文档库 最新最全的文档下载
当前位置:文档库 › 表面张力

表面张力

表面张力
表面张力

关于“毛细现象的能量来源”的表面热力学讨论

朱元海 匡洞庭 王 签

(大庆石油学院石化系,黑龙江安达 151400)

摘 要 对《大学物理》1994年第12期所刊登的“毛细现象的能量来源”一文从表面热力学角度进行了详细讨论.

关键词 毛细现象;表面吉布斯函数;表面张力

分类号 O 414.1

文献[1]讨论毛细现象能量来源问题时指出:“液体在固-液界面附着层的能量比较低,根据平衡时势能最小原理,液体分子要尽量挤入附着层.结果,附着层有伸展倾向,这和自由液面的情况相反.自由液面中的表面张力总是收缩力,但附着力大于内聚力的附着层中的表面张力是一种伸张力.这就是润湿的根源”.我们觉得上面分析方法及结论和表面热力学原理不一致.根据表面热力学表面张力的概念,任何表面张力都是收缩力,因为形成表面或界面都要消耗能量.任何表面或界面都倾向缩小以降低系统的能量,不存在可使表面或界面自动增大的表面张力.附着力大于内聚力的“附着层中的表面张力”这个提法似乎也值得商榷.虽然讨论问题时常把界面当作无厚度的几何面,但实际上它是一个界面层(有时称为界面相),是两相间的过渡区.表面热力学中表面张力定义为作用于表面或界面的切平面单位长度线段上张紧的力,数值上等于温度、压力、组成一定的情况下单位表面或界面的吉布斯函数.它是整个表面或界面的性质.而附着层只是固-液

界面的一部分,它还包括固相表面层.固相表面层上的分子和固相本体及自由固体表面上的分子状态都不相同.整个毛细过程中还有一个固-气界面在变化,文中没有提及,毛细管中液柱上升仅归因于固-液界面层中的附着层的“伸张力”.实际上无需引入“伸张力”的概念,只要用表面热力学的基本原理就可对润湿毛细现象能量来源等问题进行详细分析.

1 润湿过程和表面张力

一块内表面光滑的毛细玻璃管插入液体中会呈现图1所示的情形.水首先润湿管壁形成弯月面.若没有重力场的影响,弯月面是球面的一部分.图中O点为气、液、固三相的会合点,也是三个相界面投影图的交点.图中气-液界面在O点的切线与固-液界面的夹角θ称为润湿角.有三个力作用于O处:力图缩小固-

图1

气界面的表面张力σs-g;力图缩小固-液界面的表面张力σg-l;力图缩小气-液界面的表面张力σl-g.在相界面不再变动的情况下三个力存在下列关系:

σs-g-σs-l=σl-g cos θ

(1)

1805年杨氏(T.Young)曾得到上式,故称为杨氏方程.很明显,如果σs-g>σs-l 则θ<0,发生润湿.如果σs-g<σs-l,则属不润湿的情况.如果在液体中加入一些表面活性物质,可明显地降低σs-l及σl-g的数值,而使

σs-g>σs-l+σl-g

(2) 这时杨氏方程不再适用,液体就会在固体表面上铺展,固-气界面被固-液和液-气界面取代,极限情况下可以单分子层分散在固体表面上.所以从表面热力学的观点看润湿的根本原因不是固-液界面附着层中的伸张力,而是固-气界面张力大于固-液界面张力的缘故.

将一块固体分开成两个相等的自由固体表面(固相-真空界面)需消耗能量,它储存在表层的分子上.表面层分子处于高能状态,存在剩余力场.这个剩余力场只能用同种物质、同样结构的表面才能完全补偿,消除表面张力.对于液体的情况也是这样.不同性质的物质构成的界面由于总有一方剩余力场得不到充分补偿,就整个界面而言,其能量比分子都处于体相时仍要高.任何界面都倾向于缩小以降低系统的能量,所以任何表面张力都是收缩力.文献[1]涉及的能够润湿的固-液界面,尽管附着层分子的能量降得比液相本体还低,或者说自由的液体表面被固相表面补偿有余,但自由的固体表面力场却远未饱和,整个固-液界面仍然是高能、高应力状态,所以表面张力不可能是伸张力.

2 平衡高度的求取

平衡高度可用不同方法求得.从热力学的角度看,一定温度、压力下达到平衡时整个毛细系统的吉布斯函数最小,可由此求取平衡高度h e.

表面吉布斯函数为

式中A s-g,A s-l,A l-g分别表示固-气,固-液,液-气界面的面积.

重力势能的贡献 G′=πr2ρgh2/2 (4)

总的吉布斯函数 G=G s+G′ (5)

平衡时一级变分量

求得平衡高度

(6)

结合杨氏方程得

(7)

很明显,δ2G=πr2ρgδh2>0,系统总吉布斯函数为最小值.

系统吉布斯函数是个状态函数,一定温度、压力下,系统吉布斯函数的减少等于系统对环境所作的最大功,所以它可理解为系统的势能.势能最小原理和吉布斯函数最小原理的实质是一致的.

也可通过分析液柱的受力情况求得平衡高度,如图2.作用于三相交界线固-气表面张力通过弯曲液面这个张紧的膜对液柱产生了一个向上的附加压力F,

图2

F=2πrσl-g cos θ (8) 这个力是液-气界面对三相交界线向下作用力F′的反作用力.它使弯曲液面内外所受的压力不等.正是这个附加压力使玻璃管中的水失去平衡,水柱上升.但是由于重力场的影响产生一个与附加压力反向不断增长的流体静压力,使水柱只能上升有限的高度.平衡时,

mg=πr2h eρg=F (9)

式(8)、(9)结合得式(7).

液柱上升过程中相界面间的夹角并不发生变动,作用于三相交界线上向下的力2πrσl-g cos θ恰好被作用于三相交界线上向上的合力所平衡.这个合力通过弯曲液面作用于液柱.它实际上被文献[1]解释为固-液界面层中附着层的“伸张力”,并视为重力的平衡力,没有指出弯曲液面的作用.表面张力只作用于表面或界面上,只有在存在弯曲液面的情况下才能对体相产生附加压力.σs-g>σs-l+σl-g的情况下,液体在固体表面上铺展,不能形成弯曲液面,毛细现象就不能发生.重力和附加压力都以毛细管中的液柱为施力物体,直接把向上的附加压力视为重力的平衡力概念更为明确.否则人们会误认为表面张力可直接作用于液柱,在发生铺展的情况下也能发生毛细现象了.

