文档库 最新最全的文档下载
当前位置:文档库 › 语音端点检测方法研究

语音端点检测方法研究

语音端点检测方法研究
语音端点检测方法研究

语音端点检测方法研究1

沈红丽,曾毓敏,李平,王鹏

南京师范大学物理科学与技术学院,南京(210097)

E-mail:orange.2009@https://www.wendangku.net/doc/4c3651797.html,

摘要: 端点检测是语音识别中的一个重要环节。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题.鉴于此,本文介绍了语音端点算法的基本研究现状,接着讨论并比较了语音信号端点检测的方法,分析了各种方法的原理及优缺点,如经典的基于短时能量和过零率的检测方法,基于频带方差的检测方法,基于熵的检测方法,基于倒谱距离的检测方法等.并基于这些方法的分析,对端点检测方法做了进行了总结和展望,对语音信号的端点检测的进一步研究具有深远的意义。

关键词:语音信号;端点检测;噪声

中图分类号:TP206. 1

1. 引言

语音信号处理中的端点检测技术,是指从包含语音的一段信号中确定出语音信号的起始点及结束点。语音信号的端点检测是进行其它语音信号处理(如语音识别、讲话人识别等)重要且关键的第一步. 研究表明[1],即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的关键性不容忽视,尤其是噪声环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。

确定语音信号的起止点, 从而减小语音信号处理过程中的计算量, 是众多语音信号处理领域中一个基本而且重要的问题。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题。

2. 语音端点检测主要方法和分析

在很长一段时间里,语音端点检测算法主要是依据语音信号的时域特性[2].其采用的主要参数有短时能量、短时平均过零率等,即通常说的基于能量的端点检测方法。这些算法在实验室环境下具有良好的性能,但在噪声环境下,则无法达到其应有的效果。近年来,随着通信业的迅猛发展,又出现了很多的语音端点检测算法。它们主要是通过采用各种新的特征参数,以提高算法的抗噪声性能。如基于倒谱系数[3]、频带方差[4]、自相关相似距离[5] 、信息熵[6]等也逐渐的被应用到端点检测中。有时,还通过将信号的几种特征组合成为一个新的特征参数来进行端点检测。

2.1基于短时能量和短时平均过零率的检测方法

该方法也称为双门限比较法,它是在短时能量检测方法的基础上,加上短时平均过零率,利用能量和过零率作为特征来进行检测.在信噪比不是很低的情况下,根据语音信号的能量大于噪声噪声能量的假设,通过比较输入信号的能量与语音能量阈值的大小,可以对语音段和非语音段加以区分[7].输入每帧信号的能量可由下式得到[7-8]:

1本课题得到江苏省普通高校自然科学研究计划资助项目(项目批准号:07KJD510110)的资助。

1

20()N j i E x i ?==∑ (1)

式中, j E 表示第j 帧的能量, ()x i 为输入的信号, N 为帧长.如果第j 帧信号的短时信号能量j E 大于设定的阈值,就判断当前帧为语音帧,否则判为静音帧.短时过零率的计算可由下式得到:[8]

1

|sgn[()]sgn[(1)]|N

n n Z x n x n ==??∑ (2)

1,()0sgn[()]1,()0

x n x n x n ≥?=??

研究显示[9],清音的过零率较高,浊音和噪声次之,而且浊音和噪声的过零率相当。因此这种方法对语音信号中的浊音和噪声很难区分,因此在检测时同样会漏掉某些音素[10]。

2.2基于频带方差的检测方法

由于系统是时变的,所以实际计算的是短时频带方差,它的实质就是计算某一帧信号的各频带能量之间的方差.频带方差检测法的具体过程如下:

定义一个矢量: 023{(),(),(),.....,()}n X x x x x ωωωω=,其中的分量()n x ω定义为中心频率为n ω的滤波器的输出能量,它可以根据一帧信号通过一个带通滤波器来计算,也可以首先计算一帧信号的FFT,然后把某几个频率分量组合而成..

定义均值: 1

11()N i

i E x N ω?==∑ (4) 则频带方差为: 1

2

11[()]N i

i D x E N ω?==?∑ (5) 式中, ()i x ω是每一帧语音信号FFT 频谱值.从以上计算股市可以看出,频带方差相当于”交流能量”,它包含了2个信息:各频带间的起伏程度和这一帧信号的短时能量.能量越大起伏越激烈,D 值就越大,这正是语音的特点;反之,对于噪声,能量越小,起伏越平缓,D 值越小.因此,完全可以利用短时频带方差来判断语音的起止点.在基于短时能量和过零率端点检测方法中,由于清音和噪声段的能量很相近,造成了一些错误的划分.而采用频带方差法,对于频谱分布比较均匀的噪声,如白噪声,其频谱方差就比较小,而对于清音和浊音,其频带方差都比噪声段大,因此可以更好地检测出语音段.

2.3基于熵的检测方法

在信息论中,Shanon 为了定量度量信息量,引入了熵的概念。对于一个随机事件,设

它有N 个可能的结局,,2,1......,N S S S ,每一个结局出现的概率分别是,,2,1......,N P P P 为了度量这一随机事件含有不确定性,Shannon 引入了熵函数[11][12]。

))((log )(1

2∑=?=N

i i i S P S P k H (6)

其中,k 是大于零的恒量,一般取k =1,而10??i P 。且当i P =0时,有:

0))((log *)(2=i i S P S P ,∑=i

i

S P 1)( (7) 根据信息熵的定义,把它用到语音中,用来构造一个语音信息熵函数,以判断语音和噪声。当把语音帧的标准化幅度谱)(i X 看作一个概率分布时,谱域的熵计算可以用取第i 个幅度谱的概率来代替取第i 个信源符号的概率)(i S P ,即用∑=i i X i X i X P 222)()

())((来表示[13]。

那么,语音谱的熵可以表示如下:

))((log *))((2

22i X P i X P H i ∑?= (8)

相对于背景噪声而言,语音信号中的语音段幅度的动态范围比较大,因此直观地说,可以认为语音段在信号在中的随机事件多,故平均信息量大,也就是熵值大。而静音段的幅度变化小,分布相对集中,因而熵值小。

