文档库 最新最全的文档下载
当前位置:文档库 › 电力系统自动化

电力系统自动化

电力系统自动化
电力系统自动化

电力系统自动化课程设计

题目电力系统对称短路故障的计算机算法程序设计院系信息科学与电气工程学院

专业电气工程及其自动化

班级电气114

学生姓名符家志

学号110812434

12 月15 日至12 月26 日共 2 周

2014 年12 月26日

目录

1.Matlab和Microsoft Visual C++软件简介 (5)

1.1Matlab简介 (5)

1.2 Microsoft Visual C++的简介 (5)

2.电力系统短路故障的计算机算法程序设计 (7)

1短路的基本知识 (7)

2.计算项目条件 (8)

3.计算步骤 (8)

4.简化计算法 (9)

5.程序主框图及主要数据变量说明 (10)

6.计算电流及网络中的电流分布 (12)

7.程序流程图: (15)

8程序部分 (15)

总结 (18)

参考资料: (19)

1.Matlab和Microsoft Visual C++软件简介

1.1Matlab简介

在科学研究和工程应用中,往往要进行大量的数学计算,其中包括矩阵运算。这些运算

一般来说难以用手工精确和快捷地进行,而要借助计算机编制相应的程序做近似计算。目前流行用Basic、Fortran和c语言编制计算程序, 既需要对有关算法有深刻的了解,还需要熟练地掌握所用语言的语法及编程技巧。对多数科学工作者而言,同时具备这两方面技能有一定困难。通常,编制程序也是繁杂的,不仅消耗人力与物力,而且影响工作进程和效率。为克服上述困难,美国Mathwork公司于1967年推出了“Matrix Laboratory”(缩写为Matlab)软件包,并不断更新和扩充。目前最新的5.x版本(windows环境)是一种功能强、效率高便于进行科学和工程计算的交互式软件包。其中包括:一般数值分析、矩阵运算、数字信号处理、建模和系统控制和优化等应用程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。不过,Matlab作为一种新的计算机语言,要想运用自如,充分发挥它的威力,也需先系统地学习它。但由于使用Matlab编程运算与人进行科学计算的思路和表达方式完全一致,所以不象学习其它高级语言--如Basic、Fortran和C等那样难于掌握。实践证明,你可在几十分钟的时间内学会Matlab的基础知识,在短短几个小时的使用中就能初步掌握它.从而使你能够进行高效率和富有创造性的计算。Matlab大大降低了对使用者的数学基础和计算机语言知识的要求,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美

的图形拷贝,所以它的确为一高效的科研助手。自推出后即风行美国,流传世界。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分

析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。其中电力行业的专用工具箱SimPowerSystems也在电力系统分析与计算中发挥了重大作用。

1.2 Microsoft Visual C++的简介

Microsoft Visual C++是Microsoft公司推出的开发Win32环境程序,面向对象的可视化集成编程系统。它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过简单的设置就可使其生成

的程序框架支持数据库接口、OLE2,WinSock网络、3D控制界面。

它以拥有“语法高亮”,IntelliSense(自动编译功能)以及高级除错功能而著称。比如,它允许用户进行远程调试,单步执行等。还有允许用户在调试期间重新编译被修改的代码,而不必重新启动正在调试的程序。其编译及建置系统以预编译头文件、最小重建功能及累加连结著称。这些特征明显缩短程式编辑、编译及连结的时间花费,在大型软件计划上尤其显著。Visual Studio 是微软公司推出的开发环境,Visual Studio 可以用来创建Windows 平台下的Windows 应用程序和网络应用程序,也可以用来创建网络服务、智能设备应用程序和Office 插件。Visual Studio 是目前最流行的Windows 平台应用程序开发环境。目前已经开发到10.0 版本,也就是Visual Studio 2010。

Visual Studio 2008 包括各种增强功能,例如可视化设计器(使用.NET Framework 3.5 加速开发)、对Web 开发工具的大量改进,以及能够加速开发和处理所有类型数据的语言增强功能。Visual Studio 2008 为开发人员提供了所有相关的工具和框架支持,帮助创建引人注目的、令人印象深刻并支持AJAX 的Web 应用程序。

开发人员能够利用这些丰富的客户端和服务器端框架轻松构建以客户为中心的Web 应用程序,这些应用程序可以集成任何后端数据提供程序、在任何当前浏览器内运行并完全访问ASP NET 应用程序服务和Microsoft 平台。

2.电力系统短路故障的计算机算法程序设计

1短路的基本知识

1.1系统短路的特点

根据电力系统短路的特点,建立了合理的短路的数学模型,在此基础上,形成电力系统短路电流实用汁算方法;节点阻抗矩阵的支路追加法.编制了对任意一个电力系统在任意点发生短路故障时三相短路电流及其分布的通用计算程序该办法适用予各种复杂结构的电力系统.从一个侧面展示了计算机应用于电力系统的广阔前景.所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序使同学们对电力系统分析有进一步理解,同时加强计算机实际应用能力的训练。

电力系统的短路故障是严重的,而又是发生几率最多的故障,一般说来,最严重的短路是三相短路。当发生短路时,其短路电流可达数万安以至十几万安,它们所产生的热效应和电动力效应将使电气设备遭受严重破环。为此,当发生短路时,继电保护装置必须迅速切除故障线路,以避免故障部分继续遭受危害,并使非故障部分从不正常运行情况下解脱出来,这要求电气设备必须有足够的机械强度和热稳定度,开关电气设备必须具备足够的开断能力,即必须经得起‘可能最大短路的侵扰而不致损坏。

因此,电力系统短路电流计算是电力系统运行分析,设计计算的重要环节,许多电业设计单位和个人倾注极大精力从事这一工作的研究。由于电力系统结构复杂,随着生产发展,技术进步系统日趋扩大和复杂化,短路电流计算工作量也随之增大,采用计算机辅助计算势在并行。

1.2概念简介

短路:电力系统故障的基本形式。

短路故障:电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。

短路类型:4种。最多的短路类型:单相短路

对称短路(三相短路)、非对称短路(其余三种短路类型)。

断线故障(非全相运行、纵向故障):一相断线、二相断线。

不对称故障:非对称短路、断线故障

简单、复杂故障:简单故障指系统中仅有一处短路或断线故障;复杂故障指系统中不同地点同时发生不对称故障。

1.3短路原因、危害

原因:客观(绝缘破坏:架空线绝缘子表面放电,大风、冰雹、台风)、主观(误操作)。

危害:短路电流大(热效应、电动效应)、故障点附件电压下降、功率不

衡失去稳定、不对称故障产生不平衡磁通影响通信线路。

1.4解决措施:继电保护快速隔离、自动重合闸、串联电抗器等

短路计算重要性

1.5对任务所涉及的关键:电力系统无穷大容量供电系统,数学模型节点方程,短路

电流方程,阻抗矩阵

2.计算项目条件

2.1假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系

统阻抗要大得多.