3 毛细现象的能量转换

在整个毛细过程中,固-气界面张力σs-g克服固-液界面张力σs-l做功使固-气界面能部分地转变成固-液界面能,通过弯曲液面克服重力做功变成液柱的重力势能,其余部分克服摩擦力做功转化成热.

固-气表面能一共减少

-ΔG s-g=σs-gΔA s-g=2πrh eσs-g (10)

转化成固-液表面能的部分为

σs-lΔA s-l=2πrh eσs-l (11)

转化成重力势能和热能的部分为

-ΔG s=2πrh e(σs-l-σs-g) (12)

结合杨氏方程和式(12)有

(13)

固-气界面张力σs-g通过弯曲液面克服F′对毛细管中液柱做的功

(14)

毛细系统增加的重力势能等于F克服重力所做的功

(15)

由此可见,W只有W′的一半.若没有摩擦损失,表面能的减少-ΔG s全部转变成液柱的能量.此时液柱上升到最高点h e仍有速度,它就会出现振荡.实际上,因为摩擦,液柱获得的能量一半转变成重力势能,另一半转化成过程的热.在润湿过程中附着力大于内聚力,液体分子能有效的补偿固相表面的剩余力场使系统表面能降低.从式(10)~(12)看出,毛细现象能量来源于固-气界面转化成固-液界面表面能的减少.“毛细管中液体的重力势能应当来自液体内部分子进入附着层所损失的势能”[1]这种说法不唯一,不便直接应用表面热力学进行计算.比如,我们还可以说,毛细管中液体的重力势能来自固相表面分子由于液相分子对固相表面附着层剩余力场的补偿所损失的势能.因为势能是固相表面分子与液相本体分子间的作用能,势能的变化既可由液相本体分子的能量变化表示,也可由固相表

面分子的能量变化表示,但只能计算一次.

4 毛细现象的热效应

毛细现象伴随的表面过程就是固-气界面被固-液界面取代的过程,根据热力学原理,一定温度、压力下这一过程的热效应Q由三部分构成: Q=ΔG s+TΔS s+W (16)

其中ΔS s是表面过程的熵变,T是热力学温度,W为表面过程中系统对环境所做非膨胀功(不包括克服摩擦做的功).

对于不可逆过程,-ΔG s>W,表面吉布斯函数的降低,一部分用于对外做非膨胀功,一部分转变成热.对于我们讨论的情况,-ΔG s一半用于克服流体静压力做功,一半转变成热

(17)

但TΔS s一般只占-ΔG s的10-5[3],所以常常可以忽略.文献[2]谈到的热效应还不等于整个毛细过程的热效应,因为它没有包含TΔS s的贡献.所以完整地讨论毛细过程的热效应必须应用表面热力学.

5 对不润湿情况的讨论

对不润湿的情况h为负,θ>π/2,cos θ为负. 上述讨论方法和结论对不润湿的情况同样适用.总之,无论润湿还是不润湿,表面吉布斯函数总是减少,重力势能总是增加,但前者大于后者.不要认为毛细管中的液面下降,重力势能就下降,由于流体静压力可以向各个方向传递,在液柱下降的过程中附加压力一直克

服一个反向的流体静压力做功,这个反向的流体静压力大小相当于作用于高度为h的液柱的重力.所以在不润湿的情况下,毛细系统增加的重力势能仍然可用式(15)计算.

6 参考文献

1 刘爱国.毛细现象的能量来源.大学物理,1994,13(12):9

2 严子浚.关于“毛细现象的能量来源”的讨论.大学物理,1996,15(10):31

3 朱履冰.表面与界面物理.天津:天津大学出版社,1992.125

A SURFACE THERMODYNAMICAL DISCUSSION ON

THE ENERGY SOURCES OF CAPILLARITY

Zhu Yuanhai Kuang Dongting Wang Jian

(Department of Petrochemical Engineering, Daqing Petroleum Institute, Anda,

Heilongjiang,151400,China)

Abstract A detailed discussion with surface thermodynamics is put forward for a paper titled “The energy sources of capillarity”published in 《COLLEGE PHYSICS》 1994, No.12.

Key words capillarity; surface Gibbs function; surface tension

收稿日期:1997-07-24

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力 一、实验目的 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 二、实验原理 1、表面张力的产生 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大, 因此在液体表面层中,每个分子都受到垂直 于液面并指向液体内部的不平衡力,如图所 示,这种吸引力使表面上的分子自发向内挤 促成液体的最小面积。 在温度、压力、组成恒定时,每增加单位 表面积,体系的表面自由能的增值称为单位表面的表面能(J·m-2)。若看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。 液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 由于表面张力的存在,产生很多特殊界面现象。

2、弯曲液面下的附加压力 静止液体的表面在某些特殊情况下是一个弯曲表面。由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。 弯曲液体表面平衡时表面张力将产生一合力P s ,而使弯曲液面下的液体所受实际压力与外压力不同。当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为: P ' = P o - P s ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为: P ' = P o + P s 。这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率 中心。 附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。 3、毛细现象 毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力 P=gh ,通过测量液柱高度即可求出液体的表面张力。这就是毛细管上升法测定溶液表面 张力的原理。 此方法要求管壁能被液体完全润湿,且液面呈半球形。 4、最大泡压法测定溶液的表面张力 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(Δp = p 大气 - p 系统 ) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱 出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:R p σ2=?. P s = 2σ R

张力放线布线计算公式

第一步:按下列公式制作放线模板 f=kl2+4*(kl2)3/(3l2) ⑴ k=G/(0.816H) ⑵ 式中:f -弛度,m;l -档距,m;k -模板模数;G -导线(或牵引绳)单位长度重量,kg/m;H -预选张力,N。 ①施工前,按既定的G值,预选不同的H值,分别制出不同k值的模板, ②制作模板的比例,应和线路断面图的比例相同。 第二步:选定张力 山地放线段,可在用放线模板选出的H i值得基础上,再按公式⑶分别计算出与相对应的张力机出线张力T Hi,以其中最大值作为选定的张力机出线张力。 T Hi= H i/εi- ﹝(aG*Σh i)/i﹞*﹝(εi-1)/(εi-εi-1)﹞⑶ 式中:H i -用模板选定的第i档的放线张力,N; T Hi -与H i相对应的张力机出线张力,N; i –由张力机到预选张力档前档的档数,张力机至邻塔也算一档; h1、h2……h i -由张力机到预选张力档为顺序的各档悬挂点间高差(张力机到邻塔悬挂点间高差为h1),牵引侧悬挂点高者取正值,低者取负值,m; Σh i -由张力机出线口到预选张力档悬挂点间高差; Σh i= h1+h2……+h i,m;

