文档库 最新最全的文档下载
当前位置:文档库 › 传染病数学建模论文

传染病数学建模论文

传染病数学建模论文
传染病数学建模论文

甲型H1N1流感传播模型研究

摘要

本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述

近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的

焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。

二、问题分析

甲型h1n1流感的传播是一道传染病问题。在数学建模领域已经有很多关于

这方面的研究,其中SIR模型是比较完整的模型。SIR模型通过建立微分方程组,

按照一般的传播机理建立集中模型。本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

美国甲型H1N1流感实验室确认病例数量:

三、建立模型

(一)、不考虑潜伏期的数学模型

1、模型假设

(1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生

死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。 (2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。

病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。治愈

的病人具有了免疫力,即治愈后不再会成为二次患者。 (3)、s(t)、r(t)、i(t)之和是一个常数1。

2、模型构成

易感者和发病者有效接触后成为发病者者。设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。所以有:

()

()()dS t S t I t dt

λ=- (1) 单位时间内退出者的变化等于发病人群的减少,即

()

()dR t I t dt

ν= (2) 发病人群的变化等于易感人群转入的数量,即

()

()()()dI t S t I t I t dt λν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。

3、模型求解

方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为:

000

1

()ln

s

i s i s s σ

=+-+

(4) 下面分析s(t)、i(t)、r(t)的变化情况:

a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。

b 、最终未被感染者的健康者的比例是s ∞,是方程

000

1()ln

0s

s i s s σ

+-+

=在(0,1/)σ内的根。 C 、若01/s σ>,则开始有:()i t 先增加。当01/s σ=时,()i t 达到最大值,然后()i t 减小且趋于零,()s t 则单调减小至s ∞。

d 、若01/s σ≤,则()i t 单调减小至5,()s t 则单调减小至s ∞。

我们发现人们的卫生水平越高,日接触率越小;医疗水平越高,日治愈率越高,于是σ越小,所以提高卫生水平和医疗水平有利于传染病的蔓延。

结合美国的具体情况和假设条件进行分析:

根据所得的数据画出美国患病人数变化曲线和治愈人数变化曲线:

根据图形来看,甲型h1n1流感在美国呈现出蔓延的形式,即现在属于

01/

sσ>

的情况,即 0

/1/s σλν=>。由假设条件可知λ的取值范围在1.4~1.6之间。现

在我们取λ=1.6,则表示0/(1/) 1.6s νλ<=,即美国每天平均治愈的人数最多为1.6人,这与美国疾病预防与控制中心所发布的数据不同。如果美国平均每天治愈1.6个人的话,那么从4月23日期,治愈的总人数为1.6*2336.8=人,这与实际的情况相差甚远。产生这个问题的原因有以下几个方面:

第一:对每个病人每天有效接触的平均人数估计值偏小。不是简单的成正比关系,应该是成多次方关系,甚至是指数关系。

第二:美国疾病预防与控制中心所得到的数据具有滞后性。

第三:在美国00s ≈不一定成立。可以把那些身体强壮的、注意自己个人卫生的人排除在外。

(二)、考虑潜伏期的数学模型

1、模型假设

(1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S ,病毒潜伏人群E,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为

()()()()s t e t i t r t 、、、。

(2)、每个病人每天有效接触的平均人数为λ,称为日接触率,当已感染者与易感染者有效接触时,使易感染者变为病毒潜伏人群,病毒潜伏人群过一段时间再转换成发病人群,发病人群被治愈。

2、模型构成

易感者和发病者有效接触后成为病毒潜伏者。设每个发病者平均每天有效接触的易感者数为()()t S t λ,()NI t 个发病者平均每天能使()()()t S t NI t λ个易感者成为病毒潜伏者。

所以有()

()()()dS t N t S t NI t dt λ=- 化简得: ()

()()()dS t t S t I t dt

λ=- 病毒潜伏人群的变化等于易感人群转入数量减去转化为发病人群的数量,即

()