具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以

的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.

2.2在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其

电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.

2.3短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时

的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.

3.计算步骤

3.1做出电力系统计算系统图

在计算用图中应包括与短路电流计算有关的全部电力元件(如系统、发电机、变压器、输电线路等),以及它们之间的连接关系。在元件旁边应注明它们的技术数据,如额定电压、额定容量、线路的长度及线路型号等。另外,在计算图上应标明短路点。为了便于计算,每个元件按顺序编号。

3.2计算各元件参数

根据给定的电力系统,首先确定是用标幺值的计算方法计算短路电流,还是用实际值计算的方法。一般在有两个及两个以上的电压等级情况下用标幺值的方法较实际值的方法计算简便,用实际值计算时,首先选定一个基准值(即电压等级),此基准值应选被计算短路电流短路点的电压等级,然后将其他电压等级所有的阻抗用变压器变比原理换算到基本级上来。用标幺值计算时,首先选定一个基准容量,此基准容量的选择应上“便于计算”,使x值小数点前后的0最少。一般选取整数,如:系统大,取Sb=1000MV A;

系统小,取Sb=100MV A.

3.3.基准电压一般选取平均电压:

Ub=Uav比额定电压高5%,Un(kV) 220 110 35 10 0.38 ;Uav(kV) 230 115 37

10.5 0.4 然后算出基准电流值。

3.4绘制等值网络图

绘制电力系统等值网络图的目的是便于短路电流计算。图中应标明各元件的序号及阻抗。

3.5网络化简

网络化简是将等值网络化简到最简单的形式,若有两个及两个以上的电源,则归并成一个电源。有并联的回路化简成串联。采取多电源归并成一个电源的方法,是因为我

们采取了一系列的假设条件,所以在计算中可以用电源的阻抗相并联的方法。

3.6进行短路电流计算

通过以上工作,把一个复杂的系统化简成只有一个等效元件的系统,等效元件的一端是综合电动势,另一端是综合阻抗和短路点,这样就可以用最简单的欧姆定律来计算短路电路,即I=E/X;式中E----系统电源对短路点的综合次暂态电动势,在化简计算中取1;X-----系统对短路点的综合阻抗。

必须注意:根据以上步骤,用实际值求得的短路电流,都是归算到基本级的数值,要想得到非基本级的短路电流,必须根据变压器的变比换算到要计算短路电流的那个电压等级。用标幺值方法计算求得的短路电流,要想得到实际值,还必须乘以相应电压等级的基准电流值。

4.简化计算法

即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.

在介绍简化计算法之前必须先了解一些基本概念.

4.1主要参数

Sd三相短路容量(MVA)简称短路容量校核开关分断容量

Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流

和热稳定

IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定

ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

x电抗(Ω)

其中系统短路容量Sd和计算点电抗x 是关键.

4.2.标么值

计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).

(1)基准

基准容量Sjz =100 MVA

基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV

有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

(2)标么值计算

容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.

电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ

4.3无限大容量系统三相短路电流计算公式

短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).

短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)

冲击电流有效值: Ic = Id *√1+2 (KC -1)2 (KA)其中KC 冲击系数,取1.8 所以 IC =1.52Id

冲击电流峰值

: Ic =1.41* Id*KC=2.55 Id (KA)

当1000KVA 及以下变压器二次侧短路时,冲击系数KC ,取1.3 这时:冲击电流有效值IC =1.09*Id(KA) 冲击电流峰值: ic =1.84 Id(KA)

掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.

一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.

下面介绍一种 “口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.

4.4简化算法

【1】系统电抗的计算

系统电抗,百兆为一。容量增减,电抗反比。100除系统容量

例:基准容量 100MVA 。当系统容量为100MVA 时,系统的电抗为XS*=100/100=1

当系统容量为200MVA 时,系统的电抗为XS*=100/200=0.5 当系统容量为无穷大时,系统的电抗为XS*=100/∞=0 系统容量单位:MVA

系统容量应由当地供电部门提供。当不能得到时,可将供电电源出线开关的开断容量

5.程序主框图及主要数据变量说明

5.1 利用节点阻抗矩阵计算短路电流如图所示,假定系统中的节点f 经过过渡阻抗发生短

路。对于正常状态的网络而言,发生短路相当于在故障节点f 增加了一个注入电流 。因此,网络中任一节点i 的电压可表示为:

公式一

f

I -∑∈-=G

j f

if j ij i

I Z I Z V

由式可见,任一节点电压i 的电压都由两项叠加而成。第一项是当 时由网络内所有电源在节点i 产生的电压,也就是短路前瞬间正常运行状态下的节点电压,记为 。第二项是当网络中所有电流源都断开,电势源都短接时,仅仅由短路电流 在节点i 产生的电压。这两个分量的叠加,就等于发生短路后节点i 的实际电压,即 公式二

公式二也适用于故障节点f ,于是有

是故障节点f 的自阻抗,也称输入阻抗。

方程式含有两个未知量 ,根据故障的边界条件:

由以上两个方程式解出:

5.2题目简图

)0(i

V f

I

f

if i i I Z V V -=)0(f

ff f f I Z V V -=)0(ff

Z f

f I V ,0=-f

f f I z V f

ff f f

z Z V I +=)0(

由MATLAB 求的导纳矩阵为:

Y= [-j13.872 0 j9.524 0 0 0 -j8.333 0 j4.762 0 J9.524 0 -j15.233 j2.296 j3.444 0 j4.672 j2.296 -j10.965 j3.936

0 0 j3.444 j3.936 -j7.357] Z 矩阵为:

Z=[j0.072 0 -j0.105 0 0 0 j0.120 0 -j0.214 0 -j0.105 0 j0.067 -j0.436 -j0.290 0 -j0.209 -j0.436 j0.091 -j0.254 0 0 -j0.290 -j0.254 j0.136]

6.计算电流及网络中的电流分布

6.1当节点5发生三相短路时,计算各参数

11d =11Y =-j13.872, 12U =14U =15U =0 13U =

13

11Y d =-0.687,22228.333d Y j ==-

33d =33Y -213U 11d =-j15.233-()20.68713.872j ?-=-j8.694

35

33

3.444

350.3968.693

j Y d j U

==

=--

34

33

2.296340.2648.693

j Y d j U

==

=--

320U =

22555535334544 2.918d Y U d U d j =-?-?=-

()

543435335444

0.634Y U U d U d -??=

=-

520U =,224444343324227.637d Y U d U d j =-?-?=-

42

4244

4.762

0.7396.446

Y j U d j =

==--

6.2阻抗矩阵元素计算

.