ε -放线滑车综合摩擦系数。 第三步:展放牵引绳或导线时,应分别验算导引绳、导线是否上扬,以使采取相应的防止上扬的措施 验算上扬的计算公式 l S= (l1/cosφ1+ l2/cosφ2)/2+T H(h1/l1+h2/l2)/(aG) ⑷ 式中l S -被验算杆塔的垂直档距,m; l1、l2 -被验算杆塔的前、后档距,m; h1、h2 -被验算杆塔的前、后档悬挂点高差(邻塔悬挂点低时取正值,高时取负值),m; φ1、φ 2 -被验算杆塔的前、后档悬挂点高差角φ=tg-1(h i/ 1i) ; T H -验算上扬时的架空线张力(N),验算导引绳时取T H=T QZ,验算牵引绳时取T H=T zd,验算导线时取T H=T dz G -被验算架空线的单位长度重量,kg/m; 当被验算杆塔的垂直档距l S≥0时,该塔不发生上扬,l S<0时,则该塔将发生上扬。

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

水表面张力介绍

水表面张力介绍 表面张力 表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。 1基本信息 多相体系中相之间存在着界面(interface)。习惯上人们仅将气-液,气-固界面称为表面(surface)。 表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。显然这样的分散体系便储存着较多的表面能(surface energy)。 2相关数据 在293K下水的表面张力系数为72.75×10-3N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3N·m-1。 表面张力的测值通常有多种方法,实验室及教科书中,通常采用的测试方法为最大气泡压法。由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法。 作为表面张力测试仪器的测试方法,通常有白金板法(du Nouy method)\白金环法(Wilhelmy plate method)\悬滴法\滴体积法\最大气泡压法等。 3测定方法 (1)表面张力法。表面张力测定法适合于离子表面活性剂和非离子表面活性剂临界胶束浓度的测定,无机离子的存在也不影响测定结果。在表面活性剂浓度较低时,随着浓度的增加,溶液的表面张力急剧下降,当到达临界胶束浓度时,表面张力的下降则很缓慢或停止。以表面张力对表面活性剂浓度的对数作图,曲线转折点相对应的浓度即为CMC。如果在表面活性剂中或溶液中含有少量长链醇、高级胺、脂肪酸等高表面活性的极性有机物时,溶液的表面张力-浓度对数曲线上的转折可能变得不明显,但出现一个最低值(图2—15)。这也是用以鉴别表面活性剂纯度的方法之一。 (2)电导法。本法仅适合于表面活性较强的离子表面活性剂CMC的测定,以表面活性剂溶液电导率或摩尔电导率对浓度或浓度的平方根作图,曲线的转折点即CMC。溶液中若含有无机离子时,方法的灵敏度大大下降。 (3)光散射法。光线通过表面活性剂溶液时,如果溶液中有胶束粒子存在,则一部分光线将被胶束粒子所散射,因此测定散射光强度即浊度可反映溶液中表面活性剂胶束形成。以溶液浊度对表面活性剂浓度作图,在到达CMC时,浊度将急剧上升,因此曲线转折点即为CMC。利用光散射法还可测定胶束大小(水合直径),推测其缔合数等。但测定时应注意环境的洁净,避免灰尘的污染。 (4)染料法。一些有机染料在被胶团增溶时。其吸收光谱与未增溶时发生明显改变,例如频那氰醇溶液为紫红色,被表面活性剂增溶后成为蓝色。所以只要在大于CMC的表面活性剂

表面张力测试笔(达因笔)的介绍与应用方法

表面张力测试笔(达因笔) 应用表面张力测试笔,能够很容易的分析出不同固体的表面能、亲水性、润湿度等微小变化。分析方法简单且有效,仅在基材表面上划一道痕就能迅速知道准确结果。这是专为生产线的测试而设计的,由工厂经过培训的操作者进行。 测试时,应选择一个中间值来作起点,如38mN/m,测试时,如果在2秒内测试笔湿了基材表面,则基材表面张力比所选值要大或正好,那么须要选一更大值的测试笔进行第二次测试,如此类推,直到测试结果在2秒内改缩成水珠(球状),则这次测试之前一次的值就被视为基材的表面能。并以此作比较分析用。 使表面张力测试笔垂直于薄膜平面,加上适当的压力,在薄膜表面上画一条线。量程稍小的表面张力测试笔较易画上直线,因此不须太大压力;而40、42、44的表面张力测试笔需在画线时多加一点压力。一般情况下,初次测试为保测量的准确度,需备6支不同型号的表面张力测试笔;若确定薄膜表面张力度数字变化极小,则至少需要3支不同型号的表面张力测试笔。 在工业性实践中,塑料表面能量(表面张力)的测定是通过测试油墨按照DIN ISO 8296,是以已知不同表面能量的墨在拟测的薄膜上刷上约100mm长的墨条,并观察其90%以上的墨条边在2秒钟内是否发生收缩并形成墨滴,如有,则换低一级表面能的墨再刷墨条,进行同样的观察,直至不收缩和出现墨滴,此测试墨的表面能即相对应为该薄膜的表面能。这种方法能准确测出基材的表面张力、表面湿力并判定工作前基材表面因素是否符合要求以便调整油墨、涂层、粘度到工作所需。

表面张力、表面湿力对于准确测定印刷油墨和其他材料在表面的粘结状况是非常明确的标准,但影响粘度的还有其他因素,如静电及诸多的添加剂。然而这些因素在测试时却不常显示出,甚至是测试结果很好但实际却不合要求。这就需要和原料供应商讨论这些技术问题。一般而言,以上情况对他们来说是不会发生的,且表面值在38-41mN/m 即能达到粘度要求。而表面张力在37mN/m以下时会造成许多白页(无印刷内容),在35mN/m以下时粘度就不好了。 一般来说,基材形成墨滴,涂层和粘贴能力和表面的能量相关。如果基材表面的能量低于所涂测试液的表面的张力,则形成珠点和画线收缩。因而,对大多数的基于印刷,塑料的溶剂来说,测试笔的要求在36-40达因/厘米之间。基于墨的些液体要求测试笔在40-44达因/厘米之间。而一些碾压和涂层的应用要求表面能量在50达因/厘米或者以上。显而易见,在进行印刷,涂层和碾压前需要对表面的能量先预估。表面张力测试笔在绝大多数的非粘贴性的材料上表现良好。重要的是测试液不会改变基材的表面特性。例如,如果测试液渗入一个纤维基材(如纸)致使膨胀,结果可以说明其容易潮湿。基材和测试液间的生化反应使结果无效。 估出读数规则如下: 若检测液在检测材料上收缩成球状,则表明液体示数比材料的高; 若检测液在检测材料上呈现一滩水状,则表明液体示数比材料的低; 若检测液在检测材料上呈现半收缩半平滩状,则表明两者示数相等.

