文档库 最新最全的文档下载
当前位置:文档库 › 乙二醇机组

乙二醇机组

乙二醇机组
乙二醇机组

乙二醇机组操作规程

一、开机准备

1、打开冷却水出口阀D1L010、进口阀D1L009,向冷凝器供水,保证冷却水有足够的流量。

2、打开冷媒水出口阀D1Y004、进口阀D1Y003,向蒸发器供水,保证冷媒水有足够的流量。

3、合上电源和控制电源,电源指示灯亮。

二、开机

1、打开触摸屏,进入主菜单,选择开机画面,将启动界面中启动状态切换在自动

状态,然后再切换到运行,确认后,三台压缩机依次启动。

2、返回主菜单,进入运行监控状态。

3、在运行过程中,注意观察各项运行参数是否在运行参数范围之内,并做好运行

记录。

三、停机

1、在启动画面选择并确认停机,三台压缩机依次停止运行。

2、停机后,延时15-20分钟,关闭冷却水进口阀D1L009、出口阀D1L010及冷媒

水进口阀D1Y003、出口阀D1Y004。

3、关闭电源,先关闭触摸屏电源,然后关闭动力电源。

四、注意事项

1、由于蒸发温度较低,视镜会结霜直至结冰,要及时清理霜层,以利于随时监视

蒸发器工作状态和液位。

2、未经允许不得更改机组的任何参数。

3、定期检测乙二醇溶液的密度,并做好记录。

4、注意观察冷凝温度和冷凝压力,保证冷凝压力在正常范围内,如果发现异常,

及时调整冷却水流量。

5、观察油分排气端油镜,如有油面,先关闭蒸发器回油阀,待油镜没有油面时再

将蒸发器回油阀打开。

6、观察机头结霜情况,如大面积严重结霜属回油严重,应停机处理。

7、注意各机头的排气温度及喷液冷却开关量是否正常。

8、不能频繁启动机组。

9、经常观察各个压缩机的运行情况,使电流在规定范围内运行。

10、如长时间停机应将蒸发器冷凝器内空气放出。

11、严格执行介质使用通知单制度。

五、安全预想及处理办法

1、当机组保护装置动作时,压缩机自动停机并报警,显示故障,要及时找出原因并

排除故障。排除故障后,等待15-20分钟后,再次启动。

2、当操作现场出现严重安全隐患时,必须紧急停机,按下急停按钮,并切断总电源,

找出原因排除故障。

3、突然停电时,切断总电源,待电源稳定时,再重新启动机组。

4、蒸发器进水压力与出水压力差超过0.1MPa时,可能是蒸发器结冰。原因是蒸发器冷媒水量太小或卸载电磁阀不动作。

处理办法:立即停机,然后打开备用设备的蒸发器进、出水阀门,查找原因。如果是由于蒸发器冷媒水量太小,则在启动一台循环泵;如果是卸载电磁阀不动作,则需要更换电磁阀。

现代煤化工煤制乙二醇技术概述

现代煤化工煤制乙二醇技术概述 摘要:本文主要研究现代煤化工中煤制乙二醇的技术。简单介绍了乙二醇的性质和用途,以及其制备技术的发展现状;对煤制乙二醇技术中的直接合成法及间接合成法做了概述;讨论了煤制乙二醇技术在发展过程中存在的问题;讨论了我国在乙二醇工艺技术中的现状。 关键字:煤制乙二醇;直接合成法;间接合成法;草酸酯法;现状 引言 乙二醇是一种重要的大宗基础有机化工原料,可用于生产多种化工产品,如聚酯纤维、防冻剂、不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂、炸药、涂料和油墨等,应用领域非常广泛。 在中国,乙二醇主要作为聚酯及防冻液的原料,其中聚酯消费占90%以上,2013年国内乙二醇进口量825万t,进口依存度高达70%左右,市场缺口巨大。2014年,国内新增聚酯产能预计达500万t,将继续拉动乙二醇消费量的增长。乙二醇在中国国民经济发展中正发挥着越来越重要的作用。乙二醇的生产工艺路线按原料不同可分为石油路线和非石油路线。在现阶段,全球主要的大型乙二醇生产装置均采用石油路线,也称乙烯路线,即在银催化剂、甲烷或H2致稳剂、氯化物抑制剂存在下,乙烯直接被O2氧化生成环氧乙烷,再与水直接或催化条件下反应生成乙二醇。石油路线经过多年的发展,工艺已趋于成熟,但耗水量大,生产过程副产物多且生产原料受石油价格波动影响较大,无法摆脱对石油资源的依赖。 因此,结合中国贫油、少气和相对富煤的能源结构特点,开发一条以煤为原料、经济合理的乙二醇合成工艺路线,符合中国的可持续发展战略。目前,国内掀起了开发煤基乙二醇的热潮,煤制乙二醇技术已经成为煤化工行业关注的焦点。

1乙二醇制备技术简介 1.1乙二醇性质简介 乙二醇(EG)是一种重要的石油化工基础有机原料,又名甘醇、亚乙基二醇,分子式为HOCH2CH2OH,是无色透明、稍带甜味的黏稠液体。乙二醇是最简单和最重要的脂肪族二元醇,主要用于生产聚酯和各类抗冻剂,前者用于制造纤维、薄膜和聚对苯二甲酸乙二醇酯(PET)树脂;其它用途则包括解冻液、表面涂层、照像显影液、水力制动用液体以及油墨等行业。高纯乙二醇可用做过硼酸铵的溶剂和介质,还可用于生产特种溶剂乙二醇醚。 1.2乙二醇制备的技术发展现状 目前,我国主要采用以下几种方法来制备乙二醇 1.1生物质发酵制备乙二醇 本工艺主要是将多糖、淀粉、秸秆等生物质混合发酵后制备多元醇,采用可再生能源作为原材料,具有广阔的应用前景目前,我国有多家科研单位和企业从事相关工作,如大连化物所采用玉米秸秆为原料制备了乙二醇、丙二醇等化工醇产品。 1.2石油路线制备乙二醇 该方法为目前世界上工业乙二醇生产中最为常用的一种方法该工艺以石油裂解产物乙烯为原料,经氧化后制得环氧乙烷,环氧乙烷水合后得到产物乙二醇,产品的收率可达90%以上。 1.3半石油路线制备乙二醇 该方法是石油路线的优化和改进,具有效率高和能耗小的优点,但是目前还没有实现工业化生产,仍在实验室中试阶段该方法采用环氧乙烷为原料,和二氧化碳反应生成碳酸乙烯醋,经过水解得到目标产物乙二醇。