.

,

1233132 1.067V I Z Z I j =?+?=

2524450.124Z U Z j =-?=

1513350.133Z U Z j =-?=,44455444

1

0.269Z U Z j d =-?=

34434435450.157Z U Z U Z j =-?-?=

2442440.154Z U Z j =-?=,1413340.08979Z U Z j =-?=

334334355333

1

0.233Z U Z U Z j d =-?-?=

2324340.0898Z U Z j =-?=,1313330.160Z U Z j =-?=

222442221

0.208Z U Z j d =-?=,1213320.0617Z U Z j =-?= 11133111

1

0.182Z U Z j d =-?=

6.3节点注入电流源计算时,取.

1E =.

2E =j1.05

()..

11''1 4.565d G E I jx =

=,()

.

.

2

2''

2 3.75d G E I jx == 节点电压初值

..

,

1233132 1.067V I Z Z I j =?+?= .

.

,

1244142 1.069V I Z Z I j =?+?= .

.

,

1255152 1.071V I Z Z I j =?+?=

,.

5

55

3.126f V I Z ==

(注意:,i V =0)

,111i f V V Z I =-?

,222i f V V Z I =-? ,333i f V V Z I =-? ,444i f V V Z I =-? ,555i f V V Z I =-?

()

545445

V V I Z -=

()434343V V I Z -=

()

434343

V V I Z -=

()

121212

V V I Z -=

()

242424

V V I Z -=

6.4阻抗矩阵Z=[j0.182 j0.0617 j0.160 j0.0898 j0.133

j0.0617 j0.208 j0.0898 j0.154 j0.124 j0.160 j0.0898 j0.233 j0.157 j0.193 j0.0898 j0.154 j0.157 j0.269 j0.217 j0.133 j0.124 j0.193 j0.217 j0.343]

6.5对ii d 取其倒数存放在对角线位置,得到因子表如下:

[j0.072 0 -0.687 0 0 0 0.208 0 -0.739 0 -0.687 0 j0.115 -0.264 -0.396 0 -0.739 -0.264 j0.155 -0.808 0 0 -0.396 -0.808 j0.167]

7.程序流程图:

8程序部分

程序如下:

function jd=input('please input jd=');

jd=input('please input jd=');

if jd==1

Y=[-j13.872,0,j9.524,0,0;0,-j8.333,0,j4.762,0;j9.524,0,-j15.233, j2.296,j3.444;0,j4.672,j2.296,-j10.965,j3.936;

0,0,j3.444,j3.936,-j7.357];

inv(Y);

I=1.05/j0.182;

V1=0;

V2=1.05-0.0617j*I;

V3=1.067-0.160j*I;

V4=1.069-0.0898j*I;

V5=1.071-0.133j*I;

I54=(V5-V4)/0.254j;

I43=(V4-V3)/0.436j;

I24=(V2-V4)/0.254j;

I13=(V1-V3)/0.104j;

I35=(V3-V5)/0.290j;break,end

if jd==2;

Y=[-j13.872,0,j9.524,0,0;0,-j8.333,0,j4.762,0;j9.524,0,-j15.233, j2.296,j3.444;0,j4.672,j2.296,-j10.965,j3.936;

0,0,j3.444,j3.936,-j7.357];

inv(Y);

I=1.05/0.208j;

V1=1.05-0.0617j*I;

V2=0;

V3=1.067-0.0898j*I;

V4=1.069-0.154j*I;

V5=1.071-0.124j*I;

I54=(V5-V4)/0.254j;

I43=(V4-V3)/0.436j;

I24=(V2-V4)/0.254j;

I13=(V1-V3)/0.104j;

I35=(V3-V5)/0.290j;break,end

end

if jd==3;

Y=[-j13.872,0,j9.524,0,0;0,-j8.333,0,j4.762,0;j9.524,0,-j15.233, j2.296,j3.444;0,j4.672,j2.296,-j10.965,j3.936;

0,0,j3.444,j3.936,-j7.357];

inv(Y);

I=1.067/0.233j;

V1=1.05-0.160j*I;

V2=1.05-0.0898j*I;

V3=0;

V4=1.069-0.157j*I;

V5=1.071-0.193j*I;

I54=(V5-V4)/0.254j;

I43=(V4-V3)/0.436j;

I24=(V2-V4)/0.254j;

I13=(V1-V3)/0.104j;

I35=(V3-V5)/0.290j;break,end

end

if jd==4;

Y=[-j13.872,0,j9.524,0,0;0,-j8.333,0,j4.762,0;j9.524,0,-j15.233, j2.296,j3.444;0,j4.672,j2.296,-j10.965,j3.936;

0,0,j3.444,j3.936,-j7.357];

inv(Y);

I=1.069/0.269j;

V1=1.05-0.0898j*I;

V2=1.05-0.154j*I;

V3=1.067-0.157j*I;

V5=1.071-0.217j*I;

I54=(V5-V4)/0.254j;

I43=(V4-V3)/0.436j;

I24=(V2-V4)/0.254j;

I13=(V1-V3)/0.104j;

I35=(V3-V5)/0.290j;break,end

end

if jd==5;

Y=[-j13.872,0,j9.524,0,0;0,-j8.333,0,j4.762,0;j9.524,0,-j15.233, j2.296,j3.444;0,j4.672,j2.296,-j10.965,j3.936;

0,0,j3.444,j3.936,-j7.357];

inv(Y);

I=1.071/0.343j;

V1=1.05-0.133j*I;

V2=1.05-0.124j*I;

V3=1.067-0.193j*I;

V4=1.069-0.217j*I;

V5=0;

I54=(V5-V4)/0.254j;

I43=(V4-V3)/0.436j;

I24=(V2-V4)/0.254j;

I13=(V1-V3)/0.104j;