谱熵分布是在语音静音检测算法中有应用前途的特征量。实验证明,当背景噪声为非平稳噪声或机器噪声时,基于熵的语音活动性检测算法比基于其他特征量的算法更可靠。这种算法对噪声强度变化并不敏感,而只对噪声谱自然特性的变化敏感。

2.4基于倒谱的检测方法

倒谱能很好表示语音的特征[14] ,在强噪声环境下,常常采用倒谱系数来作为端点检测的特征量。信号的复倒谱定义为信号的能量谱密度函数()S ω的对数的傅里叶级数,log ()S ω的傅里叶级数展开式为[14],

log ()()jn N S c n e

ωω∞?=?∞=

∑ (9) 式中,()()c n c n =?为实数,通常称为倒谱系数,且 1(0)log ()2c S d ππωωπ

?=∫ (10) 对于一对谱密度函数()S ω与'

()S ω ,根据 Parseval 定理,用谱的倒谱距离表示对数谱的均方距离[15]为: 2

2

''1|log ()log ()|()2cep n n n d S S d c c ππωωωπ

∞?=?∞=?=?∑∫ (11) 式中,n c 与'n c 分别表示谱密度()S ω和'()S ω的倒谱系数。对数谱的均方距离表示两个信

号谱之间的差别,故可以用来作为判决门限。实际上,由于0c 包含信号能量信息,基于能量的端点检测可以看作倒谱距离的一个特例。

倒谱距离的测量法步骤类似于基于能量的端点检测,但是将倒谱距离代替短时能量来作为门限。首先,假设前几帧倒谱矢量的平均值可以估计背景噪声的倒谱矢量,对于非平稳噪声,为了使判决门限适应噪声的变化,在噪声帧应对估计的噪声倒谱系数进行更新,采用平滑的方法[16],更新的原则是:

(1)t c pc p c =+? (12) 式中,c 为噪声帧倒谱矢量的近似值,t c 为当前测试帧的倒谱矢量,p 为更新因子。

式(3)表示的倒谱距离可以利用式(5) 可以近似如下[14]:

'

cep d = (13) 式中'n c 为对应于c 的噪声倒谱系数,计算所有测试帧与背景噪声之间的倒谱距离可以得到倒谱距离轨迹。

事实上,这一方法类似于基于能量的端点检测过程,利用倒谱距离轨迹可以检测语音的端点。然而当信号存在严重失真时会给端点检测带来困难,难以选择适当的门限。实验发现

[16],倒谱特征参数的语音信号端点检测方法在噪声环境下具有传统的能量方法无法比拟的优越性。

2. 5 其他方法

除了以上几种方法之外,还有基于小波方差,小波系数方差,各种综合参数和应用模型匹配的方法。模型匹配的方法主要是对带噪语音和纯噪声信号分别建立统计模型.根据检测到的某些特征量分别计算出在带噪语音模型和纯噪声模型条件下的概率,最后通过对这两个不同概率的比较做出最后的有声和无声判决.比如基于HMM 模型的检测方法[18],是语音信号端点检测中的重要方法,该方法先用训练的方法生成背景噪声和废料的模型参数,再用Viterbi 解码算法对待测信号进行分解,求出语音的哪些语音帧与背景噪声相匹配,哪些与废料相匹配,从而得出端点所在处。实验表明[17],这种方法的准确率明显高于基于能量的方法。但是HMM 的训练环境通常与实际被测信号的语音环境会有很大的差异,即背景噪声模型与实际情况不符合,此时性能会显著下降。

3. 研究方法总结与展望

随着越来越多的学者对语音端点检测技术的关注,大量的新的语音端点检测算法相继

被提出。通过大量的文献调研与实际研究发现,现有的各种语音信号端点检测技术都存在各自的不足。对于语音信号在低信噪比时的端点检测的研究有待进一步深入研究。根据语音信号的特点可以从两个大的方向入手。一个是努力寻求新的特征参数,另一个是利用现有的特征参数进行多特征融合。

参考文献

[1] Junqua J C. Robustuess and Cooperative Multimodel Man – machine Communication Applications[M] . Proc. Second Venaco Workshop and ESCA ETRW. 1991. 9.

[2] He Suning , Yu Juebang. A Novel Chinese Continuous Speech End2point Detection Method Based on Time Domain Features of the WordStructure [J ] . IEEE Int . Conf . on Commun. Circuits and Systems and West Sino Expositions , 2002. 992 - 996.

[3] Haigh J A,Mason J S.Robust V oice Activity Detection Using Cepstral Features[J].Computer,Communication,Control and Power Engineering.Proceedings of the IEEE Region 10 Conference TENCON,1993.

[4] CHOI S-J, WOODS JW. Motion Compensated 3-D Subband Coding of Video[J]. IEEE Transactions on Image Processing, 1999, 8(2): 155-167.

[5] 陈斐利,朱杰. 一种新的基于自相关相似距离的语音信号端点检测方法[J ] . 上海交通大学学

报,1999 ,33(9) :1097 - 1099.

[6] Abdallah I , Montresor S , Baudry M. Robust SpeechPnon – speech Detection in Adverse Conditions Using

an Entropy Based Estimator[C ] . In : International Conference on Digital Signal Processing ,1997. 757 - 760.

[7] Rabiner L.R.,Sambur M.R.An algorithm for determining the endpoints of isolated utterance.Bell

Syst.Tech.,1975,vol.54,pp:297-315.

[8] L.R.Rabiner,R.W.Schafer.语音信号数字处理.科学出版社,北京,1983.

[9] Wu Yadong , Li Yan. Robust SpeechPnon - speech Detection in Ad2 verse Conditions Using the Fuzzy Polarity Correlation Method [ J ] .IEEE Int . Conf . on Systems , Man and Cybernetics , Nashville , TN ,USA , 2000. 2935 - 2939.

[10] Seneff S. Real - time Harmonic Pitch Detector[J ] . IEEE Transaction on Acoustics , Speech and Signal Processing , 1978 , 26 (4) : 358 -365.

[11] 信息论与编码,重庆大学出版社,余成波,2002

[12] 吴伟陵. 信息处理与编码. 人民邮电出版社,北京, 2003.

[13] L.S. Huang,C.H. Yang. A novel approach to robust speech endpoint detection in car environment. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing , 2000, vol. 3, pp. 1751-1754.