乙二醇生产工艺

乙二醇生产工艺

摘要 乙二醇在国民经济中有着极其重要的地位,广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,但国内乙二醇的产量一直无法满足国内市场的强劲需求。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 关键词:乙二醇;环氧乙烷;水合法。

目录 前言 (1) 1文献综述........................................................................... 1.1 乙二醇工业的发展[1][2]........................................

前言 乙二醇在国民经济中有着极其重要的地位,是大宗有机化工产品。广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂、不饱和聚酯树脂以及合成乙二醇醚、乙二醛、乙二酸等化工产品的原料,虽然乙二醇产品用途极广,但国内乙二醇的产量一直无法满足国内市场的强劲需求,乙二醇自给率不足50%,如图1有相当大的部分需要进口,易受国际市场供求关系的影响。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 随着我国市场经济的发展,以前那种单纯*增大原料和能源的消耗来提高产量的做法已逐渐被淘汰,继续这种做法的企业已经濒临破产倒闭;现在只有依*科技的力量,通过技术的改造来降低能源的消耗,同时使各种生产数据得到优化的配置,才是摆脱困境最有效的方法。 乙二醇工艺设计中,乙二醇的精制是整个工艺流程的核心部分,关系着乙二醇产品的质量和产量。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 该技术具有世界共同发展趋向的节能性,是生产乙二醇工艺的重大突破。 图1 我国近些年乙二醇的供需情况 年份 产量 万吨/年 进口量 万吨/年 需求量 万吨/年 自给率 % 2000 2001 2002 2003 2004 2005 2006 2007 2008 90 80 90 96 94 110 156 174 214 105 160 214 251 339 400 406 480 522 195 240 304 347 433 510 562 654 736 46 33 30 28 22 21 28 27 29 第1章文献综述

乙二醇脱水方法及脱水装置

延长干燥塔再沸器结焦周期的乙二醇脱水方法及脱水装置延长干燥塔再沸器结焦周期的乙二醇脱水装置 1、从聚对苯二甲酸乙二醇酯废品中回收对苯二甲酸和乙二醇的方法 2、从聚酯废料中分离和回收对苯二甲酸二甲酯和乙二醇的方法 3、从乙二醇制程水中去除甲酸、乙酸的方法和装置 4、从酯化废水中回收乙二醇的方法 5、高纯度单乙二醇的制备方法 6、环氧乙烷催化水合制备乙二醇的方法 7、环氧乙烷均相催化水合制乙二醇的方法 8、环氧乙烷水合生产乙二醇的固体酸催化剂 9、环氧乙烷水合制备乙二醇的催化剂及过程 10、环氧乙烷水合制备乙二醇的固体酸催化剂 11、环氧乙烷水合制乙二醇的方法 12、回收浓缩乙二醇的方法 13、聚酯废料制造对苯二甲酸二酯和乙二醇的方法 14、聚酯直纺短纤维联合装置乙二醇脱水塔顶蒸汽回收工艺 15、生产乙二醇的方法 16、生产乙二醇的方法2 17、生物净化污水去除乙二醇的方法 18、受污染的乙二醇的处理方法和缩聚设备 19、酸性水合成乙二醇的方法 20、同时制备乙二醇和碳酸酯的方法 21、延长干燥塔再沸器结焦周期的乙二醇脱水方法及脱水装置 22、延长干燥塔再沸器结焦周期的乙二醇脱水装置 23、一种乙二醇的精制提纯方法 24、一种乙二醇喷射真空泵 25、一种制备乙二醇的固体酸催化剂 26、一种制备乙二醇锑催化剂的工艺流程 27、乙二醇锑的制备方法 28、乙二醇制备方法 29、用于环氧乙烷催化水合制备乙二醇的方法 30、用于环氧乙烷水合生产乙二醇的固体酸催化剂 31、用于环氧乙烷水合制备乙二醇的固体酸催化剂 32、用于环氧乙烷水合制乙二醇的均相催化剂 33、由环氧乙烷水合制备乙二醇的固体酸催化剂 34、制备高纯度单乙二醇的方法 35、制备乙二醇和(或)丙二醇的方法

螺杆制冷机组说明书

目录 第一章总体介绍 一、螺杆式制冷压缩机结构简介 2 二、螺杆式制冷压缩机压缩原理 2 三、压缩机技术参数 3 四、压缩机的油分离系统 3 五、压缩机的润滑油系统 4 六、压缩机的油冷却方式 4 七、容积比和能量调节 6 八、经济器 8 九、机组流程图及技术参数表 11 第二章安装 一、基础 29 二、机组安装 29 三、管路连接 29 四、电机与压缩机的找正 30 五、机组排污与检漏 33 六、冷冻机油的加入 33 七、抽真空 34 八、制冷剂的加入 34 第三章操作、维护和保养 一、操作 35 二、设备检修 37 三、长期停车的保养 40 四、故障指南 40 五、压缩机的检修 42