I35=(V3-V5)/0.290j;break,end

end

else

c=error

end

总结

经过两个星期的工作,对于短路电流的计算机算法,起初我是没有任何概念,也没有任何方向,开始能做的就只有找资料,到处查阅相关资料,在查阅的过程中发先关于这方面的资料少之又少,开始尝试在Matlab中进行仿真计算,但开始的考虑方向是编写程序,但编写程序来说是一个相当复杂的工作,但为了应付作业,没有办法只有复制网上自己懂都不懂的程序草草了事,最后指导老师讲解了一些具体的要求后,方向又渐渐明晰了,开始把考虑方向放在了建模上,Simulink组件的SimPowerSystems工具箱成为了我考虑的重点,开始试着在里面进行建模,开始就是把题给模型搬到了Simulink中,但根本没有考虑能否运行,再次思考后,发现应该是三相的电力系统模型,于是又在里面搭起了三相模型,花了很的的功夫把模型搭建好后,并且相当的繁琐,还是不能运行,并且错误很多,我也很茫然了,于是找到了指导老师高老师,经过他的点拨后我又明白了很多,虽然没有全明白,首先存在的问题装的软件版本过低,于是装了一个高版本的,还有就是系统过于复杂,在就是我用的节点不能流通电流,只能通信号,在一次重新建模,按照老师的指点改正了相关的错误,这次建模比以前有了一定的提高,采用建立子系统的方法使系统变得简单,再一次运行发现能运行,但是测量问题又成为了一个问题,但最后还是找了一些资料建立了一个测量模型,运行后得出了相关的数据,但正确与否我就不是很确定了,但是经过这次设计后我学会了很多以前知道的东西,也加强了自己的自学能力,以后我会继续抓住这来之不易的课程设计的机会,好好锻炼自己,为毕业设计打一个好的基础。

参考资料:

何仰赞,电力系统分析(上),华中科技大学出版社,2001 胡华.MATLAB数学实验教程.银川:宁夏人民出版社.2007

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

电力系统自动化的计算机技术应用及设计 李杰

电力系统自动化的计算机技术应用及设计李杰 发表时间:2019-03-12T14:31:03.533Z 来源:《电力设备》2018年第27期作者:李杰 [导读] 摘要:随着社会经济的快速发展,如何提高效率,如何更加便捷人性化已经是人们在各行各领域所追求的目标。 (国网南昌供电公司信息通信分公司江西南昌 330000) 摘要:随着社会经济的快速发展,如何提高效率,如何更加便捷人性化已经是人们在各行各领域所追求的目标。计算机技术在这一过程中的体现尤为重要。作为一种技术载体承载着各行各业的发展。电力资源作为社会发展所必需的一种资源,社会生产对其的要求也是越来越高,如何把计算机技术融入电力系统之中,使其形成电力自动化系统,提高利用效率和生产速率,已经成为发展电力自动化系统的一个重点。 关键词:电力系统;自动化;计算机技术 1计算机技术在电力系统中的作用 电力系统自动化的发展,离不开计算机技术的支撑,二者的有效结合,使得电力系统自动化在运行体制上更加完善,但是因为诸多的因素限制,无法更好的进行信息整理,需要进一步实现用电对象对电力资源的合理使用,因此,我们可以从以下几个重点分析: 1.1电网自动化 在整个电网系统的运行过程中,电网自动化是电力系统自动化的重要组成部分,在电力系统自动化的过程中,主要强调的是电网的自动化。电网自动化主要是由电网调度控制中心的计算机网络系统、服务器、显示器等组成,通过电网调度控制中心、终端设备、调度范围对其实现电网自动化。其功能就在于能够实时的对电力生产过程中的数据进行搜集,并对电网运行过程中的安全性进行分析、评估与整理,预测电力负荷,并适应电力市场的需求。在这个过程中,对电网进行数据搜集,通过计算机技术对网络的运行情况进行监测与控制,并对数据进行计算,根据计算的结果实现数据的传输,对电网的调度进行强有力的控制。 1.2电网升级自动化 电力系统的升级改造是计算机技术升级的重要途径,在计算机技术下实现良好的配电智能化,对于电力系统与自动化的发展过程中有很好的推动作用,实现理想的作用价值,这种技术对于计算机的要求是相对比较高的,在这个过程中,能够促进计算机技术的升级,使资源信息实现共享,借助计算机技术这个平台进行处理,促使配电系统的升级优化。 1.3光电互感器的应用 光电互感器,是电力自动化系统中的重要设备,将大电流降低到仪表可测量的范围,便于仪表对电流进行直接的测量,等级越高,绝缘性越差,输出信号小。通过计算机技术的引入,将信号输送到保护装置中,并转换为数字信号由光纤输出。 1.4变电系统自动化 在没有结合计算机技术之前,变电系统都是通过输电线路和变电站进行信息输送的,通过人工的方式进行数据传输,浪费人力与大量的时间,影响工作效率。电力系统自动化引进计算机技术,工作效率得到了显著的提升,在运行过程中更加的稳定。 2计算机与电力系统自动化技术有机结合要点 2.1科学应用PLC程序 为了保证计算机与电力系统自动化技术得到更好的结合,科学应用PLC程序非常重要。对于电力企业中的工作人员来讲,要结合PLC程序的运行特点,对电力系统中原有的编程进行优化,并将PLC程序应用到电力系统当中,不断提升电力系统自动化管理水平。例如,某地区电力系统运行结构比较简单,通过将PLC程序应用到电力系统当中,能够帮助电力系统维修人员及时找到故障点,有效降低电力系统故障维修成本。此外,通过科学应用PLC程序,能够更好的调整变电站的整体运行模式,保证电力系统整体管理效率得到更好的提升。通常情况下,电力系统中的变电站主要分为三个单元,分别是高压单元、低压单元与变压器单元,为了保证电力系统变电站运行更加稳定,电力企业中的相关工作人员要结合变电站中各个单元的运行特点,利用PLC程序,选择合理的运行参数。 2.2电力运维智能化监测技术应用要点 在电力系统运行过程当中,通过应用电力运维智能化监测技术,能够更好的提升电力系统自动化管理水平。为了保证电力运维智能化监测技术得到更好的应用,电力企业中的相关工作人员在应用过程中要注意以下问题:①运用先进的计算机技术,将计算机网络自动化技术与电力系统自动化技术进行有效结合,准确判断电力系统运维故障点。②应用计算机技术,对电力系统中的小型故障进行合理的修复,保证电力企业中的各项供电设备更加安全的运行。通过合理运用电力运维智能化监测技术,能够对电力企业中的各项供电设备起到良好的保护作用,防止电力系统出现二次回路故障,有效提升了电力企业的运行效率。由于电力系统内部结构具有一定的复杂性,电力设备数量较大,使得电力系统运维管理难度不断加大,企业中的相关管理人员要结合电力系统运行特点,妥善应用电力运维智能化监测技术,从而保证计算机技术与电力系统自动化技术得到有效结合。 2.3电力供应自动化检测技术应用要点 电力系统自动化技术与计算机技术的结合,并非计算机程序与电力供应系统操作程序的结合,而且多种计算机技术与电力自动化技术的完美结合。例如,电力供应自动化检测技术的应用,能够将计算机与电力系统自动化技术有机结合。所谓电力供应自动化检测技术,主要指的是利用先进的计算机技术,对电力企业中的各项设备进行有效检测,保证电力供应信息更加准确,帮助相关工作人员更好的确定电力传输范围,保证电力信息资源得到有效利用。在应用电力供应自动化检测技术时,相关工作人员要重点注意以下几点:①构建合理的电力网络数据存储空间,并将电力供应系统中的各项管理信息进行有效的统计,帮助电力管理人员更好的掌握电力系统运行情况。②结合用户的实际用电需求,不断调整电力输配电线路,保证电力系统内部结构更加安全,促进用户与供电厂之间的联系。通过应用电力供应自动化检测技术,能够有效扩大电力供应范围,提升电力企业的整体管理水平。 3计算机在在电力系统自动化中的发展趋势 随着计算机技术和和红外成像技术在电力系统自动化中的运用得到广泛的应用,使得图像信息在电力系统自动化中所起到的运用也变得重要了起来。并且人们对于图像信息的分析以及理解要求也是逐渐提升。从而在一些需要应用到的地方就必须要利用计算机视觉技术用计算机来替换监控人员在进行图像的理解,电力系统是一个信息能量的变化也是非常之快的,在筛选的过程中一般一瞬间的功夫就能完成。如果发生故障性的问题时,就尽量在最短的时间内进行消除,不然很轻易的就会导致事故的扩大化。如果能在确保电力系统安全的情