()()()()()dE t t S t I t t E t dt λα=- 其中()t α表示潜伏期日发病率,即每个潜伏者平均有效发病的人数。

单位时间内退出者的变化等于发病人群的减少,即

()

()()dR t t I t dt

ν= 其中()t ν表示日退出率,即每个病人平均有效病情结束的人数。 发病人群的变化等于潜伏人群转入的数量,即

()

()()()()dI t t E t t I t dt

αν=- ()()()1s t i t r t ++=

初始时刻易感染者,已感染者与病愈免疫者的比例分别是

00000(0),(0),0s s i i r >>=

3、模型求解

由于潜伏期的人群数量不能确定,所以可视为是易感人群的一部分,因此求解过程跟忽略潜伏期的一样。

四、模型的改进

就如何确定日接触率λ的值。就如何确定日接触率可以进行改进,根据以前的流感疫情治愈率,加权平均得到值,而不是简单的是一个正比关系。病毒在人群中的传播刚开始阶段一个有一个爆发阶段,该阶段的日接触率λ很大,可设为是一个冲激变量。

参考文献:

[1]姜启源谢金星叶俊数学建模(第四版)高等教育出版社

[2]数据来源:美国疾病预防控制中心

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模之传染病模型

第五章 微 分 方 程 模 型 如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型. §1 传 染 病 模 型 建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题. 考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位. 一. SI 模 型 假设条件: 1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人 和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i . 2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康 人有效接触时,使健康者受感染变为病人. 试建立描述()t i 变化的数学模型. 解: ()()1=+t i t s ()()N N t i N t s =+∴ 由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为 ()t i N ,∴每天共有()()t i N t s λ个健康人被感染. 于是i s N λ就是病人数i N 的增加率,即有 i s N dt di N λ= (1)

i s dt di λ=∴ 而1=+i s . 又记初始时刻(0=t )病人的比例为0i ,则 ()()?????=-=0 01i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-??? ? ??-+= 11110 [结果分析] 作出()t t i ~和i dt di ~的图形如下: 1. 当2 1=i 时,dt di 取到最大值m dt di ?? ? ??,此时刻为 ??? ? ??-=-11ln 01i t m λ 2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的). 二. SIS 模 型 在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。) 日期:2014 年9 月 15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模传染病模型剖析

传染病的传播 摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合

MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程 SARS 数学模型 感染率 1问题的重述 SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: 1)建立传染病传播的指数模型,评价其合理性和实用性。 2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件1提供的数据供参考。 3)说明建立传染病数学模型的重要性。 2 定义与符号说明 N …………………………………表示为SARS 病人的总数; K (感染率)……………………表示为平均每天每人的传染他人的人数; L …………………………………表示为每个病人可能传染他人的天数; dt d N(t)………………………… 表示为每天(单位时间)发病人数; N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数; t …………………………………表示时间; R 2 ………………………………表示拟合的均方差; 3 建立传染病传播的指数模型 3.1模型假设 1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。单位时间(一天)内一个病人能传播的人数是常数k ; 2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k; 3) 病者在潜伏期传播可能性很小, 仍按健康人处理; 4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;

数学建模 传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。 三、模型假设 模型二和模型三的假设条件: 假设一:在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 假设二:每个病人每天有效接触的平均人数是常数,称为日接触率。当病人

数学建模-传染病模型-

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关如何预报传染病高潮的到来为什么同一地区一种传染病每次流行时,被传染的人数大致不变 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍 乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数, 方程(1)的解为 结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别健康人和病人这两种人。 模型2 SI模型 假设条件为 1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者即健康人(Susceptible)(S)和已感染者即病人(Infective)(i)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 2.每个病人每天有效接触的平均人数是常数 ,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。

传染病的数学模型

传染病模型详解 /,SI SIS SIR 经典模型 经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下: dS SI dt N I SI d t N ββ?=-????=?? 从而得到 (1)di i i dt β=- 对此方程进行求解可得: 0000(),01t t i e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。 假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 所示。建立的平均场方程:

