问

风机振动原因分析(终审稿)

风机振动原因分析 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

1轴承座振动1.1转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。

1.3.2滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交

振动分析实例

旋转机械诊断监测管理系统(TDM)在电厂的应用 摘要:介绍了应用旋转机械诊断监测管理系统(TDM)的硬件及软件组成;深入分析了#4汽轮机组9瓦轴振异常的原因,获取包括转速、波德图、频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供数据及专业的图谱,协助机组诊断维护专家深入分析机组运行状态,并成功处理了9瓦的轴振异常。 关键词:应用旋转机械诊断监测管理系统(TDM),组成,异常振动,分析,解决 The Application of the Turbine Diagnosis Management (TDM) on Shanxi Zhangshan Electric Power co., Ltd Li Gang He Xiao Ming Kou Delin (The College of Power and Mechanical Engineering Wuhan University Wuhan 430072) Abstract: Introduce the hardware and software of the Turbine Diagnosis Management (TDM). Analysis the reasons of #9 bearing’s abnormal vibration of unit 4.Receives the characteristic data of the speed, Bode diagram, frequency phase, mult-frequency’s value and phase.Offers the professional data ,charts to the experts. Helps the experts diagnosis deeply the status of the unit 4. And solve the problem successfully. Key words:Turbine Diagnosis Management (TDM), Composition, abnormal vibration, Analysis, solution 引言 汽轮机轴系监测系统(TSI)可以对汽轮机轴系参数起到基本的监测和安全保护作用,但TSI 缺少对机组振动数据的深入挖掘,使得许多振动方面的问题停留在表面,如在机组冲转、在负荷变化,主、调汽阀门进行切换和单/顺阀切换等工况变化时振动的分析研究。而旋转机械诊断监测管理系统(TDM)则填补了此项功能。它的主要作用在于对机组运行过程中的数据进行深入分析,获取包括转速、振动波形,频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供波德图、频谱图、瀑布图、级联图、轴心轨迹等专业的数据及图谱,协助机组诊断维护专家深入分析机组轴系运行状态,解决机组在实际运行中遇到的问题。 1. TDM 的硬件及软件的组成 漳山电厂采用北京英华达公司生产的EN8001旋转机械振动监测分析故障诊断专家系统EN8001系统是由硬件系统和软件系统组成,硬件系统主要由下位高速智能数据采集、信息处理、信息数据存储管理系统和服务器、上位机工程师站及附件构成,硬件系统采用积木式模块化的结构,配置灵活,上下位硬件系统通过工业以太网络集成。系统软件由三大部分构成:数据采集软件,数据库软件和分析诊断软件构成。数据采集软件负责数据采集,它能自动识别机组的运行状态,如开停机、升降速及正常或异常状态,并根据机组的状态进行数据采集。在稳定运行状态下,数据硬件采集系统以定时方式进行采集,而在升降速状态下则根据转速的变化进行采集。数据库软件负责数据的存储,它由升降速数据库、历史数据库及事件数据库等组成,它根据机组的不同状态把有关数据存到不同的数据库中,以便于后续分析。分析诊断软件主要用于对各种数据进行在线或离线分析,以判断机组的运行状态并能自动给出机组故障原因和处理 1

设备振动故障在线检测技术案例分析

设备振动故障在线检测 振动分析过程涉及到确定振动严重程度,辨别频率和特征、不同峰值和特征对应的机械和电气部件,形成分析结论,如果有必要,提供维修建议。 干这行的都知道,分析振动不是简单的,也不能自动化。你没有想过为什么?这里有几个原因: 1)设备有很多故障:现实中设备的振动故障模式与我们在培训和书本中学到的大不相同。我们学到的机械和电气故障都是最纯粹的形式-好像设备总是1个故障导致振动。设备通常会有多个故障源导致振动。至少,所有设备都有一些不平衡和不对中。当其它故障发展时,时间波形就会变的复杂,难以分析。振动数据不再和我们学到的故障模式匹配。 2) 振动因果效应:对于每一个动作,都有一个反应。我们测量的一些振动,是其它故障的影响。例如,造成转子不平衡的力可能看起来像不对中,松动或摩擦。当你车子的轮胎不平衡时,车子在行驶时就会振动和摇晃。 3) 很多故障有类似的振动故障模式:由于设备转子以一定的转速运动,振动是周期性的力产生的。很多机械和电气有相似的频率特征,使得很难区分不同故障。