[14] L. R. Rabiner, B. H. Juang. Fundamentals of speech recognition. Murray Hill, New Jersey ,USA ,1993

[15] Chang H Y,Soo N K,Susanto R.An invertible frequency eigendomain transformation for masking.-based sub.space speech enhancement[J].IEEE Singal Processing Letters,2005,12:461—464

[16] 易克初,田斌,付强. 语音信号处理[M] . 北京:国防工业出版社,2000.

[17]朱杰,韦晓东. 噪声环境中基于HMM模型的语音信号端点检测方法[J ] . 上海交通大学学报,1998 ,

32(10) : 14 - 16.

A Study of methods of speech endpoint detection

Shen Hongli, Zeng Yumin, Li Ping, Wan Peng

School of Physics and Technology, Nanjing Normal University, Nanjing (210097)

A bstract

various Speech endpoint detection is a very important part in speech recognition.Effective endpoint detection can not only reduce the processing time but also enhance the quality of system.In the mean time,it can suppress interference of noise in silent segment and strengthen the rate of recognition in the later parts.speech endpoint detection is such a research subject which still need further study so far.In tihsi article,Methods of speech endpoint detection are discussed ,meantime,their advantages and disadvantages are analysed.for instance,the classic detection method based on short time energy and rateof zero crossing、the method based on frequency variance、the algorithm based on entropyand the method based on the cepstrum distance and so on.finally, all of those methods are generalized,it will have a great significance in futher research of speech endpoint detection.

Keywords: speech signal; endpoint detection; noise

基于MATLAB的语音信号的基音周期检测

基于MATLAB的语音信号的基音周期检测 摘要:MATLAB是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB将要性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制系统和信息处理等领域的分析、仿真和设计工作。 MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。由于信号与系统课程的许多内容都是基于公式演算,而MATLAB 借助符号数学工具箱提供的符号运算功能,基本满足设计需要。例如:解微分方程、傅里叶正反变换、拉普拉斯正反变换和Z正反变换等。MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。 本次课程设计为语音信号的基音周期检测,采集语音信号,对语音信号进行处理,区分清音浊音,并通过对采样值进行滤波、分帧、求短时自相关函数,得到浊音的基音周期。 关键字:清音、浊音、基音周期、基音检测、自相关函数

目录 1 概述 (1) 2 AMDF算法原理及实现 (1) 2.1 AMDF算法源程序 (2) 3 ACF算法原理及实现 (4) 3.1 用短时平均能量进行清/浊音的判断 (4) 3.2 自相关函数基音检测的原理 (6) 3.3 算法实现及相关程序 (6) 3.3.1 带通滤波 (7) 3.3.2 取样与分帧 (7) 3.3.3 短时能量分析 (8) 3.3.4 自相关函数分析 (11) 4 总结与心得体会 (13) 参考文献 (13)

1 概述 基音周期检测也称为基频检测(Pitch Detection) ,它的目标是找出和声带振动频率完全一致的基音周期变化轨迹曲线,或者是尽量相吻合的轨 迹曲线。基音周期检测在语音信号的各个处理领域中,如语音分析与合成、有调语音的辨意、低速率语音压缩编码、说话人识别等都是至关重要的,它的准确性及实时性对系统起着非常关键的作用,影响着整个系统的性能。 浊音信号的周期称为基音周期, 它是声带振动频率的倒数, 基音周期的估计称为基音检测。基音检测是语音处理中的一项重要技术之一, 它在有调语音的辨意、低速率语音编码、说话人识别等方面起着非常关键的作用; 但在实现过程中, 由于声门激励波形不是一个完全的周期脉冲串, 而且声道的影响很难去除、基音周期的定位困难、背景噪声的强烈影响等一系列因素, 基音检测面临着很大的困难。而自相关基因检测算法是一种基于语音时域分析理论的较好的算法。 本文在对AMDF、ACF基音检测算法基本原理进行分析的基础上,对此算法进行了深入的探讨,针对以往研究中存在的问题加以改进,给出了一种方便、快捷的检测方案。综合考虑了检测准确度和检测速率两方面的因素,然后通过对一段具体的语音信号进行处理,较准确地得到浊音语音信号的基音周期。 2 AMDF算法原理及实现 语音信号{s(n))的短时平均幅度差函数(AMDF)定义为:

语音端点检测方法研究

语音端点检测方法研究1 沈红丽,曾毓敏,李平,王鹏 南京师范大学物理科学与技术学院,南京(210097) E-mail:orange.2009@https://www.wendangku.net/doc/4c3651797.html, 摘要: 端点检测是语音识别中的一个重要环节。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题.鉴于此,本文介绍了语音端点算法的基本研究现状,接着讨论并比较了语音信号端点检测的方法,分析了各种方法的原理及优缺点,如经典的基于短时能量和过零率的检测方法,基于频带方差的检测方法,基于熵的检测方法,基于倒谱距离的检测方法等.并基于这些方法的分析,对端点检测方法做了进行了总结和展望,对语音信号的端点检测的进一步研究具有深远的意义。 关键词:语音信号;端点检测;噪声 中图分类号:TP206. 1 1. 引言 语音信号处理中的端点检测技术,是指从包含语音的一段信号中确定出语音信号的起始点及结束点。语音信号的端点检测是进行其它语音信号处理(如语音识别、讲话人识别等)重要且关键的第一步. 研究表明[1],即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的关键性不容忽视,尤其是噪声环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。 确定语音信号的起止点, 从而减小语音信号处理过程中的计算量, 是众多语音信号处理领域中一个基本而且重要的问题。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题。 2. 语音端点检测主要方法和分析 在很长一段时间里,语音端点检测算法主要是依据语音信号的时域特性[2].其采用的主要参数有短时能量、短时平均过零率等,即通常说的基于能量的端点检测方法。这些算法在实验室环境下具有良好的性能,但在噪声环境下,则无法达到其应有的效果。近年来,随着通信业的迅猛发展,又出现了很多的语音端点检测算法。它们主要是通过采用各种新的特征参数,以提高算法的抗噪声性能。如基于倒谱系数[3]、频带方差[4]、自相关相似距离[5] 、信息熵[6]等也逐渐的被应用到端点检测中。有时,还通过将信号的几种特征组合成为一个新的特征参数来进行端点检测。 2.1基于短时能量和短时平均过零率的检测方法 该方法也称为双门限比较法,它是在短时能量检测方法的基础上,加上短时平均过零率,利用能量和过零率作为特征来进行检测.在信噪比不是很低的情况下,根据语音信号的能量大于噪声噪声能量的假设,通过比较输入信号的能量与语音能量阈值的大小,可以对语音段和非语音段加以区分[7].输入每帧信号的能量可由下式得到[7-8]: 1本课题得到江苏省普通高校自然科学研究计划资助项目(项目批准号:07KJD510110)的资助。