传染病传播数学模型

第二节传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t时刻的病人数, k表示每个病人单位时间内传染的人 数,i(0)= i表示最初时有0i个传染病人,则在t?时间内增加的病人 数为 ()()() i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… (2.1) 其解为 ()00 k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由(2.1)的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究 【摘要】 本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。 首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。 然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。 为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。在模型求解的过程中,还对政府部门提出了一些有针对性的建议。此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。 在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。 最后,本文对模型进行了评价,特别指出了各个模型的优缺点,同时也对模型进行了合理性分析,针对我国的人口情况给政府提出了建议。 关键字:Logistic模型灰色预测动态模拟 Compertz函数

传染病的数学模型

222 SI/SIS,SIR 经典模型 经典的传播模型大致将人群分为传播态 S ,易感染态I 和免疫态R 。S 态表示该个体 带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。 I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。 R 表示当经过一个或多个 感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况, 即一个个体被感染, 就永远成为感染态, 向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为 Γι ,总人数为 N ,在各状态均匀混合网络中 建立传播模型如下: dS - SI dU :SI .t N 从而得到 对此方程进行求解可得: ∣o e ∣(t) ------- —∣o +i °e 可见,起初绝大部分的个体为 I 态,任何一个S 态个体都会遇到I 态个体并且传染给对 方,网络中的S 态个数随时间成指数增长。 与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为 S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的 R 态。而有些节点可能会从 S 态转变I 态,因此简单 的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现 SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。 采用与病毒传播相似的过程中的 S , I , R 态 代表传播过程中的三种状态。 Zanetee, Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为 S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传 播)。 假设没有听到谣言I 个体与S 个体接触,以概率,(k )变为S 个体,S 个体遇到S 个体 或R 个体以概率: (k )变为R ,如图2.9所示。建立的平均场方程: 传染病模型详解 [,i ° =K O ) BI 1 9 SlR 權峑眄优■业趨图

全国大学生数学建模一等奖获奖论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的电子文件名:B0302 所属学校(请填写完整的全名):广西师范学院 参赛队员(打印并签名) :1. 钟兴智 2. 尹海军 3. 斯婷 指导教师或指导教师组负责人(打印并签名):韦程东 日期: 2007 年 9 月 24 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

乘公交,看奥运 摘要 我们基于最小换乘次数算法,设计了公交查询系统,能够分别从时间和花费 出发考虑,选择最优路径,以满足查询者的各种不同需求。 问题一:采用最小换乘次数算法,求出任意两站的最小换乘次数,在次数一定的情况下,分别选取花费最少和时间最少作为优化目标,建立两种模型:最少时间模型:∑∑==+-+?=3 1 3 1 5)))1(((3),(min i i i i i i i x q x n x B A f ;最少花费模型: ))1((),(m in '''3 1 i i i y x x B A g -+=∑;利用两种模型求出6组数局的最佳路线如下(两 地铁的线路转化成公交的问题,改进问题一中的模型求出此问题的最少时间模型 + +-+?=∑∑∑===)))5)))1(((3((),(m in 3 1 3 1 3 1 i i i i i i i i i x q x n x y B A f ++-+?-∑∑∑===)4))))1(((5.2)(1((31 31 ' 31 i i i i i i i i i x q x n x y ∑=-3 1 i )z 1(7i i y +∑=3 1 i z 6i i y 最小换乘算法进行了改进。 关键词:最小换乘次数, 算法,紧邻点,数据库,路线集

数学建模论文-传染病模型)

传染病模型 摘要 “传染病的传播过程”数学模型是通过控制已感染人群来实现的。利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。

一.问题的提出 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 二.问题的分析 2.1 问题分析 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。 2.2模型分工