580204电力系统自动化技术专业-教学基本要求

高等职业教育电力系统自动化技术专业教学基本要求 专业名称电力系统自动化技术专业 专业代码580204 招生对象 1.普通高中毕业生 2.“三校生”(职高、中专、技校毕业生) 3.同等学力者 学制与学历 1.学制:三年 2.学历:专科 就业面向 毕业生主要面向各类发电厂、供电公司、电力建设公司、电力设备检修公司及其他工矿企事业单位,从事发电厂、变电站的运行巡视、事故处理、电气设备试验、检修、安装与调试等工作。 初始岗位群:从事发电厂、变电站电气设备运行、维护、安装与检修等工作。 发展岗位群:通过3-5年的工作,在上述就业领域升迁为技师或助理工程师,从事电力客户安全用电技术监督、发电厂、变电站电气设备试验及相关管理等工作。 培养目标与规格 一、培养目标 本专业培养具有良好职业道德,德、智、体、美等全面发展,适应生产、管理、服务一线需要,掌握电力系统设备的运行、监控、维护与管理等专业知识,满足发电厂、变电站及供配电系统运行、安装与检修人员的需求,具有良好职业道德、熟练专业技能和可持续发展能力的高端技能型人才。 二、培养规格 1.基本素质 (1)具有良好的思想政治素质、社会公德和职业道德; (2)热爱专业、讲究科学,自觉遵守行业法规和职业规范; (3)具有良好的人际沟通交往、组织协作能力和团队意识; (4)具有开拓创新、严谨务实、勤奋进取的工作作风; (5)具有良好的社会实践能力、社会适应能力和吃苦耐劳、踏实肯干的工作精神; (6)具有良好的身体素质、心理素质等。 2.知识要求 (1)掌握一定的专业知识、文化基础知识和人文社会科学知识、英语和计算机知识; (2)掌握电工电子技术的基础知识, 具有电气接线图的绘制能力及计算机绘图软件的

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

电力系统自动化课程设计

摘要:电机并网要求满足准同期条件,并网要求准确、快速。准确可以保障安全和减少对发电机并网引起的冲击,而快速则能够减小发电机的空转损耗。随着计算机工业的发展和数字技术的迅猛进步,研制使用能够自动实现发电机并网的智能仪器已成为发电厂技术革新和自动化改造的重要课题。 本文探讨了发电机安全并入电网所需的条件,借助工程计算软件Matlab强大的绘图功能对不同条件下的并网过程进行了仿真分析,从而得出了一些重要的结论。这些结论为自动准同期装置的研制提供了理论根据。 关键词: 发电机并网;Matlab仿真;准同期条件

前言 随着负荷的变动,电力系统中发电机运行的台数也经常改变。因此。同步发电机的并列操作是电厂的一项重要操作。另外,当系统发生某些事故时.也常要求将备用发电机组迅速投入电网运行.由于某种原因,解列运行的电网需要联合运行,这就需要电网间实行并列操作。可见,在电力系统运行中并列操作足较为频繁的。 本次工程训练的题目是《发电机并网模型的建立与并网过程的仿真分析》。具体内容是发电机并网模型的建立、并网过程的仿真。 本次课程设计涉及面较广,需查阅大量资料,由于上学期刚了解此专业课,故对一些知识点理解的不是很深刻,因此,错误与疏漏之处再所难免,望老师批评指正。

第一章绪论 三相同步发电机是常用的交流发电机,但是单一的1台三相同步发电机对电网供电有明显的缺点: (1)不能保证供电质量(电压和频率的稳定性)和可靠性(发生故障就得停电); (2)无法实现供电的灵活性和经济性; 这些缺点可以通过多台三相同步发电机并联来改善。通过并联可将几台同步发电机或几个发电站并成一个电网。现代发电厂中都是把几台同步发电机并联起来接在共同的汇流排上,一个地区总是有好几个发电厂并联起来组成一个强大的电力系统。 电网供电比单机供电有许多优点: (1)提高了供电的可靠性.1台电机发生故障或定期检修不会引起停电事故 (2)提高了供电的经济性和灵活性,例如水电厂与火电厂并联时.在枯水期和旺水期.两种电厂可以调配发电,使得水资源得到合理使用。在用电高峰期和低谷期.可以灵活地决定投入电网的发电机数量,提高了发电效率和供电灵活性。(3)提高了供电质量,电网的容量巨大,单台发电机的投入与停机。个别负载的变化,对电网的影响甚微,衡量供电质量的电压和频率可视为恒定不变的常数。 发电机并网是电力系统的一项经常、重要操作,不恰当的并列可能造成电气设备的损坏并对系统的稳定产生影响。过去对发电机并列的工程培训和研究,一般需要动模机组和多种传感器、录波器等昂贵设备。成本高且数据读取和计算复杂、繁琐,输出结果不理想。而利用数字仿真只需要有计算机和相应的软件即可实现,不但成本低,还可以很方便地得到各种所需数据、波形等结果,对数据的处理也更方便。