语音信号基音周期检测的matlab程序

function nmax=find_maxn(r) %寻找峰值最大的n值及基音周期 %r,自相关序列 %maxn,为峰值最大的n zer=find(r==0); %找第一个零点如果存在 jiaocha=0; %找第一近零点 ii=1; while (jiaocha<=0) if(r(ii)>0 && r(ii+1)<0 && (ii+1)0 %检查是否存在零点 if zer(1)

噪音检测报警系统的设计与研究毕业设计DOC.doc

噪音检测报警系统的设计与研究 学生:XX 指导老师:XX 内容摘要:本文以AT89S52 单片机为控制核心,通过播音判断电路寻找广播间歇时段,实时采集噪声环境内的噪音信号,根据A/ D 转换后的噪音电平值计算出复杂环境下噪声信号的平均功率;根据噪声信号的功率大小自适应地控制大厅环境内的广播音量,实现了复杂噪声环境下自适应音量控制系统。该系统的硬、软件设计简单,性能良好,价格低廉。实验结果表明,该系统实现了预期功能,自适应效果良好,性价比较高,具有良好的推广价值。 关键词:语音判断噪音采集自适应音量控 AT89S52单片机

An adaptive volume cont rol AT89S52 MCU system based on noise collection is int Abstract:roduced. By looking forbroadcasting intermittent period using the voice judge circuit ,complicated noise signal at hall environment is sampledreal2time. Through A / D conversion and calculation ,the average power of noise signal can be measured. According tothe average power of noise signal ,an adaptive volume cont rol system at complicated noise environment is designed. Thedesign of hardware and sof tware is simple and cost performance is good. Experimental result s show that the whole system can adaptive adjust s volume according to the environment noise signal , and it s engineering value is good. Keywords:voice detection noise sampling adaptive volume cont rol AT89S52

基于自相关法的语音基音周期估计

综合实验报告 自相关法及其变种 学院电子与信息学院专业信息与信号处理学生 学生学号 提交日期2013年7月10日

一、实验目标 1.1 了解语音基音周期估计方法,掌握自相关法估计基音周期的原理,分析其变种。 二、实验基础知识 2.1 基音与基音周期估计 人在发音时,根据声带是否震动可以将语音信号分为清音跟浊音两种。浊音又称有声语言,携带者语言部分的能量,浊音在时域上呈现出明显的周期性;而清音类似于白噪声,没有明显的周期性。发浊音时,气流通过声门使声带产生弛震荡式振动,产生准周期的激励脉冲串。这种声带振动的频率称为基音频率,相应的周期就成为基音周期。 基音周期的估计称谓基音检测,基音检测的最终目的是为了找出和声带振动频率完全一致或尽可能相吻合的轨迹曲线。 基因周期作为语音信号处理中描述激励源的重要参数之一,在语音合成、语音压缩编码、语音识别和说话人确认等领域都有着广泛而重要的问题,尤其对汉语更是如此。汉语是一种有调语言,而基因周期的变化称为声调,声调对于汉语语音的理解极为重要。因为在汉语的相互交谈中,不但要凭借不同的元音、辅音来辨别这些字词的意义,还需要从不同的声调来区别它,也就是说声调具有辨义作用;另外,汉语中存在着多音字现象,同一个字的不同的语气或不同的词义下具有不同的声调。因此准确可靠地进行基音检测对汉语语音信号的处理显得尤为重要。 2.2 基音周期估计的现有方法 到目前为止,基音检测的方法大致上可以分为三类: 1)时域估计法,直接由语音波形来估计基音周期,常见的有:自相关法、并行处理法、平均幅度差法、数据减少法等; 2)变换法,它是一种将语音信号变换到频域或者时域来估计基音周期的方法,首先利用同态分析方法将声道的影响消除,得到属于激励部分的信息,然后求取基音周期,最常用的就是倒谱法,这种方法的缺点就是算法比较复杂,但是基音估计的效果却很好; 3)混合法,先提取信号声道模型参数,然后利用它对信号进行滤波,得到音源序列,最后再利用自相关法或者平均幅度差法求得基因音周期。 三、实验原理 3.1 自相关函数 能量有限的语音信号x(n)的短时自相关函数定义为: 此公式表示一个信号和延迟m 点后该信号本身的相似性。如果信号x(n)具有周期性,那么它的自相关函数也具有周期性,而且周期与信号x(n)的周期性相同。自相关函数提供了一种获取周期信号周期的方法。在周期信号周期的整数倍上,它的自相关函数可以达到最大()()()n n R m x n x n m =+∞=-∞ =+∑

基于hough变换的防噪声快速圆检测方法研究

基于hough变换的防噪声快速圆检测方法研 究 摘要:传统的hough变换在进行圆检测存在诸多问题,如计算量大、存储空间大、对于需要使用导数或梯度信息的算法而言,往往对图像中的噪声比较敏感等问题。本文针对传统hough变换的缺点提出一种基于hough变换防噪声圆检测方法,本方法在有噪声的图像中也能够快速准确的检测出圆的位置。 关键字:hough变换;圆检测;形态学;防噪声。 1引言 Hough变换是图像处理中的一个经典的检测几何图形的算法,而在一维几何图形其检测上的效果相当明显。但它在检测圆形上,计算量就会变得很大。而且在一定的条件下,不能有效防止噪声的干扰导致检测的鲁棒性低。针对这些问题在秦开怀等提出了一种基于hough变换的圆检测做了一些改进,先利用Canny算子做边缘提取,得到闭合的轮廓曲线,再利用形状角对轮廓曲线进行粗分类,然后再利用hough变换进行圆((x-a)2+(y-b)2=r2)检测,得到不错的效果。但是这种方法在有一定的噪声的图像中,检测的效果并不是很好。本文提出一种基于hough变换的防噪声快速圆检测方法,由于利用Canny算子在有噪声图像上做边缘提取效果并