学习振动分析需要一定的时间。参加培训、阅读技术资料和专业书籍、浏览在线资源、会提高振动分析技能和缩短学习曲线。 有一个诊断技术会快速的找到大多数振动故障的根源。它可能是所有振动诊断技术中最强大的。它随同振动分析一直存在,只是没有得到更多的关注,很难找到这方面的信息。这个技术是什么?它就是相位分析。 什么是相位? 相位就是转动部件参考一个固定位置得到的瞬时位置信息。相位告诉我们振动的方向。相位研究就是收集设备和结构的相位数据和评估,揭示部件之间相对运动的信息。振动分析中,相位分为:绝对相位和相对相位。 绝对相位使用一个传感器和光电传感器。每个测点,振动分析仪计算光电触发点和振动波形中下一个正峰之间的时间。时间差转换成角度,显示为绝对相位。相位能以转轴频率或转轴谐频(同步频率)进行测量。转子动平衡时需要绝对相位。

频谱分析

频谱是频率谱密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。频谱广泛应用于声学、光学和无线电技术等方面。频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。把复杂的机械振动分解成的频谱称为机械振动谱,把声振动分解成的频谱称为声谱,把光振动分解成的频谱称为光谱,把电磁振动分解成的频谱称为电磁波谱,一般常把光谱包括在电磁波谱的范围之内。分析各种振动的频谱就能了解该复杂振动的许多基本性质,因此频谱分析已经成为分析各种复杂振动的一项基本方法 使用情况 频谱,又称振动谱[1] 。反映振动现象最基本的物理量就是频率,简单周期振动只有一个频率。复杂运动不能用一个频率描写它的运动情况,如下图1、图2中左图所示,而且我们也无法从振动图形上定量描写它们的特点,通常采用频谱来描写一个复杂的振动情况。任何复杂的振动都可以分解为许多不同振幅不同频率的简谐振动之和。为了分析实际振动的性质,将分振动振幅按其频率的大小排列而成的图象称为该复杂振动的频谱。振动谱中,横坐标表示分振动的圆频率,纵坐标则表示分振动振幅。对周期性复杂振动,其频率为f,则按照傅里叶定理,由它所分解的各简谐振动的频率是f的整数倍,即为f,2f,3f,4f,…,其振动谱是分立的线状谱,图中每一条线称为谱线。对于非周期性振动(如阻尼振动或短促的冲击),按照傅里叶积分,它可以分解为频率连续分布的无限多个简谐振动之和。由于谱线变得无限多,这时振动谱不再是分立的线状谱,各谱线密集使其顶端形成一条连续曲线,即形成所谓的连续谱,连续谱曲线即为各种谱线的包络线;而它也有可能分解为频率不可通约的许多简谐振动而形成分立谱。[1] 频谱利用率

倍频振动增大的原因分析修订稿

倍频振动增大的原因分 析 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一倍频振动增大的原因分析 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴间振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。 4.外力作用下(旋转)产生的共振 各个零部件、结构件在外力作用下所产生的固有共振为自激振动,其频率与不同的结构对应,即刚度不同引起的不同共振。 频谱特征为时域波形为正弦波,振动频率以一倍频为主。 二、相关一倍频信号 1.转子永久弯曲 振动类似于动不平衡和不对中,以一倍转频为主,也会产生二倍转频振动;振动随转速增加很快;通常振幅稳定,轴向振动较大,两支承处相位相差180度。 2.转子存在裂纹使挠度增大 转子系统的转轴上出现横向疲劳裂纹,可能引发断轴事故,危害很大。及时确定裂纹防止突然断裂的灾难性事故。转轴裂纹常用的诊断方法是监测机器开停机过程中通过“半临界转速”的振幅变化,以及监测转子运行中振幅和相位的变化。 转轴的横向疲劳裂纹为半月状的弧形裂纹,由于裂纹区所受的应力状态不同,转轴的横向裂纹呈现张开、闭合、时张时闭三种情况。当裂纹区转轴总受拉应力时,裂纹处于张开或