电力系统调度自动化控制技术探析 温进荣

电力系统调度自动化控制技术探析温进荣 发表时间:2019-07-19T13:42:27.863Z 来源:《基层建设》2019年第13期作者:温进荣 [导读] 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。 广东卓维网络有限公司广东佛山 528200 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。但也正是在这种社会发展的大背景下,我国的用电需求量也在逐步上升。所以保证供电的可靠性和用电安全是电力系统运行中重要的环节。也正是在这种情况下,电力系统调度自动化控制技术被研制并广泛应用,它的出现为电力系统的正常运行提供了良好的技术条件,使用这种技术可以对电网运行信息进行采集、监视和对运行状态进行控制。本文研究了这种技术应用的重要性以及它的突出特点,探讨了应该怎样对这种技术进行改造。 关键词:电力系统;自动化;控制技术 电力自动化控制技术是整个电力系统中必不可少的一项专业技术,它是电力系统能够正常运行的重要保障。电力自动化技术可以帮助调控人员对电力系统进行远程操控,可以监视电网的运行状态以及对它的安全性进行在线分析预控。因此,加强电力系统调度自动化控制技术的研究力度可以有效的提高电网运行水平并减轻调控人员的工作强度,相关的专业人员熟知此项技术,可以有效的提高自己在日常工作中的运行维护水平。 1电力系统调度自动化控制技术应用必要性以及它的功能特点 1.1电力系统调度自动化控制技术的应用必要性 当今时代人们的生活以及社会经济的发展对电力的依赖性越来越大,这也迫切要求电力系统网络迅速发展壮大并安全、优质、经济、可靠运行,但是整个复杂的电力系统只有靠调度自动化控制技术的不断发展应用才能实现对电网的有效监视、判断、分析、遥控(遥调)或自动控制,必须要使电力系统调度自动化控制技术符合目前的实际情况才能够确保电网正常运行供电,所以这就需要电力调度自动化控制系统工作人员不断提升自己的实力对其进行研究和深化应用。 1.2电力系统调度自动化控制技术的功能特点 1.2.1能够对电力网络进行安全分析 自动化控制技术网络分析包括状态估计、调度员潮流、静态安全分析、灵敏度分析等功能,网络分析功能是电网调度自动化控制系统重要功能模块,为调度员提供快速简便的计算分析手段,是调度运行值班必不可少的工具,在快速、准确计算的同时,有效地协助调度员及时掌握电网危险点,以便及时采取预控措施,可以有效减少事故的发生。 1.2.2变电站集中监控功能应用 变电站集中监控功能是监控员实时掌控所辖变电站设备运行工况的主要手段。实现设备运行信息的分类、分站、分电压等级的汇总与现实,并通过颜色、声音、文字等多种手段进行提示预警及远方遥控功能。能够快速、准确地向监控员提供当前变电站真实运行情况及故障异常情况下设备遥测、遥信信息,能够有效提升监控工作效率,缓解监控员工作压力,使监控功能成为调度的“眼睛和耳朵”,进一步提升变电站集中监控安全运行水平。 1.2.3自动电压控制功能应用 自动电压控制(A VC)应用是在满足电网安全稳定运行前提下,保证电压和功率因数合格,并尽可能降低系统因不必要的无功潮流引起的有功损耗。A VC从网络分析应用(PAS)获取控制模型、从电网稳态监控应用(SCADA)获取实时采集数据并进行在线分析和计算,对电网内各变电站的有载调压装置和无功补偿设备进行集中监视、统一管理和在线控制,实现全网无功电压优化控制闭环运行。 1.2.4能够有效的降低运行成本 电力系统调度自动化控制技术在保证电力系统能够安全运行的基础上,还能够保证整个系统在运行时的经济实用,保证电力有效性,防止浪费,从而节省了成本。 2电力系统调度自动化控制技术的应用 随着电力系统科技迅猛的发展,电力系统调度自动化控制技术也发生着日新月异的变化,目前我国的电力系统已经进入了一个全新的发展阶段,为适应“大运行”体系建设需求,电力公司非常注重自动化控制技术的研发及使用,并依托此技术实现省、地、县一体化运行,下面就让我们对以下几种不同阶段的自动化技术的使用有一个深入的了解。 2.1电力调度自动化控制系统的应用 此种电力自动化控制技术的具体应用就是在电力系统运行时对其进行数据采集,然后再通过各分布点的服务器对数据进行处理,并且根据这些数据分配所要负责的工作,在该技术下,电力系统会非常流畅的运行,在运行过程中很少出现事故,而且它的通用性比较广泛适应能力比较强,会使电力系统的运行更加稳定,更安全,因此在电力系统应用中十分受欢迎。 2.2能量管理系统的应用 该种系统的应用好处就是它具有很强的实时性以及开放性,这种系统的运行主要用系统中的卫星参与进行实时检测,从而保证运行的时效性。除此之外,人还可以与系统进行互动,以便实现对系统的控制,另外,此系统的其他几个功能也能够帮助电力系统更好的工作更好的运行,目前此种能量管理系统多应用于广州北京等几个城市。 这种管理系统是南京一家企业研制出来的,这种应用的具体操作以及它的特点结合了以上两种系统的优点,它既能够对数据进行收集并且整理,又可以对电力系统的工作人员进行培训,调控整个运行过程。这些是其他系统不能够做到的,除了这些特点,它的技术以及性能也比较突出,所以在使用时受到了广大电力企业的喜爱。 2.3智能电网调度控制系统的应用 智能电网调度控制系统,配置实时监控与分析、调度计划、调度管理及省地一体化、地县一体化系统应用功能,横向上,通过统一的基础平台实现三类应用的一体化运行;纵向上,通过基础平台实现省、地、县调系统一体化运行和电网模型、参数、画面的源端维护、全网共享。这是目前为适应“大运行”体系建设并全国推广使用的新型调度自动化控制技术。综合上面的内容,以上几种技术是我国电力调度自动化控制系统采用的比较广泛的,使用效果比较好的。除了这些国内的技术,一些国外的技术也具有极好的使用效果。所以在现在信息

浅谈电力系统自动化技术的现状及发展趋势

浅谈电力系统自动化技术的现状及发展趋势 【摘要】随着科学技术和经济的迅速发展,电力系统自动化技术发挥的作用越来越重要。电力系统自动化技术作为一种新技术实现了电力技术和电子信息技术的融合,对国民经济的发展发挥了巨大的促进作用,为输变电系统的发展产生了深远的影响。目前电力系统自动化技术已经深入到电力系统的各个方面,并取得了显著的效果。本文对电力系统自动化技术的发展现状进行了介绍,并对其发展趋势进行了展望。 【关键词】电力系统自动化技术现状发展趋势 一、概述 电力系统的智能化控制是我国电力系统发展的重要方向,电力系统智能控制的实现是电力系统完整控制的重要标志。电力系统的发展壮大离不开自动化技术的支持,电力系统自动化技术在电力系统运行控制中发挥着不可替代的作用。 二、电力系统自动化技术发展的现状 我国的电力系统自动化技术在建国之初就有了初步的发展,并保持了快速的发展趋势,互联网技术和计算机计技术的迅猛发展为电力系统自动化技术的发展提供了巨大的