不好。本文利用形态学防噪声的边缘提取这样在有效防止噪声的提取出有效的图像边缘;而利用传统hough变换进行圆()检测,则需要在三维空间上去求最多个数的交点,这就要求在计算机中申请三维的计数器,从而使得计算量非常之大,对计算机配置要求很高。由于针对一些实际检测中我们大致可以事先预测检测圆的大小,所以本文先给定圆的半径,将三维的计算器变为二维,再来进行检测。这样有效的减少了计算量,并且检测精度也有一定的提高。 2、防噪声的形态学边缘提取 形态变换包括腐蚀与膨胀,形态学的其它运算都是由这两种基本运算复合而得到的,主要有开( Open)、闭( Close),闭- 开和开- 闭等复合形态运算。 又是由膨胀和腐蚀来定义的,而形态学的边缘提取可以通过开闭运算来得到,这样经过多次的开闭运算得到图像的边缘能够有效防止噪声的干扰。本文通过上述的思想提出了一种多尺度结构元抗噪形态边缘检测算法。算法是结合均值的思想,采用多个结构元再结合开闭操作提出了形态学边缘提取,可以在滤除不同类型和大小噪声同时,充分保持图像的各种细节。 3、基于hough变换的防噪声快速圆检测方法 Hough变换对圆的检测的基本思想是将图像空间中满足圆的基本几何条件的边缘点连接起来的一种方法,它将图

华南理工大学_语音信号实验二:基音周期估计

华南理工大学《语音信号处理》实验报告 实验名称:基音周期估计 姓名: 学号: 班级:11级电信6班 日期:2014年3 月

1.实验目的 本次试验的目的是通过matlab编程,验证课本中基音周期估计的方法,本实验采用的方法是自相关法。 2. 实验原理 1、基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。 2、自相关函数 对于离散的语音信号x(n),它的自相关函数定义为: R(k)=Σx(n)x(n-k), 如果信号x(n))具有周期性,那么它的自相关函数也具有周期性,而且周期与信号x(n)的周期性相同。自相关函数提供了一种获取周期信号周期的方法。在周期信号周期的整数倍上,它的自相关函数可以达到最大值,因此可以不考虑起始时间,而从自相关函数的第一个最大值的位置估计出信号的基音周期,这使自相关函数成为信号基音周期估计的一种工具。

噪声监测方法

噪声监测方法 环境噪声监测的目的和意义:及时、准确地掌握城市噪声现状,分析其变化趋势和规律;了解各类噪声源的污染程度和范围,为城市噪声管理、治理和科学研究提供系统的监测资料。 一、城市环境噪声测量方法 城市环境噪声监测包括:城市区域环境噪声监测、城市交通噪声监测、城市环境噪声长期监测和城市环境中扰民噪声源的调查测试等。 基本测量仪器为精密声级计或普通声级计。仪器使用前应按规定进行校准,检查电池电压,测量后要求复校一次,前后灵敏度不大于2dB,如有条件,可使用录音机、记录器等。 (一)城市区域环境噪声监测 布点:将要普查测量的城市分成等距离网格(例如500m×500m),测量点设在每个网格中心,若中心点的位置不宜测量(如房顶、污沟、禁区等),可移到旁边能够测量的位置。网格数不应少于100个。 测量:测量时一般应选在无雨、无雪时(特殊情况除外),声级计应加风罩以避免风噪声干扰,同时也可保持传声器清洁。四级以上大风应停止测量。 声级计可以手持或固定在三角架上。传声器离地面高1.2米。放在车内的,要求传声器伸出车外一定距离,尽量避免车体反射的影响,与地面距离仍保持1.2米左右。如固定在车顶上要加以注明,手持声级计应使人体与传声器距离0.5米以上。 测量的量是一定时间间隔(通常为5秒)的A声级瞬时值,动态特性选择慢响应。 测量时间:分为白天(6:00-22:00)和夜间(22:00-6:00)两部分。白天测量一般选在8:00-12:00时或14:00-18:00时,夜间一般选在22:00-5:00时,随地区和季节不同,上述时间可稍作更改。 测点选择:测点选在受影响者的居住或工作建筑物外1米,传声器高于地面1.2m以上的噪声影响敏感处。传声器对准声源方向,附近应没有别的障碍物或反射体,无法避免时应背向反射体,应避免围观人群的干扰。测点附近有什么固定声源或交通噪声干扰时,应加以说明。

语音端点检测方法研究

语音端点检测方法研究 文章在研究语音识别系统中端点检测基本算法的基础上,分别对利用双门限的端点检测方法、利用小波变换的端点检测方法、利用倒谱相关理论的端点检测方法原理进行了阐述和说明,并对几种端点检测方法的特点进行了分析。 标签:端点检测;双门限;小波变换;倒谱 1 概述 就一般情况下来讲,在语音通信过程当中,大多采用有线电话网的方式来进行,但是由于某些地区环境及场合需要等因素,则需要通过无线电台来作为通信方式。与此同时,在其实际应用过程中,整个通话过程由语音控制来实现。具体来讲,有线方说话时本地无线电台则处于发射状态,相对应来讲远端无线电台为接收状态,相反来讲,当有线方沉默的时候,无线电台工作状态发转。其中,语音端点检测方法和技术是关键,基于从某段语音信号当中来准确判断语音位置(起始点与终止点),从而有效地区分是否为语音信号这样的目的。该技术对于减少数据的采集量、降低或者排除噪声段的干扰以及提高系统识别性能等方面具有关键作用。 2 利用双门限进行语音端点检测 首先确定短时能量和短时过零率符合端点起点判定条件的帧,接着再根据短时过零率和短时能量符合端点终点判定条件的帧。除此之外,对于一些突发性噪声检测,比如由于门窗开关所引起的噪声,相对应来讲我们可以通过设置最短时间门限来进行判断。具体来讲,当处于静音这一语音信号端点检测段时,如数值比低门限还低,与此同时最短时间门限大于计时长度,那么我们基本上可以确定这是一段噪音。 双门限的检测算法结合了短时能量和短时过零率的优点,在得到的端点检测结果中,其精确度和浊音检测都能得到很好的保证。现在有很多的端点检测算法都是根据双门限的算法进行不同的改进,能使其各有优劣,从而适应于不同的情况和环境。 3 利用小波变换进行语音端点检测 小波变换属于时频分析的一种,具体来说是空间(时间)和频率的局部变换,因而能有效的从信号中提取信息。小波变换能将信号在时域中表现不了的特征在频域中表现出来。因此,利用小波变换的这一个特性,根据有效的说话人的声音数据和背景噪声数据的频谱存在明显差异的特征来进行端点检测。一般有效的说话人的声音数据的频谱分布范围很大,而且频率的值也很大。而背景噪声的频谱变化不大,而且值也较小。因此先将语音数据分帧,将分帧后的数据进行一次小波变换,再对小波变换后的数据计算方差,如果计算的结果大于一定的阈值,那