第一章 总体介绍 一、螺杆式制冷压缩机结构简介 本手册适用于我公司的螺杆III 、II 型机,其所列的螺杆式制冷压缩机系一种开启式双螺杆压缩机。一对相互啮合的按一定传动比反向旋转的螺旋形转子,水平且平行配置于机体部,具有凸齿的转子为阳转子,通常它与原动机连接,功率由此输入。具有凹齿的转子称为阴转子。在阴、阳转子的两端(吸气端和排气端)各有一只滚柱轴承承受径向力量,在两转子的排气端各有一只四点轴承,该轴承承受轴向推力。位于阳转子吸气端轴颈尾部的平衡活塞起平衡轴向力减少四点轴承的负荷的作用。 在阴、阳转子的下部,装有一个由油缸油活塞带动的能量调节滑阀,由电磁(或手动)换向阀控制,可以在15%~100%围实现制冷量的无级调节,并能保证压缩机处于低位启动,以达到小的启动扭矩,滑阀的工作位置可通过能量传感机构转换为能量百分数,并且在机组的控制盘上显示出来。 为了使螺杆压缩机运行时其外压比等于或接近机器的压比,使机器耗功最小,压缩机部设置了容积比调节滑阀,由电磁(或手动)换向阀控制油缸油的流动推动油活塞从而带动容积比滑阀移动,其工作位置通过容积比测定机构转换为压力比值在机组的控制盘上显示出来。 螺杆式压缩机的结构见下图和本书后所附的压缩机剖面图。 螺杆式压缩机三维结构图 二、螺杆式制冷压缩机压缩原理 螺杆式制冷压缩属于容积式制冷压缩机,它利用一对相互啮合的阴阳转子在机体作回转运动,周期性地改变转子每对齿槽间的容积来完成吸气、压缩、排气过程。 1、吸气过程 当转子转动时,齿槽容积随转子旋转而逐渐扩大,并和吸入口相连通,由蒸发系统来的气体通过孔口进入齿槽容积进行气体的吸入过程。在转子旋转到一定角度以后,齿间容积越过吸入孔口位置与吸入孔口断开,吸入过程结束。 2、压缩过程 当转子继续转动时,被机体、吸气端座和排气端座所封闭的齿槽的气体,由于阴、阳转子的相互啮合和齿的相互填塞而被压向排气端,同时压力逐步升高进行压缩过程。 轴承 转子 能量滑阀 轴封 机体 内容积比滑阀 吸气过滤网

乙二醇制冷工艺特点

乙二醇制冷工艺特点 目前,在牛奶、饮料等行业,经常需要为生产线提供1-4℃工艺冷冻水。由于1-4℃工艺冷冻水温度接近水的凝固点0℃,很容易出现结冰现象,这是非常危险的,一来会破坏蒸发器,二来因蒸发器结冰影响传热而不能及时将冷冻水温度降到生产所需的1-4℃。 制取1-4℃的冷冻水目前常用方式有两种:A、采用氨作制冷剂,开放式钢管作蒸发器的氨制冷系统;B、采用氟利昂作制冷剂,乙二醇作载冷剂,壳管式换热器作换热设备的氟利昂制冷系统。根据实际使用情况,A方案氨制冷系统由于采用开放式钢管作蒸发器,氨的冷量是通过冷冻水流过蒸发器时传递给冷冻水,在这个过程中水流速度太小,即使加装搅拌器,冷冻水流速也很难控制且分布很不均匀,故经常出现开放式钢管蒸发器表面结冰而且水温难以降到设计值。同时,使用时间久后钢管蒸发器被冷冻水腐蚀出现泄漏现象。由于开放式钢管表面结冰,虽然不会破坏开放式钢管蒸发器,但因氨的冷量不能及时传递给冷冻水,长时间后会导致压缩机卸载停机甚至报警,更为严重时发生液压缩破坏压缩机,不能满足生产需要。B方案采用氟利昂作制冷剂,乙二醇作载冷剂,增加壳管式换热器。在安装时,乙二醇走壳程,冷冻水走管程。由于水系统采用循环水泵强制换热,且冷冻水走管程,所以冷冻水流速快、稳定、无死角,可以防止出现结冰现象。另一方面,由于增加了载冷剂,因此氟利昂蒸发温度较低为-10℃,所以这种氟利昂制冷系统能效比相对较低,但可以制取1-2℃冷冻水。故此方案适合于需要提供1-2℃冷冻水的场合。 近几十年,氟利昂R22冷水机组发展迅速,由于其采用壳管干式蒸发器,一般冷冻水出水温度为7℃,最低5℃,不符合1-4℃工艺冷冻水要求。但由于氨制冷系统存在上述问题,且氨易燃、易爆、有毒等特性和氨泄漏等问题,所以越来越多的客户重新考虑使用氟利昂来直接制取冷冻水。我公司经过多年潜心研究和优化设计,率先成功开发出氟利昂低温冷水机组,该机组可以不用载冷剂制取2-4℃冷冻水,能效比高,微电脑控制,克服了氨制冷系统存在的缺点。

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

乙二醇生产技术

煤制气合成聚合级乙二醇新技术 1 技术背景 乙二醇是一种重要的基础化工原料,在大量应用的醇类物质中是继甲醇之后的第二大类醇,主要用于生产涤纶纤维、涂料和包装材料用聚酯树脂,占到乙二醇消费量的80%以上,其余用于生产防冻剂、润滑剂、炸药等。 目前,世界上乙二醇的总需求量约2000万吨,其中中国占到了30~40%,下表为我国近些年乙二醇的供需情况。 表1 我国近些年乙二醇的供需情况 年份 产量 万吨/年 进口量 万吨/年 需求量 万吨/年 自给率 % 2000 2001 2002 2003 2004 2005 2006 2007 2008 90 80 90 96 94 110 156 174 214 105 160 214 251 339 400 406 480 522 195 240 304 347 433 510 562 654 736 46 33 30 28 22 21 28 27 29 由表1可见,2000~2008年,我国乙二醇的需求量和进口量呈逐年增加趋势,近三年乙二醇的进口依存度高达70%。 当前工业上生产乙二醇主要采用石油路线,由乙烯经气相氧化得环氧乙烷,再经液相催化水合制乙二醇。但我国石油资源不足,存在“富煤、少气、贫油”的能源格局,因此开辟由煤制气生产乙二醇的新技术具有十分重要的现实意义和长远的战略意义。 2技术路线及国内外进展 目前研究的煤制气合成乙二醇技术路线主要有三种(如下图所示)。