小儿补液及张力计算

小儿补液三部曲 来源:穆欢喜的日志 一、首先,我们必须先判断孩子的病情到底如何,属于哪种脱水程度,以知道我们下一步的补液计划。 1、程度性脱水判断: 轻度脱水:由于身体内水分减少,患儿会稍感到口渴,有尿排出,检查见患儿一般情况良好,两眼窝稍有陷,捏起腹部或大腿内侧皮肤后回缩尚快。(轻度脱水最重要的判断标准就是:有尿排出,一般情况可,哭时有泪) 中度脱水:患儿的出烦躁,易激惹;口渴想喝水,婴儿四处找奶头,如果得到奶瓶,会拼命吸吮;医学教育网原创啼哭时泪少,尿量及次数也减少;检查见患儿两眼窝下陷,口舌干燥,捏起腹壁及大腿内侧皮肤后回缩慢。(中度脱水主要的判断标准:开始烦躁,易激惹,哭时泪少,眼窝下陷) 重度脱水:患儿现为精神极度萎缩、昏睡,甚至昏迷;口喝非常严重,啼哭时无泪流出,尿量及尿次数明显数少。检查见患儿两眼窝明显下陷,口舌非常干燥;捏起腹壁及大腿内侧皮肤后回缩很慢。(重度脱水判断标准:精神萎靡,甚至昏睡。皮肤相当的干燥,甚至出现了花纹,哭时无泪,无尿排出。)

2、渗透性的判断: 低渗:血清钠<130mmol/L;(初期并未有口渴症状,但是极易发生脑水肿) 等渗:血清钠130-150mmol/L; 高渗:血清钠>150mmol/L。(口渴症状相当的明显,高热,烦躁、肌张力增高. 小儿补液三部曲之二 先前,我们已经了解判断了小儿脱水的基本判断方法了,那么接下来,我们就应该了解,补什么,补多少,怎么补的问题了。 一、补什么、补多少 1、补液总量:轻度失水:90-120ml/kg*d 中度失水:120-150 ml/kg*d 重度失水:150-180 ml/kg*d 补液总量是由三部分组成的: 一般需按累积损失量、继续损失量和生理需要量计算。 ①累积损失量:指病后(如急性脱水)减轻之体重数量,这部分液体最主要。这部分液量可根据脱水程度加以估计。累积损失量也可按体表面积计算,轻度脱水为30-50ml/kg ,中度脱水为50-100ml/kg,重度脱水为100-150ml/kg。 ②继续损失量:按实际损失补充,一般在禁食条件下为 40ml/kg?d,非禁食状态是30ml/kg。电解质包括钠、氯及

液体表面张力与液体表面现象

液体的表面张力与液体的表面现象 在日常生活中,只要你稍加留意,就会观察到许多与液体表面张力有关的现象。如草叶上晶莹剔透的露珠,荷叶上滚动着的小水滴,玻璃板上的小水银滴等,它们为什么都是球形或近似球形?这就是因为液体表面张力的作用结果。当用细管吹出一个个五彩缤纷的肥皂泡时,在泡膜的表面上就布满了液体表面张力。用数学可以证明,在体积相同的各种形状的几何体中,球体的表面积最小。正是由于表面张力的作用,才会出现露珠、小水银滴等都收缩为球形的现象。 你若有机会观察护士给病人输液,你会看到在输液之前,护士总是要把输液管中的空气泡排除干净。不然的话,若让那些气泡混入人体血管中,在表面张力的作用下,气泡将会阻碍血液的正常流动。 下面就来分析一下液体的表面张力,以及液体表面现象发生的原因。 1 表面张力的成因、大小和方向 表面张力就是促使液体表面收缩的力。液体与气体的交界面(属于液体薄层),称为表面层。在表面层中,液体分子因受到液体内部分子的引力,而有一部分会被拉入液体内,致使表面层液体分子密度小于液内分子密度。表面层中液体分子的这种布局,使得液体表面层就像一张“绷紧”的橡皮膜,而具有收缩趋势。表面层一直处在具有收缩趋势的表面张力作用之下。 这里应指出,液体表面张力与橡皮膜张力在本质上是不同的。橡皮膜的分子间距会随着膜面积的增大而增大。而液体表面张力却不受面积变化的影响,当液体表面层面积增大时,液内分子会自动进入液面来补充,从而维持液面内分子间距不变。 可以用一个很简单的实验,来可说明表面张力的存在。取一段铜丝制成一个直径约 cm ~85的圆环,在环上跨系一根细红线(用红线易于观察) 。将环浸入洗洁精溶液再取出,环上蒙了一层液膜,这时用粉笔头轻触线一侧的液膜,原来自由弯曲的红线则立即被液膜拉向另一侧,成为一段张紧的弧线。实验表明,液体表面具有收缩到最小面积的趋势。同时它还表明,表面张力的方向垂直于任一周界线且与液面相切。 理论和实验表明,表面张力的大小,可用如下公式表示: ???==)(2)(双表面层单表面层L F L F αα 上式中,α称为表面张力系数。α与液体的种类、温度等因素有关。不同的液体,α不同;同一种液体,α随温度升高而减小。另外,α也与液体中的杂质有关。因此,当人体使用了某些药物后,血液或尿液的表面张力系数则会发生变化。 在生活中有许多与表面张力有关的现象。例如,对人来说,重力有时会造成很大的麻烦。人若不慎从高处落下,可能会被摔得不轻。而小昆虫一点也不害怕重力,它在落下时一点危险也没有。但表面张力对某些昆虫来说则有可能造成很大威胁,小昆虫有时最怕表面张力。当一个成人从浴池中站起时,他身上会带起厚约mm 2.0的一层水,这些水大约kg 5.0,不到人体重的%1,这对人来说不会感到有什么负担。即使是人的全身涂满了肥皂泡沫,其表面张力对人也不会产生任何威胁。而一只蚊子一旦被肥皂泡沫弄湿,它将很危险。这时蚊子将难逃表面张力“法网”。