语音信号基音检测算法研究

语音信号基音检测算法研究 摘要:本文对倒谱法做了改进,在用倒谱法进行基音检测分析时,提出了一种功率谱二次处理的二次谱减法,该方法克服了倒谱法基音检测的抗噪能力低的弱点,在相同噪声环境下能更加精确地检测出语音信号的基音周期。 关键词:语音信号基音检测倒谱法二次谱减法 1、引言 近年来,基于线性预测和分析频谱的Mel倒谱系数在处理包含情感的语音识别中取得了很大的进步,能否把此种方法应用到相应状态下的基音检测中去,值得广大学者研究。国外很多学者采用实时监控情感变化,并把影响修正基音的轨迹加以平滑或者动态改变窗的宽度,可以明显降低上述影响。基音检测一直是语音信号处理的一大难题,短时自相关函数法、短时平均幅度差函数法、倒谱法、小波变换法等传统的经典基音检测方法,都有各自的用场,但同时也有其相应的不足。其中任一种方法都不能作为通用的方法,但若在基音检测过程中,对预处理和后处理上进行一些改进,且突破传统的语音模型,并适当考虑说话人的个体特征及发音时的情感力度对基音检频带内谱包络测的影响,定能提高基音检测的准确性及健壮性。 本文以语音信号的基音检测为研究对象,着重分析自相关函数法p倒谱法的定义为,时间序列的z变换的模的对数的逆z变换,该序列的倒谱的傅里叶变换形式为。落实到具体实现时,采用DFT来近似傅里叶变换,根据传统语音产生的模型及语音信号的短时性。在其频域内,语音信号短时谱等于激励源的频谱与滤波器的频谱的乘积,浊音信号短时谱中包含的快变化周期性细致结构,则必会对应着周期性脉冲激励的基频以及各次谐波。语音的倒谱是将语音的短时谱取对数后再进行IDFT来得到,所以浊音信号的周期性激励如果反映在倒谱上,便是同样周期的冲激。藉此,我们可从得到的倒谱波形中估计出基音周期。一般我们把倒谱波形中第二个冲激,认为是对应激励源的基频,即基音周期。下面列举出一种倒谱法求基音周期的框图(见图1) 。 3、改进算法的基音检测 当用无噪声的语音信号时,采用倒谱法进行基音检测还是很理想的。但是有加性噪声存在时,对数功率谱中的低电平部分会被噪声填满,从而掩盖了基音谐波的周期性。这也意味着倒谱的输入不再是单纯的周期性成分,而导致倒谱中的基音峰值变宽,而且受到噪声的污染,最终导致倒谱检测方法的灵敏度也随之下降。为此,本文提出了如下改进方法(图2): 此方法避p本文以语音信号的基音检测为研究对像,对短时自相关函数、倒谱法、这两种基音检测的方法的原理进行了分析。在此基础上,深入研究了倒谱法基音检测的算法。通过实验仿真,发现这种测量方法的不足;最后对这种算法进行了改进,在用倒谱法进行基音检测分析时,提出了一种功率谱二次处理的二次谱减法,该方法克服了倒谱法基音检测的抗噪能力低的弱点,在噪声环境相同的情况下能更加准确的检测出语音信号的基音周期,从而有效提高算法在基音检测时的准确性和抗噪性。 参考文献 [1]胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社,2000:116.126. [2]韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004,lO.39.

噪声系数的测量方法研究

龙源期刊网 https://www.wendangku.net/doc/4c3651797.html, 噪声系数的测量方法研究 作者:伍爽刘宇红 来源:《电脑知识与技术》2013年第31期 摘要:该文介绍了三种测量噪声系数的方法:增益法,Y因子法和冷源法。重点介绍了当我们做精确测量时Y因子法的不足和冷源法的突破以及给出了这两种方法的实际测试例子。 关键词:噪声系数测试;增益法;Y因子法;冷源法 中图分类号:TP301 文献标识码:A 文章编号:1009-3044(2013)31-7125-05 1 概述 随着雷达、卫星通信及无线通信技术的快速发展,器件的噪声对接收通道的影响越来越倍受产品研发人员的关注。任何有源器件都会引入额外的噪声,从而降低系统的性能。我们非常希望能降低和衡量噪声,而噪声系数是最常用的衡量系统噪声的值。因此精确的测试噪声系数非常重要。 2 噪声系数的测量方法 2.1.2 增益法局限 增益法是使用较广,相对成本较低的方法。使用信号源与频谱分析仪即可测量。测量的最大的局限性来自频谱分析仪的噪声基底。因为低增益、小噪声系数的被测件,其输出端的Pout(dBm/Hz)会很小,低于通常的频谱分析仪的噪底-145dBm/Hz,信号会淹没在噪声中,导致无法测量。基本上要使用增益法准确测量噪声系数,就要满足待测系统的输出噪声密度要比频谱仪的底噪高20dB以上。增益法只用于高增益,大噪声系数的测试。 同时频谱分析仪测试增益,真值和测试值也有一定的误差。这是因为热噪声功率[F=KTB]中,实际的等效噪声带宽和频谱仪测试时使用的信号带宽是有偏差的。有些频谱仪给出的修正,而有些频谱仪没有。如HP公司的频谱仪使用频谱仪的分辨带宽乘上1.2来计算,除此之外还要加上2.5dB修正。 2.1.3 增益法可行性分析 2.2 Y因子法 2.2.1 Y因子法概念