ams振动分析实例中文版

a m s振动分析实例中文 版 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

典型振动频谱图范例

典型振动频谱图范例(经典中的经典!) 频谱图(Spectrum)依照物理学,旋转中物体的振动,是呈现正弦波形。在转动机械上所量测到的振动波形,是许多零件的综合振动。利用数学方法,可以将合成振动,利用数学方法(傅立叶转换,Fourier Transform)分解成不同零件各自的正弦波形振动。 如上图中,(a)为由机械所量测之总振动,可以分解成不同转速频率的振动(b)。 (b)图中的正弦波,由右侧方向观察,其端视图为(c),亦即所谓的频谱图(Spectrum)。频谱图的横轴为代表转速的频率,纵轴表振动量。若在机械主轴转速的频率出现高峰图形,表示转轴发生大的振动量。若在倍数於主轴转速处出现高峰,而其倍数为叶轮数,代表叶轮为振动来源。若在频率极高区域出现高峰,则一般为轴承发生

问题。 ? ? ?? ?? ?? ??频谱分析利用频谱图中频率分布特性,可以判断机器之振源。常见频谱图形如下表摘要说明: ?? 问题频谱??&??相位摘要说明 转子不平衡,分为两轴承间、两轴承外~ ?? 两轴承间不平衡,细分为三种: 1.静不平衡Static Unblance 振动频率为 1倍转速(1×RPM)。 径向振动大,轴向小。两轴承径向呈同相(In Phase)运动,两相角相差0°,同轴承垂直与水平相位差90°。

2.偶不平衡Couple Unblance 径向振动大,轴向有可能大。 振动频率为 1倍转速(1×RPM)。 两轴承径向呈反相(Out of Phase)运动,两相角相差180°,同轴承垂直与水平相位差90°。 3.动不平衡同上径向振动大,轴向有可能大。 振动频率为 1倍转速(1×RPM)。 两轴承径向呈不同相运动。 两轴承 外不平衡 ? ? ?? ??Overh 轴向及径向振动大。振动频率为 1倍转速(1×RPM)。 两轴承径向呈同相(In Phase)运动,

大型球磨机振动原因分析及实例

大型开式齿轮传动球磨机振动原因分析及实例 焦玉勤李治彦 (华能德州电厂,253024) 摘要:大型球磨机小齿轮轴承常常发生水平、垂直振动超标而发生设备损坏等情况,正确分析查找小齿轮振动的机理是关乎小齿轮使用可靠性的关键。开式齿轮传动由于采用与压力角相近的安装角,因此使小齿轮主要受力方向为垂直向,鉴于小齿轮4~6mm的渗碳热处理层的厚度,在小齿轮磨损10%左右后应及时更换受力面。 关键词:球磨机布置角重合度系数干摩擦磁粉探伤失效判据 一、序言 大型球磨机因结构简单,制造与安装精度要求低,制造费用也相对低廉,对工作介质的适应范围广而受到大量应用,尤其在矿山、水泥、燃煤火电行业得到广泛应用。但由于开式齿轮传动受安装、环境、载荷状况、润滑等各方面的影响,常常发生水平、垂直振动超标而发生设备损坏等情况,因此正确分析查找震源,对于解决球磨机振动问题具有根本性的现实意义。 二、开式齿轮球磨机振动问题概要 1、开式齿轮传动的安装、转向要求 球磨机的小齿轮的布置角ψ常为20°左右,相当于齿轮压力角,这时小齿轮的正压力的方向垂直向上,使传动轴承受垂直向下的压力,对小齿轮轴承的联接螺栓和地脚螺栓的工作有利,运转平稳。由于正压力垂直向上,减小了磨机传动端主轴承(轴瓦)的受力,使该主轴承乌金瓦的磨损减小。同时减小磨机横向占地面积,可使传动轴承与磨机主轴承的基础在同一平面上,便于更换小齿轮。若球磨机转向与图示方向相反,会造成地脚联接螺栓松脱和折断。 图1 2、振动原因概要 所谓振动,广义的讲是指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化,产生振动的原因主要是由于外界对系统的激励和作用。齿轮副振动产生的根本