生活中的表面张力

表面张力的力量 摘要:表面张力无论在生活还是在物理中都是一个重要的物理量。它是存在于液体表面层的相互作用力,它主要取决于液体的表面张力系数。本文就从生活中的具体事例入手,通过实验阐述液体表面张力的形成,并解释生活中的物理现象,分析表面张力的影响因素,最后展示液体表面张力的应用。 关键词:液体表面张力;影响因素;用途 在我们的日常生活中存在着许多物理现象,也许我们对于它们已经习以为常,但是当别人真正问起为什么的时候,我们才发现我们对它们并不熟悉。在这里我们就来看看大自然中存在的一些物理现象,比如说我们一不小心就打碎了体温计,里面的水银撒在地上,当我们仔细观察就会发现这些小水银滴都是成球形的;雨后我们可以看到树上的叶子,草上,最明显的就是荷叶上的小水珠都是球形的。而且我们可以拿一杯水,取一枚细针,小心的水平放置在水上,我们会发现针不会下沉而浮在水面上,并在针下方的水面形成一个小小的凹陷。究其原因这些现象都和液体表面有关。 那么什么是液体表面张力呢?这一概念最早是在1805年由英国物理学家托马斯首次提出,并作为研究对象得到社会的显著关注。液体表面张力本质上是一种分子力,它促进了液体的表面收缩。其实液体与空气接触时,会形成一个表面层,由于液体表面层结构不同于液体

内部,这就是相邻液体分子间的相互作用力变现为一种张力,而这种张力就是表面张力。表面张力由液体分子问很大的内聚力引起。处于液体表面层中的分子比液体内部稀疏,所以它们受到指向液体内部的力的作用,使得液体表面层有如张紧的橡皮膜,有收缩趋势,使液体尽可能地缩小它的表面面积。虽然液体表面层像一张紧绷的橡皮膜,但是液体表面张力本质上与橡皮膜张力不同,橡皮膜的分子间距会随着橡皮膜面积的增大而增大,而液体的表面张力却不受面积变化的影响,当液体表面增大时,液体内部分子会自动补充到液体表面来维持液体表面内分子间距不变。这就可以解释为什么树叶,草上的水滴成球状了,因为球形是在一定体积下具有最小表面积的几何形体,在表面张力的作用下,水滴总是力图保持球状。 那么究竟什么因素会影响液体的表面张力呢? 第一. 它与液体本身的纯度与浓度有关。首先杂质会明显地改变液体的表面张力,比如洁净的水有很大的表面张力,而沾有肥皂液的水,表面张力就比洁净的水小,也就是说,洁净水表面具有更大的收缩趋势。加入杂质导致的变化与液体的浓度有较大关系,具体表现出三种情况:一是液体表面的张力随液体浓度的增加而上升;二是随着液体浓度增加而下降;第三种有点特殊,当液体被稀释到一定程度时,液体表面张力系数随浓度增加呈现极度下降的趋势,之后一般不随液体浓度的变化而变化。 第二. 表面张力还受液体温度变化的影响。一般来说,液体表面张力与液体温度呈反比因为液体表面温度的升高,液体表面分子间的距

最大泡压法测定溶液表面张力

最大泡压法测定溶液表面张力 一.实验目的 1.明确表面张力、表面自由能和吉布斯吸附量的物理意义。 2.掌握最大泡压法测定溶液表面张力的原理和技术。 3.掌握计算表面吸附量和吸附质分子截面积的方法。 4.绘制Г—c 吸附等温线,提高作图能力 二.实验原理 1.表面张力和表面吸附 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图1所示,这种吸引力使表面上的分子自发向内挤,促成液体的最小面积,因此,液体表面缩小是一个自发过程。 在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面 吉布斯自由能(J·m -2),用γ表示。也可以看作是垂直作用在单位长度相界面边缘上的力,即表面张力(N·m -1),此二者是等价的。 欲使液体产生新的表面ΔS ,就需对其做表面功,其大小应与ΔS 成正比,系数为即为表面张力γ: S W ??=γ' (1) 在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,分子间的作用力发生变化,表面张力也发生变化,其变化的大小决定于溶质的性质和加入量的多少。水溶液表面张力与其组成的关系大致有以下三种情况: (1)随溶质浓度增加表面张力略有升高; (2)随溶质浓度增加表面张力降低,并在开始时降得快些; (3)溶质浓度低时表面张力就急剧下降,于某一浓度后表面张力几乎不再改变。 以上三种情况溶质在表面层的浓度与体相中的浓度都不相同,这种现象称为溶液表面吸附。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯 (Gibbs) 图1 液体表面与内部分子受力情况图

溶液表面张力的测定拉环法

溶液表面张力的测定(拉环法) 一实验目的 (1)了解表面自由能、表面张力的意义及表面张力与吸附的关系。(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握拉环法测定表面张力的原理和技术。二实验原理 (1)表面张力 在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。位表面层上分子比同数量内层分子引起体系自由能的增加量称为比表面自由能。比表面和表面张力在数值和量纲上一致,故常用表面张力度量比表面自由能。 (2)影响表面张力的因素 液体的表面张力与温度有关,温度越高,表面张力越小。液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化。 (3)表面张力与吸附量的关系 表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由

能时,则溶液在表面的浓度比内部小。由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程: Γ= -(dγ/dc)T(c/RT) 其中Γ为溶质的表面超额,c 为溶质的浓度,γ为溶液的表面张力 a若dγ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。 b若dγ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。 溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞ 分子的截面积: S B = 1/(Γ∞L) L=6.02×1034 (4)吊环法测表面张力的原理 测表面张力的方法很多,有毛细管上升法,滴重法,最大气泡压力法,吊环法等。吊环法是将吊环浸入溶液中,然后缓缓将吊环拉出溶液,在快要离开溶液表面时,溶液在吊环的金属环上形成一层薄膜,随着吊环被拉出液面,溶液的表面张力将阻止吊环被拉出,当液膜破裂时,吊环的拉力将达到最大值。自动界面张力仪将记录这个最大值P。按照公式校正后,可以得出溶液的表面张力数值γ。校正因子: F=0.7250+(0.01452P/C2D+0.04534-1.679r/R)1/2式中P:界面张力仪显示读数值mN·m-1