图1 煤造气合成乙二醇的三种主要技术路线 其中,直接合成法具有理论上最佳的经济价值,其反应方程式如下: 2CO + 3H 2 HOCH 2CH 2OH 但此反应在标准状态下属于Gibbs 自由能增加的反应,△G 500k = 6.60×104J/ mol ,热力学上受限制,在温和条件下很难进行,需要催化剂和高温高压条件。上世纪70年代,美国UCC 公司采用铑催化剂,反应压力高达300MPa ;80年代反应压力降至50MPa ,温度降至230℃,但是选择性和转化率仍很低。时至今日,直接法所取得的进展还不足以实现工业化,进一步缓和反应条件并提高催化剂的选择性和活性仍是主要的难点。 间接合成法效益则由于路线各异,取得的进展各不相同,其中甲醇甲醛路线研究的比较多,主要有甲醇脱氢二聚法、二甲醚氧化偶联法、羟基乙酸法、甲醛缩合法、甲醛氢甲酰化法等,但是这些方法研究的还不够深入,离工业化尚有很长距离。 草酸酯法的研究最为深入,分两步进行,CO 与亚硝酸酯气相催化合成草酸酯,再由草酸酯加氢得乙二醇。该方法先利用醇类与NO 反应生成亚硝酸酯,在贵金属催化剂上与CO 羰基合成得到草酸二酯,草酸二酯再经催化加氢制得乙二醇。主要的反应如下: 草酸酯合成 2CO + 2RONO (COOR)2 + 2NO 反应尾气的再生 2NO + 1/2O 2 + 2ROH 2RONO + H 2O 草酸酯加氢制乙二醇 (COOR)2 + 4H 2 (CH 2OH)2 + 2ROH 总反应式为: 2CO + 4H 2 + 1/2O 2 (CH 2OH)2 + H 2O 煤制气经草酸酯合成乙二醇新技术中涉及三项关键催化剂,分别为: (1)高浓度CO 气源中选择性脱氢催化剂 (2)草酸酯合成催化剂 (3)草酸酯加氢制乙二醇催化剂 其中,选择性脱氢催化剂主要用于脱除草酸二甲酯合成原料气CO 中少量的H 2,采用变压吸附制得的高浓度CO 气中还存在少量H 2,而H 2对草酸二甲酯合成催化剂会产生毒化作用,导致催化剂活性衰退,影响合成反应的进行,故要求铜基催化剂 贵金属催化剂

煤制乙二醇工艺流程详细工艺

环氧乙烷水合制乙二醇 乙二醇是合成聚酯树脂的主要原料,大家熟知的涤纶纤维就是由乙二醇与对苯二甲酸合成的。乙二醇还可用作防冻液,w(乙二醇)=55%的水溶液的冰点为-36℃,可用作中国北方冬天汽车必需的冷却液。此外,乙二醇还可用作溶剂和用于化妆品、毛皮加工、烟叶润湿和纺织工业染整等。据预测,2000年乙二醇的世界产量将达到10Mt/a。中国1995年的产量为53×104 t/a,到2000年将达72×104 t/a。 1.乙二醇生产方法综述 现在,乙二醇有多种工业生产方法,但环氧乙烷水合制乙二醇法仍占主导地位。 (1)环氧乙烷法 可用酸作催化剂,但用得较多的是加压水合: 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高,因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: 反应条件:反应温度160℃,反应压力,催化剂TeO2/HBr[w(HBr)=48%的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%~97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸:

反应条件为:反应温度107~130℃,压力,选择性95%。 该法的总反应式为: 2CH2=CH2+2H2O+O2→2HOCH2-CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好解决,致使已开工生产的a生产装置被迫停产关闭。 (3)乙烯氧氯化法 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改进。采用TiCl3-CuCl2-HCl水溶液为催化剂。化学反应如下: CH2=CH2+TiCl3+H2O→ClCH2-CH2OH+TiCl+HCl ClCH2-CH2OH+H2O→HOCH2-CH2OH+HCl 催化剂再生: TiCl+2CuCl2→2CuCl2+H2O 2CuCl+2HCl+ 1/2 O2→2CuCl2+H2O 反应条件为:反应温度160℃,压力,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果Cl-∶Ti3+的比例小于4∶1时,乙醛产率将显著增大,在反应温度大于120℃时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: 催化剂再生: 2Cu+(或2Fe2+)+2H++1/2O2→2Cu2+(或2Fe3+)+H2O 反应条件:反应温度150~180℃,压力~,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 (4)由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引

烟台冰轮lg20bl螺杆式制冷压缩机组说明书摘录

凯添调峰站烟台冰轮预冷机型号::LQJZ380T天然气冷却机组 LG20BL 螺杆式制冷压缩机 LG20BL YF JZ制冷压缩机机组 ---产品特点: 1.效率高,节能,COP增加了约8%。 2.烟台冰轮的专利转子生产运行平稳,效率高,噪音低。 3.的烟台专利容量控制装置实现了灵活和精确的控制。 4.烟台专利设计降低了噪音和振动。 5.正循环油控制 6.烟台专利高效率的热交换管 7.可靠性和稳定性 制冷剂 R717 R22 排气压力MPa 低于低于 对应的饱和温度°C 低于45 小于46 吸入压力Mpa 对应的蒸发温度°C 机油压力MPa 高于出口压力 油温度°C 冷却水入口温度°C 冷却水流量偏差 LG20BL螺杆式制冷压缩机参数: 项目单位LG20BL 制冷剂R717/R22 理论流量1486 压缩机 产能控制范围 高温工况1724/1577 制冷量 中温工况957/914