ANSYS谐响应分析实例-振动电机轴分析

AnsysWorkBench11.0振动电机轴谐响应分析 最小网站长:kingstudio 最小网Ansys 教程频道为您打造最 IN 的教程 https://www.wendangku.net/doc/4914521908.html,/ 1.谐响应分析简介 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。谐响应分析是 用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。 分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲 线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。 该技术只 计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。(见图1)。谐响应分析 使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共 振、疲劳,及其它受迫振动引起的有害效果。 谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题。谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。谐响应分析的定义与应用介绍: https://www.wendangku.net/doc/4914521908.html,/ArticleContent.asp?ID=785 2. 工程背景 在长距离振动输送机、概率振动筛等变载荷振动机械中,由于载荷的变化幅度较大,且多为冲击或交变载荷, 使得作为动力源与振动源的振动电机寿命大为缩短, 其中振动电机阶梯轴的弹塑性变形又会中速振动电机的失效, 故研究振动电机轴的谐响应, 进而合理设计 其尺寸与结构,是角决振动电机在此类场合过早失效的主要途径之一。 现以某型振动电机阶梯轴为分对象,振动电机属于将动帮源与振动源合为一体的电动施转式激振源,在振动电机轴两端分别装有两个偏心块,工作时电机轴还动两偏心块作顺转 无能无力产生周期性激振力 t sin F F 1ω=,其中为施加载荷,由些电机轴受到偏心块施加 的变载荷冲击,极易产生变形和疲劳损坏, 更严重者,当激振力的频率与阶梯轴的固有频率 相等时,就会发生共振,造成电机严重破坏,故对电机进行谐应力分析很必要。 1F 3.分析关键 1.谐响应分析的载荷描述方式 概据定义,谐响应分析假定所施加的所有载荷随时间简谐(正弦)规律变化。指定一个完整的简谐载荷需要输入 3条信息:amplitude (幅值),phase angle (相位角)和 forcing frequency range (强制频率范围)。 Amplitude (幅值)指载荷的最大值。 phase angle (相位角)指载荷滞后(或领先)于 参考时间的量度。在复平面上,相位角是以实轴为起始的角度, 当同是要定义多个相互间存

振动大实例与原因分析

振动大实例与原因分析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1倍频振动大除了动平衡还应检查什么 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。 4.外力作用下(旋转)产生的共振 各个零部件、结构件在外力作用下所产生的固有共振为自激振动,其频率与不同的结构对应,即刚度不同引起的不同共振。频谱特征为时域波形为正弦波,振动频率以一倍频为主。 二、相关一倍频信号 1.转子永久弯曲 振动类似于动不平衡和不对中,以一倍转频为主,也会产生二倍转频振动;振动随转速增加很快;通常振幅稳定,轴向振动较大,两支承处相位相差180度。 2.转子存在裂纹使挠度增大