有关表面张力的几个小实验

有关表面张力的几个小实验 作者:admin 转贴自:本站原创点击数:123 更新时间:2006-6-17 资讯录入:admin (1)水面浮针或浮硬币:由于它们经常和手接触,所以针和硬币表面有一层油脂,使水对它们不浸润。如果再用油脂涂一下更易成功。漂浮硬币时可以不用纸去托,轻轻地向水面上平放即可。 课本上的“缝衣针浮在水面上”的小实验,比较难做,可以让学生先做浮硬币的实验(用5分硬币比较容易成功). 做浮针实验时可以用一小块餐巾纸托住钢针放入水面,餐巾纸吸水后下沉,钢针就能浮于水面。 (2)肥皂水膜的表面收缩到最小:用金属丝制成图③所示的框架,浸入肥皂水中,提出后可看到图中的活动细金属丝AB 被肥皂水膜的表面张力拉着而向上运动,需加一定拉力,AB才能静止平衡。 (3)水超过杯口不溢:向饮水用的玻璃杯中小心地注满水,使水面恰好与杯口相平,注意杯口原来应当是干燥的。然后把大头针或小钉逐个地放入水杯中,要从水面的中间投放,尽量减轻水面的扰动。可以看到水面逐渐凸起高于杯口但不溢出,以此说明水的表面张力的作用。 (4)表面活性剂能改变水的表面张力:在水盆中央漂浮几根火柴棍,排成图④所示的形状。然后向它们中间A处的水面上滴一些肥皂水或洗衣粉溶液或洗净剂等这类表面活性剂,就会看到火柴棍迅速向四周散开。这说明表面活性剂使A处水面的张力变小了,外面四周的水面收缩而使火柴棍移动。 (5)失重的油滴 水银滴在失重状态下,由于表面张力的作用呈球形,这个现象可以用悬浮状态下的油滴来模拟说明。往小酒杯内倒入约半杯酒精(或高度白酒),再加少量水并搅匀。滴管吸入半管食用油,伸入酒精溶液中,将油一次挤出。如果油滴成偏球形且沉于杯底,可向杯中加少量水使溶液密度变大,并用火柴梗轻轻搅动偏球形油滴的四周(不要使油滴分裂成许多小滴),与此同时可以看到偏球形油滴上浮,最后呈球形悬浮在溶液中。这说明在消除重力对油滴的影响后,仅在表面张力的作用下,油滴呈球形,如图5所示。

液体张力简单计算

液体张力简单计算 液体疗法的目的是纠正水、电解质和酸碱平衡紊乱,以恢复机体的正常生理功能。补液方案应根据病史、临床表现及必要的实验室检查结果,综合分析水和电解质紊乱的程度、性质而定。首先确定补液的总量、组成、步骤和速度。补液总量包括补充累积损失量、继续损失量及供给生理需要量三个方面。 1.补充累积损失量指补充发病后至补液时所损失的水和电解质量。 (1)补液量:根据脱水严重程度而定。原则上轻度脱水补50ml/kg,中度脱水补50~ 100ml/kg,重度脱水补100~120ml/kg。实际应用时一般先按上述量的2/3 量给予。 (2)补液成分:根据脱水性质而定。一般而论,低渗性脱水补充高渗溶液,等渗性脱水补充等张溶液,高渗性脱水补充低渗溶液。若临床判断脱水性质有困难,可先按等渗性脱水处理。有条件者最好测血钠含量,以确定脱水性质。 (3)补液速度:累积损失量应在开始输液的8~12 小时内补足,重度脱水或有循环衰竭者,应首先静脉推注或快速静脉滴入以扩充血容量,改善血液循环及肾功能,一般用 2 :1等张含钠液(2份生理盐水加1份1. 4 %碳酸氢钠)20ml/kg ,总量不超过300ml,于30~60 分钟内静脉推注或快速滴入。 2.补充继续损失量指补液开始后,因呕吐腹泻等继续损失的液体量。应按实际损失量补充,但腹泻患儿的大便量较难准确计算,一般根据次数和量的多少大致估计,适当增减。补充继续损失量的液体种类,一般用l/3 张~1/2张含钠液,于24 小时内静脉缓慢滴入。 3.供给生理需要量小儿每日生理需水量约为60~80ml/kg,钠、钾、氯各需1~2mmol/kg 。这部分液体应尽量口服补充,口服有困难者,给予生理维持液(1/5 张含钠液十0.15%氯化钾),于24 小时内均匀滴入。 在实际补液中,要对上述三方面需要综合分析,混合使用。对腹泻等丢失液体引起脱水的补液量:一般轻度脱水约90-120ml/kg ;中度脱水约120~150ml/kg;重度脱水约150-180ml/kg 。补液成分:等渗性脱水补1/2 张含钠液;低渗性脱水补2/3 张合钠液;高渗性脱水补1/3 张含钠液,并补充钾,再根据治疗反应,随时进行适当调整。累积损失量的补充[2] (一)补液量根据脱水程度决定。轻度脱水应补50ml/kg ;中度脱水50~100ml/kg ;重度脱水 100~120ml/kg 。 (二)补液种类所用输液的种类取决于脱水的性质。一般而论,低渗性脱水补2/3 张含钠液,等渗性脱水补1/2 张含钠液,高渗性脱水补1/3~1/4 张含钠液。这是因为细胞外液中的钠除因腹泻通过消化道丢失以外,还有一部分钠因细胞内液丢失钾后而进入细胞内,补钾后,进入细胞内液中的钠又可返回到细胞外液中,故补液成分中含钠量可稍减少。 补充累积损失量[3] 1.补液量根据脱水程度决定。轻度脱水约50ml/kg ,中度脱水50~100ml/kg ,重度脱水 100~120ml/kg 。一般按上述的2/3 量给予。这是因为细胞外液的钠不仅通过消化道等途径丢失,而且由于细胞同时失钾,有一部分钠进入细胞内液进行代偿(细胞内液钾缺乏,钠过剩);当补钾时,随着细胞内液钾的逐渐恢复,其过剩的钠又返回细胞外液,故补充的含钠液量可稍减,以免细胞外液过度扩张。 2.溶液种类根据脱水性质决定。 (1)等渗性脱水用等张含钠液。 (2)低渗性脱水用高张含钠液,相当于纠正体液低渗(低钠血症)所需钠量加纠正等渗脱水所需等张含钠液量。 (3)高渗性脱水用低张含钠液,相当于纠正体液高渗(高钠血症)所需水量加纠正等渗脱水所需等张含钠液量。

滴体积法测定液体表面张力

滴体积法测定液体表面张力 摘要:表面张力是液体的基本物化性质之一。采用自制的滴体积法实验装置, 以蒸馏水的表面张力作为标准,通过计算得到相关参数,从而利用相关联的参数测定和计算乙醇和异丙醇的表面张力。 关键词:滴体积法;表面张力;蒸馏水标准;关联参数 引言:表面张力是一种特殊的力,它是液体性质的一种表现。测定表面张力的方法有很多种,如毛细光上升法,滴体积法,最大气泡法,吊片法等。滴体积发最早是由Tate于1864年提出,经过Harkins和Brown严密的数学推理和精确的实验研究,得出了可将Tate定理应用与实际的校正系数。随后Wilkson及吴树森等人又将校正因子的范围进一步拓宽,最终使滴体积法成为测液体表面张力的一种基本方法。 实验部分: 实验原理: 液体在毛细管口成滴下落前的瞬间,落滴所受的重力与管口半径及液体的表面张力有关。用公式表示为: γ=F?V?ρ?g/R 其中V测出的液体体积,ρ为液体密度(g/mL),g为重力加速度( 98017cm1s-2),R为滴头半径,F为校正系数,它是为了校正液滴滴落过程中的变形和部分残留的影响而引入的。经过实验测定,校正系数是V/R3的函数,与待测液体表面张力,密度,粘度及滴管材料无关。校正系数与V/R3的经验关系已用列表形式给出。曲线形状见图: 通过测定蒸馏水,得到V和ρ,然后通过书上查表得到相应的表面张力γ值,通过γ=F?V?ρ?g/R关系式,得到校正系数F和针头半径R的关系式。然后又因为和V/R3 的关系,通过查表,得到相应的使两个关系式成立的R,然后带入测定乙醇和异丙醇的公式中(因为整个实验使用同一套装置),通过查表得相应