1:高温工作条件是指40℃/ 5℃,中间温度是指40°C/-10°C,和低的温度是指40°C/-35℃。带经济器时,液体出口的温度比补气压力对应的饱和温度高5。油冷却器的冷却水进口温度为33℃,入口/出口的水的温度差为5℃。 2 ()的数据为制冷剂冷油机组参数。 原理图中液冷油冷却器经济器疑有误,均只有一进一出,怀疑经济器与液冷油冷却器应为一体,参见下图:且回气不应到压缩机出口管道。 经济器的原理及结构(是否就是:烟台冰轮工艺流程图上的液冷油冷却器,即压力容器图纸的油冷却器)配经济器的系统中,从冷凝器或贮液器出来的液体,并不直接送节流阀节流,而是首先进入经济器冷却器中进一步冷却,出来后的液体工质的温度可下降数十度,制冷量将得到提高。经济器冷却器中液体的冷却,是依靠经辅助节流阀节流后进入经济器中的中压液体工质,它吸收高压液体工质的热量而蒸发,蒸发出来的中压气体被螺杆压缩机的中间补气口吸走(见流程图)。带经济器的机组特别适合取代双级活塞式机组,在较低蒸发温度下经济运行。 压缩机的油分离系统 由于螺杆式制冷压缩机工作时喷入大量的润滑油与制冷剂蒸汽一起排出,所以在压缩机与冷凝器之间设置了高效的卧式油分离器。油分离器的作用是分离压缩机排气中携带的润滑油,使进入冷凝器的制冷剂纯净,避免润滑油进入冷凝器而降低冷凝器的效率。油分离器还有贮油器的功能。本机组采用卧式油分离器,从压缩机排出的高压气体,通过排气管进入油分离器,降低流速,改变方向,向油分的另一端排去。在这个过程中,大量的润滑油因为惯性及重力的作用沉降到油分底部,剩余的含有微量冷冻机油的气体再通过油分滤芯,此微量冷冻机油被最后分离,通过油分离器底部的回油阀回到压缩机中,以

乙二醇冷冻机组工作原理

乙二醇冷冻机组工作原理 对于使用乙二醇溶液的低温冷冻机,我们称之为乙二醇冷冻机组。它的出水温度一般是设置在-10℃以下,具体温度要求以用户需求为准。乙二醇冷冻机组常见于化工厂,为了确保机组安全稳定运行,很多化工厂还会严格要求冷冻机组做好防爆措施,也就是我们常说的防爆冷水机。 冷冻机的结构组成大致一样,都是压缩机、蒸发器、冷凝器、节流元件、电控系统组成,不过对于乙二醇冷冻机组,它则是采用低温压缩机,并且配有经济分离器等部件,还是有一定区别的。 一、压缩为了保持蒸发器中的压力足够低,从而保证制冷剂在足够低的沸点温度下政法,使用压缩机将蒸发后的制冷剂气体抽走,也就是将低温低压的制冷剂蒸汽压缩成高温高压的制冷剂气体。当压缩机的吸气速度大于制冷剂的蒸发速度,此时蒸发压力会降低,蒸发温度也会降低;反过来,压缩机的吸气速度小于制冷剂政法的速度,蒸发温度和压力都会相应升高。 二、冷凝高温高压的制冷剂实在冷凝器中被冷凝为液体的。在冷凝器中制冷剂将热量释放到比它温度低的空气或水中去,这部分热量包括制冷剂在蒸发器中蒸发时吸收的热量和压缩机压缩时转换成的热量。特别注意:空气或水的温度一定要比制冷剂的温度低,否则制冷剂无法放热,也就是冷却介质(冷却塔水或空气)的温度要比压缩机出口的制冷剂气体温度低。 三、节流通过节流器,制冷剂的压力从冷凝压力降到蒸发压力。从冷凝器出来的液体存放在贮液器中,此时制冷剂处于常温高压状态,经过膨胀阀后由于压力降低而导致沸点降低,液体进入蒸发器后很容易吸收热量而蒸发。 四、蒸发经过节流器的低温低压制冷剂液体在蒸发器中与载冷剂进行交换,吸收热量后

变为饱和或过热蒸气,以便被压缩机压缩。 冰河冷媒应用于制冷行业,彻底解决了传统载冷剂腐蚀设备、效能低下、污染环境的三大难题。产品性能卓越,在超低温以及高温领域表现出非常优越的性能!

EOEG(乙二醇)装置工艺技术特点及基本原理

E O E G(乙二醇)装置工艺技 术特点及基本原理 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

工艺技术特点及基本原理 基本原理 乙烯氧化生成环氧乙烷的反应机理 乙烯氧化过程按氧化程度可分为选择性氧化(部分氧化)和深度氧化(完全氧化)两种情况。乙烯分子中的碳—碳双键(C=C)具有突出的反应活性,在一定氧化 条件下可实现碳—碳双键的选择氧化而生成环氧乙烷,但在通常氧化条件下,乙烯分子骨架很容易被破坏,发生深度氧化而生成二氧化碳和水。目前工业上乙烯直接氧化生成环氧乙烷的最佳催化剂是银催化剂。 (1)主反应 乙烯氧化生成环氧乙烷是放热反应,在250℃时,每生成一摩尔环氧乙烷要释放出25.19千卡的反应热。 (2)副反应 乙烯氧化时除生成产物环氧乙烷外,还发生其它反应: 在工业生产中,反应产物里实际主要是环氧乙烷、二氧化碳和水,而甲醛量远小于1%,乙醛量则更小。 反应(2)是主要副反应,也是放热反应,250℃时,每反应掉1摩尔乙烯要放出315.9千卡反应热,如果反应温度过高或其它条件影响会产生反应(3),其反应也是强放热反应,每反应掉1摩尔环氧乙烷要放出314.4千卡的热量,副反应(2)和(3)与主反应(1)的反应进行比较,便可看出副反应的反应热是主反应热的卡几倍,因此必须严格控制工艺条件,以防副反应增加。不然,副反应加剧,势必引起操作条件恶化,造成恶性循环,甚至发生催化剂床层"飞温"(由于催化剂床层大量积聚热量造成催化剂层温度突然飞速上升的现象)而使正常生产遭到破坏。 近代对乙烯在银催化剂条件下的选择性氧化机理做了大量的研究,比较统一的看法是: A.氧被银表现吸附的形态 初始时,在各种不同温度下氧被高速度吸附,此时活化能很低,约为3千卡/克分子,这个过程发生在四个邻近的清洁的银原子上氧分子的解离吸附(非活化解离吸附)。