传染病数学建模

第30题 传染病传播的数学模型 由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者(或感染后痊愈者)的多少等。在将某一地区,某种传染病的统计数据进行处理和分析后,人们发现了以下的规律性: 设S k 表示在开始观察传染病之后第k 天易受感染者的人数,H k 表示在开始观察后第k 天传染病人的人数,I k 表示在开始观察后第k 天免疫者(或感染后痊愈者)的人数,那么 S k +1=S k -0.01S k (1) H k +1=H k -0.2H k +0.01S k (2) I k +1=I k +0.2H k (3) 其中(1)式表示从第k 天到第k +1天有1%的易受感染者得病而离开了易受感染者的人群;(2)式表示在第k+1天的传染病人的人数是第k 天的传染病人的人数减去痊愈的人数0.2H k (假设该病的患病期为5 (3)式表示在第k +1天免疫者的人数是第k 天免疫者的人数加上第k 天后病人痊愈的人数。 将(1),(2)和(3)式化简得 如果已知S 0,H 0,I 0的值,利用上式可以求得S 1,H 1,

I1的值,将这组值再代入上式,又可求得S2,H2,I2的值, 这样做下去,我们可以逐个地,递推地求出各组S k ,H k , I k的值。因此,我们把S k+1,H k+1,I k+1和S k,H k,I k之间 的关系式叫做递推关系式。 现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为 将上述数据(5)代入(4)式右边得 利用递推关系式(4)反复计算得表30-1。 在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。如果将由该数学模型计算的结果与实际比较后,与传染病传播的情况大致吻合,那么我们就可以利用该模型对得病人数进行预测和估计。例如,可以预测若干天后传染病人的人数等等,便于有关的医疗卫生部门作出相应的决策。

传染病模型数学建模论文

甲型H1N1流感传播模型研究 摘要 本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。 一、问题重述 近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。 二、问题分析 甲型h1n1流感的传播是一道传染病问题。在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

三、建立模型 (一)、不考虑潜伏期的数学模型 1、模型假设 (1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生死,也不 考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。 (2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。 病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。治愈 的病人具有了免疫力,即治愈后不再会成为二次患者。 (3)、s(t)、r(t)、i(t)之和是一个常数1。 2、模型构成 易感者和发病者有效接触后成为发病者者。设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。 所以有: ()()()dS t S t I t dt λ=- (1) 单位时间内退出者的变化等于发病人群的减少,即 ()()dR t I t dt ν= (2) 发病人群的变化等于易感人群转入的数量,即 ()()()()dI t S t I t I t dt λν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。 3、模型求解 方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为: 000 1()ln s i s i s s σ=+-+ (4) 下面分析s(t)、i(t)、r(t)的变化情况: a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。 b 、最终未被感染者的健康者的比例是s ∞,是方程 0001()ln 0s s i s s σ +-+=在(0,1/)σ内的根。

数学建模_传染病模型 (1)

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变? 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、 天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS 病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数, 病人人数的增加,就有 到考察的人数为常数足使人致病接触并且每天每个病人有效t t t ?+λ)(t t x t x t t x ?=-?+)()()(λ 程有个病人,即得微分方时有再设00x t = )1()0(,d d 0x x x t x ==λ 方程(1)的解为 )2()(0t e x t x λ= 结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人

2011年全国数学建模大赛A题获奖论文

城市表层土壤重金属污染分析 摘要 本文旨在对城市土壤地质环境的重金属污染状况进行分析,建立模型对金属污染物的分布特点、污染程度、传播特征以及污染源的确定进行有效的描述、评价和定位。 对于重金属空间分布问题,首先基于克里金插值法,应用Surfer 8软件对各数据点的分布情况进行模拟,得到了直观的重金属污染空间分布图形;随后,分别用内梅罗综合污染指数以及模糊评价标准和模型对城区内不同区域重金属的污染程度进行了评判。 对于金属污染的主要原因分析问题,基于因子分析法、问题一的结果和对各个金属污染物的来源分析等因素,判断出金属污染的主要原因有:工业生产、汽车尾气排放、石油加工并推测该区域是镍矿富集区。随后讨论了污染源之间的相互关系和不同金属的污染贡献率。 针对污染源位置确定问题,我们建立了两个模型:模型一以流程图的形式出现,基于污染传播的一般规律建立模型,求取污染源范围,模型作用更倾向于确定污染源的位置;模型二基于最小二乘法原理,建立了拟合二次曲面方程,在有效确定污染源的同时也反映了其传播特征,模型更加清楚,理论性也更强。 在研究城市地质环境的演变模式问题中,我们对针对污染源位置确定问题所建模型的优缺点进行了评价,同时建立了考虑了时间,地域环境和传播媒介的污染物传播模型,从而反映了地质的演变。 综上所述,本文模型的特点是从简单的模型建立起,强更准确的数学模型发展,逐步达到目标期望。 关键词:重金属污染,克里金插值最小二乘法因子分析流程图