技术支持。 2.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。电网的调度自动化操作,通过自动控制技术的应用,实现电网运行状态的实时监测,确保了电网运行的质量和可靠性,实现了电能的充分供应,使人们的需求得到满足。[1]自动化技术应用的同时,将能源损耗达到最低,确保了供电的经济性和环保性,实现了电能的节约。 2.2自动化技术在配电网络中的应用 计算机技术在配电网络的自动化控制中发挥着重要作用,随着电网技术的不断发展,配电系统的现代化和网络化程度越来越高,实现了配电网主站、子站和光线终端组成的三层结构,配电系统网络化的发展,使通信传输的速度得到保障,自动化系统的性能得到提高。系统的继电保护控制得到加强,大面积停电现象减少,电力供应得到保障,电力系统的可靠性和安全性得到提高,电网事故快速排除机制得到优化,科学的事故紧急应对机制得以建立,故障停电时间明显缩短;电力企业对电力系统的掌控能力加强,对电力系统运行状态的了解更加便利;常规的值班方式被打破,无人职守电站得以出现,工作人员的效率大大提高。[2]

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

基于PLC的电力系统自动化设计 徐鹏

基于PLC的电力系统自动化设计徐鹏 发表时间:2018-08-09T09:27:16.123Z 来源:《电力设备》2018年第12期作者:徐鹏 [导读] 摘要:随着经济和电力行业的快速发展,电力系统信息量大、自动化要求高、运行环境复杂,而电力系统自动化设计过程中涉及到大量的开关逻辑、顺序控制、闭环控制等。 (华电新疆发电有限公司红雁池发电厂新疆乌鲁木齐 830047) 摘要:随着经济和电力行业的快速发展,电力系统信息量大、自动化要求高、运行环境复杂,而电力系统自动化设计过程中涉及到大量的开关逻辑、顺序控制、闭环控制等。但是传统的电磁继电元件接线复杂、可靠性差、功能单一,无法满足电子系统自动化设计要求。 PLC技术具有良好的稳定性、可靠性、操作简单、便于维护等优点,因此在电力系统广泛应用。但是,PLC技术在电力系统实际应用过程中,还存在一些问题,所以必须加强PLC技术在电力系统自动化的设计水平,确保电力系统的稳定性和安全性。 引言 随着我国电网的发展,各种先进的电子设备和技术广泛应用在电力系统中,极大促进我国电网的发展。电力系统作为电网的一部分,目前正朝着自动化、智能化方向发展。将PLC技术应用在电力系统自动设计中,能够提高电网的运行效率,降低电力企业施工成本。本文主要概述了PLC技术特点以及PLC技术在电力系统自动化设计中的具体应用。 1 PLC技术的定义和特点 PLC全称为ProgrammableLogicController,即可编程逻辑控制器,该技术可通过对工业数据的模拟和编程达到提升工业环境安全的目的。PLC系统在自身的存储器内部可以执行诸如逻辑运算、顺序等特定的操作,还可通过对一些常见的模拟量和数字量进行inlet和outlet来控制电机或器械。电气自动化中所使用的传统控制器系统内部接线较复杂,不仅可靠性较低,能源消耗也较高,同时也不具备较良好的灵活性。以计算机技术以及接触器控制技术为基础的PLC应用辅助继电器代替了传统的机械触电继电器,应用逻辑关系代替了原来的连接导线,而这类继电器的节点变位时间可以无限趋近于零,也无需像传统继电器一样考虑返回系数问题。PLC控制系统具有非常强大的抗干扰能力,因此在复杂的工业操作环境中也可正常应用。PLC控制系统采用简单的指令形式,操作起来简单便利。正是这些优势,PLC技术在近些年逐渐取代了传统系统运用于电力系统及其自动化控制中。 2 PLC技术在电力自动化系统数据处理方面的应用 PLC技术与电力自动化系统运行过程中,通过PLC技术对电力系统的数据信息进行识别、分析,这对电力系统自动化设计具有重要意义。基于PLC技术的电力自动化系统在设计过程中,还需要相关的软件对系统进行全面设定,常见的有pNetpow-erTM,将软件与电力自动化系统进行有效的连接,这样就能提高电力系统数据处理能力。如果在电力系统中安装一些先进的数据分析设备,还可以加强电力系统数据信息处理能力,系统在运行过程中能够有效地识别错误的信息,并将错误上传到电力系统控制中心,控制中心对错误信息进行有效的分析,从而判断出系统故障,并立即对故障进行处理,同时电力系统还会自动将发生故障的数据信息保存,给后期电力工人的维护修理工作提供有效的参考。通过这样的方式,最大限度确保了电力自动系统的稳定性。 2.1 PLC技术在开关量功能方面的应用 在电气自动控制中PLC技术实际的应用功能是:可编程的存储器可以用做虚幻模拟电气运行中。在这样的情况下,进行继电器通断电的过程会比较长,因此,在通断电的过程中,很难采用有效的保护措施。长期以来,使用PLC技术的时候中间会存在很多的问题,需要专业人士不断的探索解决这种技术存在的问题,采用有效的解决措施后,再使用自动切换系统中采用PLC技术之前反应比较慢的现象,这样就会得到很大的改变,生产的运作系统在效率上就会得到进一步的提升,以上就是在控制开关量方面使用PLC技术发挥的功能。 2.2 PLC技术在电力系统闭环控制的应用 闭环控制指电力自动化系统在运行过程中,对电力设备的温度、电流量、压力等方面进行控制。所以将PLC技术与电力自动化系统结合起来,通过对电力信号进行分压、整流等处理以后,形成比较标准的电力系统,并经过A/D的转变和分析,将信号上传。闭环控制系统主要通过电流互感器采集电力设备信号,并对信号进行隔离降压处理,达到电力信号的标准化要求。然后通过PLC模拟量对电力设备单元元件内部数据进行识别,并通过组态软件完成数据的转化、处理和分析,这样最大限度保证了电力自动化系统的安全性、可靠性,而且系统的运行成本也比较低。同时,如果上位系统有效控制PLC单位上的数据信息以后,与继电器和接触器之间能够进行有效的配合,从而确保整个闭环控制系统的有效运行。 2.3 PLC编程器部分 在PLC编程器的设计过程中,一般都是采用Fx-10P-E,Fx-10P-E就是手持式编程器与PLC相连接以此满足程序的写入以及监控。Fx-10P-E的主要功能是,读出控制程序、编程或修改程序、插入增加程序、删除程序、监测PLC的状态、改变监视器件的数值以及其他简单的程序。Fx-10P-E的组成部分是由液晶显示器以及橡胶键盘等,该键盘与其他键盘不同,其中有功能键、符号、数字以及指令键,当Fx- 10P-E与FX0PLC相连接时,采用FX-20P-CAB0电缆,与其他PLC连接过程中则需要采用FX-20P-CAB类型的电缆。Fx-10P-E手持编程器一般都是由35个按键组成。 2.4 PLC技术在电力系统控制层中的应用 电力系统自动化设计比较复杂,电力系统运行过程中会产生电磁波和谐波,电力系统自动化设计过程中就要考虑到这些因素,提高控制层的抗干扰能力,从而确保电力系统的稳定性和可靠性。将PLC技术应用在电力控制层,通过智能仪表采集电力系统数据信息,并对电力系统进行控制,PLC技术对所有的电气设备进行控制,这是PLC在电力系统自动化设计的最大特点,它有效的保障了电力自动化系统的安全运行,而且这种操作系统相对比较灵活、简单。 3 PLC技术在电力系统及其自动化控制中的运用策略 3.1深入展开PLC技术在电力系统自动化控制 为了给PLC技术的运用提供思路,我们需从电力系统自动化控制的实际需求出发,既要鼓励全球权威的专家学者通过大量实践案例进行PLC技术在电力系统自动化控制中的理论研究,还要对PLC技术进行深度开发。 3.2积极开展专业技术培训工作 PLC控制系统设计人员的综合素养较低是影响其在电力系统自动化控制中运用的主要因素,因此我们需更加重视设计人员的专业技术