盾安水冷螺杆说明书汇总

2004年6月版 共12页 水冷半封螺杆型冷水机组 使用说明书 SL700.SM(4116) 浙江盾安人工环境设备股份有限公司 2004年6月15日

目录 一.简介 (1) (一)制冷流程 (1) (二)特点 (2) (三)用途 (2) (四) 使用条件 (2) 二.机组技术参数表 (3) 三.机组外形图 (4) 四.安装注意事项 (4) (一)前期准备 (4) (二)机组安装 (5) (三)水管路安装 (5) (四)电气安装 (7) 五.操作使用说明 (8) (一)首次开机程序 (8) (二)机组停机 (8) (三)电气操作 (8) 六.日常维护与保养 (9) 七.常见故障及排除 (10) 八.服务承诺 (10) 附录电气操作说明 (11)

一.简介 水冷半封螺杆型冷水机组是一种以水为冷却介质的中央空调产品,与相同冷量的风冷机组相比,由于其冷凝器和蒸发器均采用特制高效传热管制作,因此结构紧凑,体积小,效率高;又由于没有冷凝风机,因而噪声也低。 本公司在水冷半封螺杆型冷水机组制造方面有着成熟的技术,完善的工艺和先进的检测设备,再加上精选的国际一流配件,保证了机组的稳定、高效运行。 为了正确使用该机组,请您仔细阅读本使用说明书,如果遵照说明书认真安装、操作和维 排气冷凝 压缩机冷凝器角阀干燥过滤器视镜电磁阀节流蒸发 热力膨胀阀蒸发器压缩机 经压缩机压缩后的高温高压制冷剂气体,进入冷凝器与冷却水换热后被冷凝成中温高压液体,经干燥过滤后流经热力膨胀阀,被节流降压成低温低压的液体进入蒸发器,吸收水的热量后蒸发成低温低压的气体被压缩机吸入,再经压缩后进入下一次的制冷循环。被降温后的冷水通过水泵输送到末端设备,如此循环往复从而达到冷却降温之目的。

水冷机房空调机组水乙二醇循环系统

水冷机房空调机组水乙二醇循环系统 核心提示:水冷式直接膨胀机组从房间吸取的热量通过内置水冷冷凝器传输到制冷剂中。冷却水可以由供水管道、冷却塔或者水井供应,或者在一个带有外置干冷器的密封回路中运行。风冷乙二醇,水冷乙二醇,冷冻水乙二醇,双冷源乙二醇 一、水冷机组水(乙二醇)循环系统 有些机房附近无法安装室外机冷凝器,若要安装冷凝器,则需要比较长的管道,当管道长度超过35m时,因制冷剂流体的阻力过大,影响了制冷效果。此时可考虑改用水冷机组。水冷机组的冷凝器设在机组内部,循环水通过热交换器,将制冷剂汽体冷却凝结成液体,因水的比热容很大,所以冷凝热交换器体积不大,可根据不同的回水温度调节压力控制三通阀(或电动控制儿控制通过热交换器的水量来控制冷凝压力。循环水的动力是由水泵提供的,被加热后的水,有几种冷却方式较常用的是干冷器冷却,即将水送到密闭的干冷器盘管内,靠凤机冷却后返回,干冷器工作稳定、可靠性高,但需要有--个较大体积的冷却盘管和风机。还有一种是开放的冷却方式,即将水送到冷却水塔喷淋「靠水份本身蒸发散热后返回,这种方式需不断向系统内补充水,并要求对水进行软化,空气申的尘土等杂物也会进入系统中,严重时会堵塞管路,影响传热效果,因此还需定期除污。还有一种是直排水冷却方式,因对水资源浪费大,较少采用,主要适用于船舶上。 二、过滤器 中效EU4-5,一级防火滤蕊,金属框架结构,可以从机组正面抽出而不用担心灰尘扩散到房间内,可反复清洗,多次使用。 同时,可根据用户实际需求,提供更高效率的过滤器, 可达到EU8. 三、除湿系统 机房专用空调除湿系统一般利用其本身的制冷循环系统,采用在相同制冷量情况下减。部分蒸发器的面积(原理见图4-6),当机组正常制冷循环工作时,电磁液阀和除湿电磁阀均处于开启状态,当机组进行除湿工作时,电磁液阀仍正常开启,除湿电磁阀关闭,使实际蒸发面积减小。单位面积蒸发器内的制冷剂的蒸发量增六,蒸汽过热度减小,在风量不变的情况下,蒸发器表面温度下降至露点温度以下,开始除湿;或是采用降低通过蒸发器表面的风量(降低风机转速),在原制冷量不变的情况下,制冷剂蒸汽的过热度减小,蒸发器表面温度下降至露点温度以下,开始除湿。采用这两种方式,除湿速度快,效率高,无需再增加一套除湿系统,减少了机组体积及成本,且在除湿系统不工作时不影响正常的制冷循环工作。 四、加热系统 大部分机房均做了较好的密封和隔热保温处理,且机房内均是发热设备在长时间运转,如邮电局的程控交换机房,银行的计算中心等,造成即使是在冬季较冷的天气里,机房内仍可能会热量过剩而需制冷。因此,标准机房专用空调,在设计时一般均以制冷为主,加热做为热量补偿,大多采用电热管形式。它的特点是结构简单、成本低,工作可靠性高(无运动部件),因是直接靠电能加热,耗电量较大,但因其在机房内使用时间有限,仍可接受。而舒适性空调较多采用的热泵式(制冷循环的逆过程)加热系统,因其增加了原制冷循环的复杂程度,降低了可靠性,且增加了制造成本而使用机会不多,所以,机房空调较少采用。对于我国北方较寒冷的地方,机房如果密封和隔热保温做的不好,或者机房内设备不常使用(如