神奇的表面张力讲解学习

神奇的表面张力

神奇的表面张力 同学们,水是自然界中常见的物质。你们知道吗?它有许多神奇的特性。本期水娃娃将带你研究水的神奇特性之――水的表面张力。生活在线 2013年6月20日,神舟十号航天员在天宫一号上开展基础物理实验,为全国6000多万中小学生展开了一场别开生面的太空授课。其中,王亚平老师的水球实验格外引人注目。那晶莹剔透的水球如同水晶球一般充满了神奇的魔力,这就是水的表面张力在起作用啊。 水黾是水生半翅目类昆虫,体色呈黑褐色,身体细长,约22毫米,非常轻盈。它前脚短,可以用来捕捉猎物;中脚和后脚很细长,长着具有油质的细毛。当水黾在水面上行走时,脚上的这些小细毛不会破坏水的表面,反而使水的表面托住水黾的脚,使它不会沉入水中。它中间的两只脚则起到船桨的作用,使它可以在水面上自由地滑行。水黾就是利用了水的表面张力栖息于水面上。 水的表面张力无处不在,只要仔细观察,你就会发现很多有关水的表面张力现象。

同学们,把毛笔放入水中浸润后提起,你就会发现,毛笔的毛尖处就会聚拢成一点,这也是水的表面张力的作用。 雨后草叶上可爱的小水滴,夏秋晴朗的天气在荷叶上形成的小露珠,也是水的表面张力的作用形成的。 不仅如此,我们洗过的水果表面挂着的小水珠,以及我们流下的汗珠、眼泪都是水的表面张力在发挥着神奇的作用呢。 知道了这么多有关水的表面张力现象。那你知道水的表面张力究竟是一种什么样的力吗?本期我们将通过一些科学探究小实验,和你们一起认识水的神奇特性――水的表面张力。你准备好了吗?探究体验知?R解密什么是水的表面张力? 水是由许许多多的水分子组成的。表面的水分子紧紧靠拢在一起,它们之间有一种相互吸引的力,这就是水的表面张力。水的表面张力就像在水的表面形成了一层像“皮肤”一样的水膜,能够包裹着里面的水不流出来,像我们在实验中不断地添加曲别针,水面凸起来了,而水却没有流出来,再如自然界中的露珠、汗珠呈球状等等。水的表面张力是一种神奇的力,但它只能够托起数量有限的比较轻小的物体,如曲别针等。

物化实验报告-表面张力的测定

溶液中的吸附作用和表面张力的测定 一、实验目的 1、 掌握最大气泡法和滴重法测定表面活性物质正丁醇的表面张力,并且利用Gibbs 吸附公式和 Langmuir 吸附等温式测定正丁醇分子的横截面积。 2、 训练学生利用毛细管和数字式微压测量仪以及滴重管测定表面张力的方法,并通过曲线及直线 拟合处理得到不同数据。 3、 培养学生在实验中严谨的实验作风和态度,并对学生的科研兴趣进行初步的指导。 二、实验原理 1. 物体表面分子和内部分子所处的境遇不同,表面层分子受到向内的拉力,所以液体表面都有自动缩小的趋势。如果把一个分子由内部迁移到表面,就需要对抗拉力而做功。在温度、压力和组成恒定时,可逆地表面增加dA 所需对体系做的功,叫表面功,可以表示为: W dA δσ'-= 式中σ为比例常数。 σ在数值上等于当T 、p 和组成恒定的条件下增加单位表面积所必须对体系做的可逆非膨胀功,也可以说是每增加单位表面积时体系自由能的增加值。环境对体系作的表面功转变为表面层分子比内部分子多余的自由能。因此,σ称为表面自由能,其单位是焦耳每平方米(J/m 2)。若把σ看作为作用在界面上每单位长度边缘上的力,通常称为表面张力。 从另外一方面考虑表面现象,特别是观察气液界面的一些现象,可以觉察到表面上处处存在着一种张力,它力图缩小表面积,此力称为表面张力,其单位是牛顿每米(N/m )。表面张力是液体的重要特性之一,与所处的温度、压力、浓度以及共存的另一相的组成有关。纯液体的表面张力通常是指该液体与饱和了其本身蒸气的空气共存的情况而言。 2、 纯液体表面层的组成与内部层相同,因此,液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。对于溶液则由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。 根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度应比溶液内部来得大。反之溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度来得低,这种表面浓度与溶液内部浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关,Gibbs 用热力学的方法推导出它们之间的关系式: T c d RT dc σ??Γ=- ??? 式中Γ为表面超量(mol/m 2);σ为溶液的表面张力(J/m 2);T 为热力学温度;c 为溶液浓度(mol/m 3);R 为气体常数。 当0T d dc σ??< ???时,0Γ>称为正吸附;反之当0T d dc σ?? < ???时,0Γ<称为负吸附。前者表明 加入溶质使液体表面张力下降,此类物质称表面活性物质。后者表明加入溶质使液体表面张力升高, 此类物质称非表面活性物质。因此,从Gibbs 关系式可看出,只要测出不同浓度溶液的表面张力,以σ~c作图,在图的曲线上作不同浓度的切线,把切线的斜率代入Gibbs 吸附公式,即可求出不同浓度时气~液界面上的吸附量Γ。