《电力系统自动化》课程教学规范

《电力系统自动化》教学规范 一、课程的任务 本课程是电力系统自动化技术及输变电工程技术专业的专业课程。 主要任务:着重使电力系统自动化专业的学生了解电力系统自动化的基本内容、运行方式、硬件配置结构以及软件控制功能,为使用和设计电力系统中各个层面、规模的自动化系统建立基础。 二、教学大纲 课程编号: 适用专业:电力系统自动化技术及输变电工程技术专业 学时数:40学时(不包括假期和期末考试)均为理论课 学分:2 说明:本课程教学规范随专业培养方案学时的改变将进行适当修定 (一)、课程的性质和目的 《电力系统自动化》课程是我院电类各专业的一门综合性很强的学科专业课。本课程内容丰富,涵盖知识面广,培养学生综合运用基础知识能力,树立理论联系实际的科学作风和提高学生分析问题、解决问题的能力。通过本课程的学习,使学生掌握电力系统自动化的基本内容,学会分析电力系统自动化实现的基本方法。为今后从事电类各专业的学习和工作打下必备的基础。 (二)、课程教学内容及基本教学要求 第一章发电机的自动并列(6学时) (1)内容概要 § 1.1 并列操作意义,准同期并列 § 1.2 准同期并列的基本原理 § 1.3 恒定越前时间并列装置 § 1.4 数字式并列装置 (2)学时安排 § 1.1 1.5学时 § 1.2 2学时 § 1.3 1学时 § 1.4 1.5学时

第二章同步发电机励磁自动控制系统(9学时)(1)内容概要 § 2.1 同步发电机励磁控制系统的任务和要求 § 2.2 同步发电机励磁系统 § 2.3 励磁系统中转子磁场的建立和灭磁 § 2.4 励磁调节器原理 § 2.5 励磁系统稳定器 § 2.6 电力系统稳定器 (2)学时安排 § 2.1 3学时 § 2.2 1学时 § 2.3 1学时 § 2.4 2学时 § 2.5 1学时 § 2.6 1学时 第三章电力系统频率及有功功率的自动调节(6学时)(1)内容概要 § 3.1 电力系统频率特性 § 3.2 调频与调频方程式 § 3.3 电力系统的经济调度与自动调频 § 3.4 电力系统低频减震 (2)学时安排 § 3.1 1.5学时 § 3.2 1.5学时 § 3.3 2学时 § 3.4 1学时 第四章电力系统电压调整和无功功率控制技术(4学时)(1)内容概要 § 4.1 电力系统电压控制的意义 § 4.2 电力系统无功功率平衡与电压的关系 § 4.3 电力系统电压控制的措施 § 4.4 电力系统电压综合控制

电力系统自动化技术

学习中心/函授站_ 姓名学号 西安电子科技大学网络与继续教育学院 2017学年下学期 《电力系统自动化技术》期末考试试题 (综合大作业) 考试说明: 1、大作业于2017年10月19日下发,2017年11月4日交回; 2、考试必须独立完成,如发现抄袭、雷同均按零分计; 3、答案须手写完成,要求字迹工整、卷面干净。 一、选择题(每小题2分,共20分) 1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。 A.频差过大B.频差满足条件 C.发电机频率高于系统频率D.发电机频率低于系统频率 2.线性整步电压的周期与发电机和系统之间的频率差()。 A.无关 B.有时无关 C.成正比关系 D.成反比关系 3.机端直接并列运行的发电机的外特性一定不是()。 A.负调差特性 B.正调差特性 C.无差特性 D.正调差特性和无差特性 4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。 A.越大越大 B.越大越小 C.越小越大 D.越小越小 5. 构成调差单元不需要的元器件是()。 A.测量变压器B.电流互感器 C.电阻器D.电容器 6.通常要求调差单元能灵敏反应()。 A.发电机电压B.励磁电流 C.有功电流D.无功电流 7.电力系统有功负荷的静态频率特性曲线是()。

A.单调上升的B.单调下降的 C.没有单调性的D.水平直线 8.自动低频减负荷装置的动作延时一般为()。 A.0.1~0.2秒B.0.2~0.3秒 C.0.5~1.0秒D.1.0~1.5秒 9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。 A.相同B.各不相同 C.一部分相同,一部分不同D.稳定 10.造成系统频率下降的原因是()。 A.无功功率过剩B.无功功率不足 C.有功功率过剩D.有功功率不足 二、名词解释(每小题5分,共25分) 1.远方终端 2.低频减负荷装置 3.整步电压 4.准同期 5.AGC 三、填空题(每空1分,共15分) 1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。 2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。 3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。 4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。 5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。 6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。 7.直流励磁机共电的励磁方式可分为和两种励磁方式。 8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。 9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。 四、简答题(每小题5分,共15分) 1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间? 2.电压时间型分段器有哪两种功能? 3. 自动按频率减负荷装置为什么要分级动作? 五、综合分析题(每小题10分,共10分) 用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分) 某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。两台机组的额定功率因数都是0.8,调差系数均为0.04。若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?

相关文档
相关文档 最新文档