语音基音周期的估计

实验一离散数字信号的产生及其时域处理 学习实现实验1的内容,并且编制一个程序(m文件)产生5种信号,函数需要的参数可输入确定,并绘出其图形 1、单位抽样序列 在MATLAB中可以利用函数实现, %单位抽样序列函数% X=0:10; Y=[0 1 zeros(1,9)]; stem(X,Y,'r'); axis([-1,10,0,1]); title('单位抽样序列'); xlabel('n'); ylabel('δ*n+'); 图形如右: 2、单位阶越序列

在MATLAB中可以利用函数实现, 实现过程如下: %单位阶跃序列函数 K=-8:8; H=[zeros(1,8),ones(1,9)]; stem(K,H,'r'); axis([-8,8,0,2]); title('单位阶跃序列'); xlabel('n'); ylabel('u[n]'); 图形如下: 3、正弦序列,在MATLAB中实现过程如下:%正弦序列函数sin(2*pi*D/5+pi/4)%

D=-1:0.1*pi:8*pi; C=sin(2*pi*D/5+pi/4); stem(D,C,'filled'); axis([-1,10,-2,2]); title('正弦序列'); xlabel('n'); ylabel('sin(2*pi*D/5+pi/4)') 图形如下: 4、复指数序列,从幅度和相位进行分析,在MATLAB中实现过程如下:%复指数序列函数% n=[0:10]; x1=2*exp((-0.2+0.7*j)*n); x2=abs(x1); x3=angle(x1);

实验三语音信号的基音周期提取

实验三语音信号的基音周期提取 一、实验目的 1、熟练运用MATLAB软件的运用,学习通过MATLAB软件编程来进行语音信号的基因周期提取。 2、掌握语音信号的基音周期提取的方法,实现其中一种基频提取方法。 3、学会用自相关法进行语音信号的基因检测。 二、实验仪器设备及软件 MATLAB 三、实验原理 浊音信号的自相关函数在基因周期的整数倍位置上出现峰值,而清音的自相关函数没有明显的峰值出现。因此检测自相关函数是否有峰值就可以判断是清音还是浊音,而峰-峰值之间对应的就是基音周期。 影响从自相关函数中正确提取基音周期的最主要原因是声道响应。当基音的周期性和共振峰的周期性混在一起时,被检测出来的峰值可能会偏离原来峰值的真实位置。另外,在某些浊音中,第一共振频率可能会等于或低于基音频率。此时,如果其幅度很高,它就可能在自相关函数中产生一个峰值,而该峰值又可以同基音频率的峰值相比拟。 1、自相关函数 对于离散的语音信号x(n),它的自相关函数定义为: R(k)=Σx(n)x(n-k), 如果信号x(n))具有周期性,那么它的自相关函数也具有周期性,而且周期与信号x(n) 的周期性相同。自相关函数提供了一种获取周期信号周期的方法。在周期信号周期的整数倍上,它的自相关函数可以达到最大值,因此可以不考虑起始时间,而从自相关函数的第一个最大值的位置估计出信号的基音周期,这使自相关函数成为信号基音周期估计的一种工具。 2、短时自相关函数 语音信号是非平稳的信号,所以对信号的处理都使用短时自相关函数。短时自相关函数是在信号的第N个样本点附近用短时窗截取一段信号,做自相关计算所得的结果 Rm(k)=Σx(n)x(n-k) 式中,n表示窗函数是从第n点开始加入。

语音端点检测

目录 摘要........................................................................................ 错误!未定义书签。Abstract .................................................................................. 错误!未定义书签。第1章绪论.. (1) 1.1课题背景 (1) 1.2语音端点检测现状 (1) 1.3相关工作 (3) 1.4本文主要研究内容 (4) 第2章语音信号时频域分析及预处理 (5) 2.1语音信号简述 (5) 2.2语音信号分析 (5) 2.2.1 时域分析 (6) 2.2.2 频域分析 (6) 2.3语音信号分析处理 (8) 2.3.1 预加重 (8) 2.3.2 加窗分帧 (9) 2.4本章小结 (10) 第3章语音端点检测算法研究 (11) 3.1语音端点检测 (11) 3.1.1 简述 (11) 3.1.2 语音端点检测原理 (11) 3.1.3 语音端点检测算法及实施方案 (13) 3.2基于短时能量和短时过零率的语音端点检测 (14) 3.2.1 短时平均能量 (15) 3.2.2 短时过零率 (17) 3.2.3 基于短时能量和短时过零率的双门限端点检测 (19) 3.2.4 双门限语音端点检测实验 (20) 3.3基于倒谱特征的语音端点检测 (21) 3.3.1 倒谱特征 (21)

3.3.2 倒谱距离 (22) 3.3.3 倒谱距离的检测算法流程 (24) 3.3.4 基于倒谱特征的语音端点检测试验分析 (26) 3.4基于谱熵的语音端点检测 (27) 3.4.1 谱熵特征 (27) 3.4.2 基于谱熵的端点检测流程 (28) 3.4.4 基于谱熵特征的语音端点检测试验分析 (29) 3.5算法比较 (31) 3.6本章小结 (34) 结论.................................................................................... 错误!未定义书签。参考文献................................................................................ 错误!未定义书签。致谢.................................................................................... 错误!未定义书签。附录1..................................................................................... 错误!未定义书签。附录2..................................................................................... 错误!未定义书签。附录3..................................................................................... 错误!未定义书签。附录4..................................................................................... 错误!未定义书签。附录5..................................................................................... 错误!未定义书签。

基音周期检测算法比较

本科毕业论文 题目语音基音周期检测算法比较学院管理科学与工程学院 专业电子信息工程 班级 081信工(1)班 学号 200883082 姓名周刚 指导老师段凯宇讲师 二〇一二年六月