物体的表面张力

1、物体的表面张力 液体内部任一分子受到4面分子力大小平衡,合力为另 液体表面分子受到其相内分子的作用力较外部大,表面分子受到一个向内收缩的力既表面张力 2、湿润现象 液体对固体的湿润主要取决于液体-固体-液体的分子吸引力。当液体-固体之间的分子吸引力大于液体自身的分子吸引力,产生湿润。 改变固体的表面状态即表面张力,就能改变湿润程度。 3、极性或非极性聚合物 分子中原子核正电荷和电子负电荷的作用中心可能不重合,其距离为偶极矩。形成极性基团。不同的极性分子,其分子偶极矩不等,所表现的极性强度不同 μ=0.0 非极性分子:聚乙烯(PE)、聚炳烯(PP) μ<0.5 弱极性分子:聚笨乙烯(PS) μ>0.5 极性分子:聚氯乙烯(PVC) μ>0.7 强极性分子:聚酯(PET) 4、非极性聚合物具有较低的表面张力。 5、临界表面张力:塑料表面恰好被液体完全湿润时,该液体的表面张力。 常见塑料临界表面张力一览表 6、塑料薄膜的印刷性及可加工性 (1)、印刷:凹版印刷为主、多用于PE、PP、PET、PVC等 一般要求表面张力38dyn/cm以上 (2)、复合:干式复合为主、多用于PE、PP、PET、PVC、PVDC、PA、等一般要求表面张力38dyn/cm以上 (3)、镀铝:高阻隔复合软包装材料、多用于PP、PET等等 一般要求表面张力38dyn/cm以上 7、当前提高表面张力办法 (1)、电晕处理 (2)、化学处理 8、电晕处理的原理: (1)、电冲击或击穿:在高压电场下对薄膜进行强有力的冲击,使薄膜表面起毛,变得粗糙,增加表面积,产生湿润效果。物理作用的解释。 (2)、高压电场下,空气中的氧气变成臭氧—氧气+氧原子。氧原子的氧化剂作用使薄膜表面分子极性增大。 高倍数放大镜下,薄膜表面变得毛糙。 9、存在问题 (1)、电晕处理表面张力的不均匀性(有高有低、成片或成段) (2)、电晕处理表面张力的随时间衰减性(随时间而下降) (3)、电晕处理表面张力对薄膜表层造成物理性强度下降(有些应用在高于48mN/m后表面可加工性反而下降) (4)、无法进一步得到表面张力更高(58mN/m以上)的薄膜。 、常发生无法解释的因表面张力问题导致的产品质量事故。 10、化学处理的原理 (1)、在薄膜表层涂布一层化学物质(也叫底层),这层化学物质改变了薄膜表面的化

水的表面张力

水的表面张力【摘要】:. 水随处可见,是一种很平常的物质,但是如果深入研究,却会发现它有许多奇妙的地方。认识水的表面存在着一股收缩的力——表面张力,表面张力可以改变。细致观察水的表面张力现象,并能设计实验研究水的表面张力。作出科学预测并通过实验验证。了解生活中水的表面张力现象。【关键词】:表面张力洗涤剂曲别针【正文快照】:水随处可见,是一种很平常的物质,但是如果深入研究,却会发现它有许多奇妙的地方。认识水的表面存在着一股收缩的力——表面张力,表面张力可以改变。细致观察水的表面张力现象,并能设计实验研究水的表面张力。作出科学预测并通过实验验证。了解生活中水的表面张力现象。1,设计实验实验目的:了解水的表面张力,知道液体的表面张力在生活中的应用.实验器材:曲别针一枚,玻璃杯一个,洗涤剂(如洗洁精、洗衣粉),清水.2.实验操作(1)将准备好的玻璃杯中装满水.(2)向装满水的玻璃杯中加入一枚曲别针,放在平静的水面,我们发现针是浮着的。(3)然后拿起洗涤剂,往水里一挤,曲别针就沉下去了。这是因为水分子紧紧地结合在一起,产生了表面张力,把曲别针给“撑”了起来。上述实验中,由于加入了洗清液,这种有机化合物降低了清水表面的张力。所以,原本浮在水上的曲别针下沉了。那么什么是表面张力呢。下面,我们来解释一下这个概念。表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为0,但在表面的一个水分子却不如此。因上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。通过实验我们发现水有表面张力,表面张力是水表面的一个重要性质,而洗精液等有机化合物会破坏水的表面张力。我们发现水的表面张力还可以解释生活中的一些现象,如水滴在荷叶上会形成水珠,水黾可以在水面上滑行,刚洗净的苹果上挂着的水珠、水龙头上蠢蠢欲滴的水滴等。

表面张力

关于“毛细现象的能量来源”的表面热力学讨论 朱元海 匡洞庭 王 签 (大庆石油学院石化系,黑龙江安达 151400) 摘 要 对《大学物理》1994年第12期所刊登的“毛细现象的能量来源”一文从表面热力学角度进行了详细讨论. 关键词 毛细现象;表面吉布斯函数;表面张力 分类号 O 414.1 文献[1]讨论毛细现象能量来源问题时指出:“液体在固-液界面附着层的能量比较低,根据平衡时势能最小原理,液体分子要尽量挤入附着层.结果,附着层有伸展倾向,这和自由液面的情况相反.自由液面中的表面张力总是收缩力,但附着力大于内聚力的附着层中的表面张力是一种伸张力.这就是润湿的根源”.我们觉得上面分析方法及结论和表面热力学原理不一致.根据表面热力学表面张力的概念,任何表面张力都是收缩力,因为形成表面或界面都要消耗能量.任何表面或界面都倾向缩小以降低系统的能量,不存在可使表面或界面自动增大的表面张力.附着力大于内聚力的“附着层中的表面张力”这个提法似乎也值得商榷.虽然讨论问题时常把界面当作无厚度的几何面,但实际上它是一个界面层(有时称为界面相),是两相间的过渡区.表面热力学中表面张力定义为作用于表面或界面的切平面单位长度线段上张紧的力,数值上等于温度、压力、组成一定的情况下单位表面或界面的吉布斯函数.它是整个表面或界面的性质.而附着层只是固-液

界面的一部分,它还包括固相表面层.固相表面层上的分子和固相本体及自由固体表面上的分子状态都不相同.整个毛细过程中还有一个固-气界面在变化,文中没有提及,毛细管中液柱上升仅归因于固-液界面层中的附着层的“伸张力”.实际上无需引入“伸张力”的概念,只要用表面热力学的基本原理就可对润湿毛细现象能量来源等问题进行详细分析. 1 润湿过程和表面张力 一块内表面光滑的毛细玻璃管插入液体中会呈现图1所示的情形.水首先润湿管壁形成弯月面.若没有重力场的影响,弯月面是球面的一部分.图中O点为气、液、固三相的会合点,也是三个相界面投影图的交点.图中气-液界面在O点的切线与固-液界面的夹角θ称为润湿角.有三个力作用于O处:力图缩小固- 图1 气界面的表面张力σs-g;力图缩小固-液界面的表面张力σg-l;力图缩小气-液界面的表面张力σl-g.在相界面不再变动的情况下三个力存在下列关系:

相关文档