乙二醇技术说明书

乙二醇技术说明书

物理性质 CAS号107-21-1 中文名称乙二醇 乙二醇的球棍模型 EINECS 登录号203-473-3 InChI编码InChI=1/C2H6O2/c3-1-2-4/h3-4H,1-2H2 英文名称Ethylene Glycol,Mono ethylene glycol,MEG,EG. 英文别名: glycol, 1,2-ethanediol. 别名甘醇

分子式:C2H6O2; 结构简式:HO-CH2CH2-OH 分子量:62.068 冰点: -12.6℃ 沸点:197.3℃ 密度:相对密度(水=1)1.1155(20℃);相对密度(空气 =1)2.14 外观与性状:无色、有甜味、粘稠液体 蒸汽压:0.06mmHg(0.06毫米汞柱)/20℃ 闪点:111.1℃ 粘度:25.66mPa.s(16℃)[1] 溶解性:与水/乙醇/丙酮/醋酸甘油吡啶等混溶,微溶于醚等,不溶于石油烃及油类,能够溶解氯化锌/氯化钠/碳酸钾/氯化钾/碘化钾/氢氧化钾等无机物。 表面张力:46.49 mN/m (20℃) 稳定性:稳定 燃点:418℃ 在25摄氏度下,相对介电常数为 37 化学性质 由于分子量低,性质活泼,可起酯化/醚化/醇化/氧化/缩醛/脱水等反应。

主要用于制聚酯涤纶,聚酯树脂、吸湿剂,增塑剂,表面活性剂,合成纤维、化妆品和炸药,并用作染料/油墨等的溶剂、配制发动机的抗冻剂,气体脱水剂,制造树脂、也可用于玻璃纸、纤维、皮革、粘合剂的湿润剂。可生产合成树脂PET,纤维级PET即涤纶纤维,瓶片级PET用于制作矿泉水瓶等。还可生产醇酸树脂、乙二醛等,也用作防冻剂。除用作汽车用防冻剂外,还用于工业冷量的输送,一般称呼为载冷剂。 乙二醇在用做载冷剂时应该注意:1.其冰点随着乙二醇在水溶液中的浓度变化而变化,浓度在60%以下时,水溶液中乙二醇浓度升高冰点降低,但浓度超过60%后,随着乙二醇浓度的升高,其冰点呈上升趋势,粘度也会随着浓度的升高而升高。当浓度达到99,9%时,其冰点上升至-13,2℃,这就是浓缩型防冻液(防冻液母液)为什么不能直接使用的一条重要原因,必须引起使用者的注意。2.乙二醇含有羟基,长期在80摄氏度-90摄氏度下工作,乙二醇会先被氧化成乙醇酸,再被氧化成草酸,,即乙二酸(草酸),含有2个羧基。草酸及其副产物会先影响中枢神经系统,接着是心脏,而后影响肾脏。如无适当治疗,摄取过量乙二醇会导致死亡。,乙二醇乙二酸,对设备造成腐蚀而使之渗漏。因此,在配制的防冻液中,还必须有防腐剂,以防止对钢铁、铝的腐蚀和水垢的生成。如需了解和解决乙二醇水溶液的腐蚀问题可在百度上搜索。邢桂刚 3.乙二醇本身是相对活跃的物质,容易聚合成高分子聚合物,进一步氧化成聚合

关于乙二醇生产工艺的基本解释

关于乙二醇生产工艺的基本解释 关于乙二醇生产工艺的基本解释 摘要:熟悉乙二醇的生产工艺,不断加强技术进步是化工产品的必由之路。文章通过对乙二醇工艺特点的基本介绍,阐述乙二醇工艺的一些难点、重点。 关键词:草酸酯加氢合成法乙烯能耗低 一、基本制法 乙二醇的制法,环氧乙烷直接水合法,为目前工业规模生产乙二醇较成熟的生产方法。环氧乙烷和水在加压(2.23MPa)和190~200℃条件下,在管式反应器中直接液相水合制的乙二醇,同时副产品一缩二乙二醇、二缩三乙二醇和多缩聚乙二醇。 煤制乙二醇的潜在工艺路径可以分为直接合成法和间接合成法。直接合成法是将合成气中的CO及H2一步合成为乙二醇。间接合成法则主要分为通过甲醇甲醛及草酸酯作为中间产物合成,然后加氢获得乙二醇。相对而言,甲醇甲醛路线合成的研究还不深入,离工业化距离远;而草酸酯加氢合成法的实用性较强,适宜进行工业生产。由煤制合成气经草算酯加氢制取乙二醇的三个主要反应为: 氧化酯化反应:2CH3OH+2NO+1/2O2→2CH3ONO+H2O CO偶联反应:2CO+2CH3ONO→(COOCH3}2+2NO 草酸酯加氢反应:(COOCH3}2+4H2→HOCH2CH2OH2CH3OH 总的化学方程式:2CO+4H2+1/2O2→HOCH2CH2OH+H2O 二、主要技术路线 目前,乙二醇的生产主要采用石油路线,即采用乙烯、氧气为原料,在银催化剂、甲烷或氮气致稳剂、氯化物抑制剂存在下,乙烯直接氧化生成环氧乙烷,环氧乙烷再进一步与水以一定物质的量比在管式反应器内进行水合反应生成乙二醇,乙二醇溶液经蒸发提浓、脱水、分馏得到乙二醇及其它副产品。此外,整个工艺还设置了与其生产能力配套的空分装置、碳酸盐的处理以及废气废液处理等系统。英荷Shell、美国SD以及美国联碳(UCC)三家公司的专利技术在我国均