电机振动大原因分析

进行电磁或机械的原因判定。 在生产中采用断电法来检查区分是由于电磁还是机械原因引起的振动。将电动机运转至最高转速后突然切断电源,若此时的振动比之前测得的值小,则可判定是由于电磁原因引起的。若此时的振动值与之前测得的相差不多,则可能是机械方面原因引起的。 1、电磁原因造成振动值超标的处理方法 (1)用试灯检查绕组接地故障,接地处重新进行绝缘处理。用万用表测量定子三相绕组的电阻值,如果不平衡则有开焊现象;观察绕组绝缘表面是否有烧焦痕迹,若有则说明定子绕组的匝间有短路。应重绕绕组或更换部分绕组元件。 (2)再从电源入手开始检查,用钳形电流表测量三相电流是否平衡,若电流不平衡且指针摆动,此时立即停止电动机运行,切断电源,将电动机解体抽出转子,检查鼠笼转子是否有松动或断笼缺陷;若笼条松动先清洗转子铁心后烘干,用扁铲将转子槽内笼条顶端挤压墩粗,使笼条与铁心槽接触牢靠,用环氧树脂将笼条与槽壁粘牢。若焊缝开焊则首先矫正边形的笼条,将开焊和甩开的笼条整形后嵌入端环槽内,注意笼条与端环间隙要均匀,然后进行焊接,焊接时要将转子立放,对称焊接,防止端环严重变形,焊好后将端环表面铣平。 (3)采用四点法检查电动机转子气隙,测量垂直和水平4个位置的气隙,测四组16个数据取平均值。通过改变基础垫片厚度来改变气隙大小,调整顺序为先上下后左右。凡是大中修过或更换轴承后的高压电机必须测量定转子气隙,并做好记录,其误差值应小于百分之五。 2、机械原因造成振动超标的处理方法 (1)查看电动机安装地脚是否牢固,松动则紧固地脚螺栓。基础台面若倾斜、不平或刚性不足,则进行平整或更换,加固基础。 (2)检查联轴器的加工、装配,必要时将联轴器解开,检查每个转子的平衡状态,从而采取相应的措施,例如更换联轴器或转子重新平衡等,联轴器间保证3mm—5mm间隙。(3)由于定、转子铁芯磁中心不一致产生的振动,对一般中小型电机可通过调整轴承的位置---轴档车深(可车削去1mm—2mm)或加垫圈进行消除;对于有单独轴承座的大型电机,可通过调整定子的轴向位置加以解决。 (4)如果轴弯曲变形超过标准(>0.05mm)引起振动,需进行直轴处理—堆焊或者采用刷镀修复。在选用轴承时认真检查轴承质量。 (5)检查电动机轴承内圈与轴档及外圈与端盖配合是否松动,其松紧程度要符合要求。检查轴承润滑脂的干稠程度,过稀导致干磨擦,过稠振动阻尼效果差,都应更换润滑脂。 (6)将电动机解体后,如果发现一侧的轴承游隙过大,则说明轴承在长时间运行过程中有一定的磨损,应对相应的轴承进行更换。更换时一般采用热装,对新轴承进行加热,温度不应超过100摄氏度且加热均匀,然后将轴承装在指定位置待冷却后在加相应的润滑脂,重新装配。

随机振动分析实例

ANSYS 动力分析(18) - 随机振动分析- 实例(1) 2010-09-26 07:41:23| 分类:ANSYS 动力分析| 标签:随机振动实例模型飞机机翼psd|举报|字号订阅 PSD 实例:模型飞机机翼的随机振动 说明: 确定由于施加在机翼根部的Y 向加速度PSD,在模型飞机机翼中造成的位移和应力。假设机翼在Z=0 处固支。 操作指南 1. 清除数据库并读入文件wing. inp 以创建几何模型和网格。

2. 定义材料属性: 弹性模量= 38000 psi 泊松比= 0.3 密度= 1.033E-3/12 lbf-sec2/in4 = 8.6083E-5 3. 施加边界条件。 提示:选择在areas 上施加位移约束,拾取Z=0 处所有的Areas,约束所有自由度。

4. 定义新分析为Model,使用Block Lanczos 方法,抽取和扩展前15 个自然模态。然后求解Current LS。 5. 查看模态形状,如图为前 4 阶振型。

6. 使用所显示的 PSD 谱,执行 PSD Spectrum 分析。 首先定义分析类型为 Spectrum 分析类型为 PSD,使用全部模态,计算单元应力:注意激活“Calculate elem stresses”选项。 7. 在基础上施加指定的 PSD 谱 (注意:确保 PSD 的单位是 G2/Hz)。

施加 Y 向激励 (方法是:在基础节点上施加单位 Y 向位移)。 设置常阻尼比 0.02:

设置有关参数–重力加速度值 注意:响应谱类型选择 Accel (g**2/Hz),否则后面的 PSD 谱应该输入实际加速度值: 定义 PSD 谱表格:

相关文档