语音基音周期检测算法比较 摘要 基音周期作为语音信号处理中描述激励源的重要参数之一,广泛的应用于语音合成、语音编码和语音识别等语音信号处理等技术领域。准确可靠的对基音周期进行检测将直接影响整个语音处理系统的性能。 常用的基音检测算法对于纯净语音信号都能达到较好的检测效果。然而,实际当中的语音信号不可避免的会受到外界背景噪音的影响,使得这些检测算法的检测效果都不是很理想,为此本文用两种基本算法对语音信号滤波前后进行基音周期检测,在进行比较。 论文首先介绍了语音基音检测算法的研究背景极其重要意义。其次对现有的基音检测算法进行了归纳和总结,并详细的介绍本文将用的两种基本基音检测算法的基本原理及实现。最后在Matlab上对语音信号进行基音周期检测。 论文还完成了算法的程序设计,在Matlab7.0仿真环境下,对上诉算法进行仿真验证,并且在滤波前后做了对比实验。实验结果表明,经过滤波的语音信号基音周期检测的更加准确。 关键词:基音检测;自相关函数法;平均幅度差函数法;基音轨迹

Abstract Pitch as in speech signal processing is one of the important parameters to describe the excitation source, widely used in speech synthesis, speech coding and speech recognition speech signal processing technology. Accurate pitch period detection will directly affect the performance of the speech processing system. Commonly used algorithm for pitch detection for clean speech signal to achieve good detection effect. However, the actual speech signal will be inevitably influenced by external effects of background noise, so the detection algorithm to detect the effect is not very ideal, the paper use two basic algorithms before and after filtering the speech signal pitch detection, in comparison. The thesis first introduces the research background of speech pitch detection algorithm is very important. Next to the existing algorithm for pitch detection are summarized, and a detailed introduction to this article will use the two kinds of basic pitch detection algorithm is the basic principle and realization. Finally in Matlab on speech signal pitch period detection. The paper also finished programming algorithm, in the Matlab7.0 simulation environment, the algorithm is validated by simulation, and the contrast experiments were done before and after filtering. The experimental results show that, after the filtering of the speech signal pitch period detection is more accurate. Keywords: pitch detection; autocorrelation function; the average magnitude difference function method; pitch contrail

短时自相关函数法基音检测

专业班级 08级信息工程组别 成员 1、引言 人在发浊音时,气流通过声门使声带产生张弛振荡式振动,产生一股准周期脉冲气流,这一气流激励声道就产生浊音,又称有声语音,它携带着语音中的大部分能量。这种声带振动的频率称为基频,相应的周期就称为基音周期( Pitch) ,它由声带逐渐开启到面积最大(约占基音周期的50% ) 、逐渐关闭到完全闭合(约占基音周期的35% ) 、完全闭合(约占基音周期的15% )三部分组成。 当今主流的基音周期检测技术主要有时域的自相关法、频域的倒谱法、时频结合的小波变换分析方法以及在其基础上的衍生算法。本文所采用的方法是自相关法 2.设计思路 (1)自相关函数 对于离散的语音信号x(n),它的自相关函数定义为: R(k)=Σx(n)x(n-k), 如果信号x(n))具有周期性,那么它的自相关函数也具有周期性,而且周期与信号x(n)的周期性相同。自相关函数提供了一种获取周期信号周期的方法。在周期信号周期的整数倍上,它的自相关函数可以达到最大值,因此可以不考虑起始时间,而从自相关函数的第一个最大值的位置估计出信号的基音周期,这使自相关函数成为信号基音周期估计的一种工具。 (2)短时自相关函数 语音信号是非平稳的信号,所以对信号的处理都使用短时自相关函数。短时自相关函数是在信号的第N个样本点附近用短时窗截取一段信号,做自相关计算所得的结果 Rm(k)=Σx(n)x(n-k) 式中,n表示窗函数是从第n点开始加入。 3、程序代码 function pitch x=wavread('E:\luyin\wkxp.wav');%读取声音文件 figure(1); stem(x,'.'); %显示声音信号的波形 n=160; %取20ms的声音片段,即160个样点 for m=1:length(x)/n; %对每一帧求短时自相关函数 for k=1:n; Rm(k)=0; for i=(k+1):n; Rm(k)=Rm(k)+x(i+(m-1)*n)*x(i-k+(m-1)*n); end end p=Rm(10:n); %防止误判,去掉前边10个数值较大的点 [Rmax,N(m)]=max(p); %读取第一个自相关函数的最大点end %补回前边去掉的10个点 N=N+10;

噪声测量方法(自编)

噪声检测方法 1.简易级检测 常用普通声级计(也叫噪音计)检测设备的噪音。现场检测时,首先估算设备尺寸,然后确定测点的位置。 设被检测的设备最大尺寸为D,其测试点的位置如下: D<1米时,测试点离设备表面为30厘米。 D—1米时,测试点离设备表面为1米。 D>1米时,测试点离设备表面为3米。 一般设备,要选4个测试点,大型设备测6个点。 测试高度一般为:小设备为设备高度的2/3处;中设备为设备高度的1/2处;大设备为设备高度的1/8处。 一般来说,测试环境要求有时不易满足,这时测试仅起到估计作用。 添加背景噪声的限值和修正。 2.工程级检测 此方法利用规定的时间计权和通过倍频程来进行计算A计权值。根据噪声源的特性及工作环境来选择测量点和测量频率范围。 3.精密级检测 此方法要求在可控制声学环境下测量,如消音室、半消声室等的实验室条件下。 3.1背景噪声要求 在测量表面上所有传声器位置和测试频率范围内的每个频带,背景噪声级应比被测声源工作是的声压级低10dB。 3.2温度要求 测试时的空气温度范围是15~30℃。注:温度范围限定是为了保证对于不同噪声源的噪声测试时其偏差小于0.2dB。 3.3湿度修正 在空气温度范围是15~30℃,湿度的最大修正量近似为0.04dB,可以忽略不计。 3.4校准 每次测量前,应采用1级准确度的声校准器来校准传声器,条件允许时,在测量频率范围内一个或多个频率上进行整个测量系统的校验。 3.5被测声源的安装于运行 被测声源安装在支架或硬平面(地面或墙壁)上,且处于消声室中心位置。确保被测声源的辅助部件(电缆线)不向消声室辐射显著的声能;尽可能至于消声室外。 声源按操作规范运行。 3.6传声器位置 传声器应垂直指向测量表面。传声器的位置放于距中心点距离为大于0.5m。且测试4个方向,前、后、左、右,高度为声源设备的1/2处。 3.7测量数据 对中心频率等于或小于160Hz的频带,测量时间至少为30s,对A计权声压级和中心频率等于或大于200Hz的频带,测量时间至少为10s。 数据应至少在声源的5个周期上进行平均:

相关文档
相关文档 最新文档