乙二醇的回收

从稀溶液中回收乙二醇 摘要 本文讨论了从稀溶液中回收乙二醇实验的可行性,如聚对苯二甲酸乙二醇酯废液。根据工艺过程的要求水溶液种乙二醇的质量分数为1.3%,乙二醇先经过一个初步蒸发阶段,然后由一个反渗透蒸馏处理。本研究的目的是找出各个操作单元的操作条件,从而确保乙二醇的浓度达到相关工艺所要求的浓度,并尽可能多的回收乙二醇,减少乙二醇的浪费。 关键词:乙二醇回收聚酯废水废物减少蒸发反渗透 绪论 工业上采用乙二醇与对苯二甲酸直接酯化反应,或对苯二甲酸二甲酯(DMT)与乙二醇酯交换法聚生产聚对苯二甲酸乙二醇酯。直接酯化是新建工厂生产采用的首选方法,是因为直接酯化反应具有较高的反应速率;在催化剂作用下,可以获得更高的分子聚合度;对苯二甲酸比对苯二甲酸二甲酯轻,减少了存储费用。 乙二醇与对苯二甲酸在缩聚反应器中反应,温度控制在220-260℃。乙二醇过剩,通常可以获得较高的反应速率。乙二醇与对苯二甲酸的比例大于2时,可以抑制一缩二乙二醇的形成。直接酯化,由催化剂加速其反应,其次是逐步四方的压力达到1mbar。反应产物中过剩的试剂,用连续蒸馏的方法除去。根据酯交换生产方案,酯化废水溶液主要含有乙二醇。对于此废水,资料显示总有机碳(TOC)在5000-11,00mg/L之间,TOC的含量取决于工厂的生产情况。 乙二醇是化学工业的主要产品之一,全世界的生产为6.7 ×10 6t/a。乙二醇可以降低水的冰点,其作为一种完美的防冻剂处理起来也很方便。商业上乙二醇用于发动机制冷,太阳能设备,热水及工业冷却系统以及作为飞机的防冻剂。乙二醇也是一种具有用于生产聚酯纤维的重要商业价值的原料,主要是聚对苯二甲酸乙二醇酯。其他少量用途是作为保湿剂,增塑剂,柔软剂,液压油和溶剂。 由于其大量使用,乙二醇已被列为10种环境污染物之一。在土壤中容易渗透,污染地下水,而其从地表水释放是微不足道的。因此有必要在乙二醇污染环境之前对其进行处理。需氧或厌氧生物治疗对于处理乙二醇废水具有重要作用,并应用PET废水处理。好氧工艺已成功被证明可以处理化学需氧量(COD)不高于1000-1500mg/L的废水。但是这些工艺不能很好地处理PET废水,由于PET

风冷螺杆冷(热)水机组安装使用说明书

目录 一、概述 (1) 二、机组主要性能参数 (1) 三、制冷系统工作原理及结构特征 (1) 四、安装要求 (2) 1.收货和检查 (2) 2.搬运和吊装 (2) 3.机组安装 (3) 4.冷冻水水路系统 (5) 5.水质的控制 (5) 五、辅助电加热器 (6) 1.辅助电加热器的选配 (6) 2.辅助电加热器在水路系统中的安装方式 (6) 六、电源控制柜 (6) 七、调试及试运行 (7) 1.检查 (7) 2.水系统运行 (7) 3.试运行 (7) 八、操作与维护 (7) 九、故障分析及排除方法 (11) 十、电气控制 (13) 十一、控制器操作指南 (14) 十二、各附图、附表 (22) 1.附图1制冷系统简图 (23) 2.附图2机组及冷冻水系统安装示意图 (24) 3.附图3机组接线图 (25) 4.附图4机组电气原理图 (26) 5.附表1机组主要性能参数表 (27) 6.附表2调试前检查记录表 (28) 7.附表3试运行及调试操作检查记录表 (29)

一、概述 风冷螺杆冷(热)水机组LSBDGRF(LSBDGF为单冷系列)是夏天提供冷水,冬天提供热水的制冷设备。与风柜及组合式空调等末端空气处理机组组成各种大型集中式空调系统。 风冷式设计为用户节省了冷却塔、冷却水泵。机组不需要专用机房,可安装于屋顶、室外地面等地方。 机组采用高效率、动件少、可靠度高的单螺杆压缩机,运转及维修费用均大大低于其它类型冷水机组。 机组运行由微电脑控制系统进行控制,能自动地按照负荷的大小进行压缩机卸载、加载,并采用容量控制装置,单压缩机机组具有0~40%~70%~100%能量调节功能,双压缩机机组具有0~20%~35%~40%~50%~55%~70%~85%~100%多级能量调节运行功能。在负荷由小至大变化过程中,机组的输出与负荷均能保持最佳匹配,整个系统可达最高效率,真正达到了最佳节能运行。 多项安全保护功能:电源逆(缺)相保护、电机过载保护、冷冻水防冻结保护、高低压压力保护、排气高温保护、水流开关保护等。 机组可广泛用于新建和改建的大小工业与民用建筑空调工程,如宾馆、公寓、酒家、餐厅、办公大楼、购物商场、影剧院、体育馆、医院及厂房等,也可为工厂生产的工艺过程提供所需的冷(热)水,尤其适用于对噪声和周围环境有较高要求、不允许安装锅炉、不易安装冷却塔等特殊场合。 二、机组主要性能参数(参见附表1) 三、制冷系统工作原理及结构特征 制冷循环:压缩机吸入蒸发器中的低压过热制冷剂蒸汽,经压缩机压缩成高温高压的过热蒸汽,在冷凝器(风冷式换热器)中向环境散热,从而冷凝成饱和或过冷的制冷剂液体,经膨胀阀节流降压流入蒸发器(壳管换热器),吸收冷媒水的热量汽化后,再被压缩机吸入压缩,开始了新的循环。经蒸发器的冷媒水被冷却,而被送入空调区域。(见附图1) 热泵循环:通过四通换向阀,使制冷剂流向相反。经压缩机压缩的高温高压制冷剂蒸汽经四通阀直接排入壳管换热器中向冷媒水放出热量,从而产生制热效果,被冷凝后的制冷剂液体流经膨胀阀节流降压,在风冷式换热器中吸收环境的热量而蒸发,再被吸入压缩机压缩。

相关文档