一、问题重述 1.1问题背景 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。评价和研究城市土壤重金属污染程度,讨论土壤中重金属的空间分布,研究城市土壤重金属污染特征、污染来源以及在环境中迁移、转化机理,并对城市环境污染治理和城市进一步的发展规划提出科学建议,不仅有利于城市生态环境良性发展,有利于人类与自然和谐,也有利于人类社会 健康和城市可持续发展[1] 。按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,不同的区域环境受人类活动影响的程度不同。 现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。 1.2 目标任务 (1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。 (2) 通过数据分析,说明重金属污染的主要原因。 (3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。 (4) 分析所建立模型的优缺点,为更好地研究城市地质环境的演变模式,分析还应收集的信息,并进一步探索怎样利用收集的信息建立模型及解决问题。 二、 模型假设 1)忽略地下矿源对污染物浓度的影响; 2)认为海拔对污染物的分布较小,故只在少数模型中讨论其作用; 3)认为题目中的采样方式是科学的,能够客观反映污染源的分布。 三、 符号说明 3.1第一问中的符号说明 i p ——污染物i 的环境污染指数 i C ——污染物i 的实测值 i S ——污染物i 的背景值 m ax (/)i i C S ——土壤污染指数的最大值 (/)i i avg C S ——土壤污染指数的平均值

传染病传播的数学模型_上课

微分方程模型 [学习目的] 1.加深对微分方程概念的理解,掌握针对一些问题通过建立微分方程 的方法及微分方程的求解过程; 2.了解微分方程模型解决问题思维方法及技巧; 3.领会建立微分方程模型的逐步改进法的核心及优点,并掌握该方法; 4.理解微分方程的解的稳定性的意义,会用稳定性判定模型的解是否 有效; 5.体会微分方程建摸的艺术性。 在自然学科(如物理、化学、生物、天文)以及在工程、经济、军事、社会等学科量的问题可以用微分方程来描述。正如列宁所说:“自然界的统一性显示在关于各种现象领域的微分方程式的‘惊人的类似中’.”(列宁选集第二卷,人民1972年版第295页)。要建立微分方程模型,读者必须掌握元素法(有关元素法,在高等数学中已有介绍)。所谓元素法,从某种角度上讲,就是分析的方法,它是以自然规律的普遍性为根据并且以局部规律的独立的假定为基础。在解决各种实际问题时,微分方程用得极其广泛。读者通过下面的几个不同领域中的模型介绍便有所体会,要想掌握好它,在这方面应作大量的练习。 §17.1、传染病传播的数学模型 [学习目标] 1.通过学习建立传染病传播的数学模型的思维方法,能归纳出该类建模的关键 性步骤及思维方法;并能指出求解传染病传播的数学模型的方法技巧; 2.能用已知的传染病传播的数学模型,预报某种传染病的传播; 3.学会从简单到复杂的处理问题的方法。 由于人体的疾病难以控制和变化莫测,因此医学中的数学模型较为复杂。生物医学中的数学模型分为两大类:传染病传播的数学模型和疾病数学模型。 以下仅讨论传染病的传播问题。人们将传染病的统计数据进行处理和分析,发现在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。这一现象如何解释呢?关于这个问题,医学工作者试图从医学的不同角度进行解释都得不到令人满意的解释。最后由于数学工作者的参与,在理论上对上述结论进行了严格的证明。同时又由于传染病数学模型的建立,分析所得结果与

相关文档