文档库 最新最全的文档下载
当前位置:文档库 › 苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理
苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理

第二章有理数

2.1正数和负数

⒈正数和负数的概念

负数:比0小的数正数:比0大的数 0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义

⑴0表示“没有”;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。

2.2有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类

⑴按有理数的意义分类⑵按正、负来分

正整数正整数整数 0 正有理数

负整数正分数

有理数有理数 0

正分数负整数分数负有理数

负分数负分数

总结:①正整数、0统称为非负整数(也叫自然数)

②负整数、0统称为非正整数

③正有理数、0统称为非负有理数

④负有理数、0统称为非正有理数

2.3数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数

⑴最小的自然数是0,无最大的自然数;

⑵最小的正整数是1,无最大的正整数;

⑶最大的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,,则a=0

6.数轴上点的移动规律

根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

2.4绝对值与相反数

一、相反数

⒈相反数

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;

⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定

⑴任何数都有相反数,且只有一个;

⑵0的相反数是0;

⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

3.相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法

⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

5.相反数的表示方法

⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。当a>0时,-a<0(正数的相反数是负数)

当a<0时,-a>0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

6.多重符号的化简

多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

二、绝对值

⒈绝对值的几何定义

一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义

⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

可用字母表示为:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

3.绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;

⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

⑶任何数的绝对值都不小于原数。即:|a|≥a;

⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

4.有理数大小的比较

⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

5.绝对值的化简

①当a≥0时, |a|=a ;②当a≤0时, |a|=-a

6.已知一个数的绝对值,求这个数

一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

2.5有理数的加法与减法

1.有理数的加法法则

⑴同号两数相加,取相同的符号,并把绝对值相加;

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

⑶互为相反数的两数相加,和为零;

⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律

⑴加法交换律:a+b=b+a

⑵加法结合律:(a+b)+c=a+(b+c)

在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

①互为相反数的两个数先相加——“相反数结合法”;

②符号相同的两个数先相加——“同号结合法”;

③分母相同的数先相加——“同分母结合法”;

④几个数相加得到整数,先相加——“凑整法”;

⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质

一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

⑴当b>0时,a+b>a ⑵当b<0时,a+b

4.有理数减法法则

减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义

在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:

6.有理数加减混合运算中运用结合律时的一些技巧:

Ⅰ.把符号相同的加数相结合(同号结合法)

Ⅱ.把和为整数的加数相结合(凑整法)

Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)

Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)

Ⅴ.把带分数拆分后再结合(先拆分后结合)

Ⅵ.分组结合

Ⅶ.先拆项后结合

2.6有理数的乘除法

1.有理数的乘法法则

法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;

法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

法则四:几个数相乘,如果其中有因数为0,则积等于0. 2.倒数

乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为

a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a

1

是a 的倒数。

注意:①0没有倒数;

②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置; ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

④倒数等于它本身的数是1或-1,不包括0。

3.有理数的乘法运算律

⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba

⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).

⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac 4.有理数的除法法则

(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

5.有理数的乘除混合运算

(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。 (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

2.7有理数的乘方

1.乘方的概念

求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在n a中,a 叫做底数,n 叫做指数。

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

3.科学记数法

把一个大于10的数表示成n

?的形式(其中10

a10

1<

≤a, n是正整数),这种记数法是科学记数法。

2.8有理数的混合运算

做有理数的混合运算时,应注意以下运算顺序:

1.先乘方,再乘除,最后加减;

2.同级运算,从左到右进行;

3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

第三章代数式

3.1字母表示数

用字母可以表示我们已经学过的和今后要学到的任何一个数,用字母表示数可以简明地表达数学运算律,用字母表示数可以简明地表达公式,用字母表示数可以简明地表达问题中的数量关系,还可以用字母表示未知数。

3.2代数式

代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。单独的一个数或一个字母也是代数式。

单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

单项式的系数:单项式中的数字因数

单项式的次数:一个单项式中,所有字母的指数和

多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。

整式:单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

代数式书写规范:

①数与字母、字母与字母中的乘号可以省略不写或用“·”表示,并把数字放

到字母前;

②出现除式时,用分数表示;

③带分数与字母相乘时,带分数要化成假分数;

④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

3.3代数式的值

用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫做代数式的值。代数式的值一般不是某一个固定的量,而是随着代数式中字母取值的变化而变化。

代数式求值时,第一步是“代入”,即用数值代替代数式里的字母;第二步是“计算”,即按照代数式指明的运算,计算出结果.

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

3.4合并同类项

同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

3.5去括号

去括号法则

(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;

(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。

3.6整式的加减

整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。

整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项。

第四章 一元一次方程

4.1从问题到方程

一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。一般形式:ax+b=0(a ≠0)

注意:未知数在分母中时,它的次数不能看成是1次。如x x

=+31,它不是一元一次方程。

4.2解一元一次方程

方程的解:能使方程左右两边相等的未知数的值叫做方程的解。 解方程:求方程的解的过程叫做解方程。

等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;

(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。

移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。

移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。 移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。

注意:移项时要跨越“=”号,移过的项一定要变号。

解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1。

注意:去分母时不可漏乘不含分母的项。分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。

4.3用一元一次方程解决问题

列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。关键在于抓住问题中的有关数量的相等关系,列出方程。 解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系

实际问题的常见类型:

行程问题:路程=时间×速度,时间=

速度路程,速度=时间

路程

(单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时)

工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和 利润问题:利润=售价-进价,利润率=

进价

利润

,售价=标价×(1-折扣) 等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积

利息问题:本息和=本金+利息;利息=本金×利率

第五章 走进图形世界

5.1丰富的图形世界&5.2图形的运动

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

圆柱

柱体

棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体

(按名称分) 圆锥

椎体

棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

5.3展开与折叠

正方体的平面展开图:11种

5.4主视图、左视图、俯视图

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第六章平面图形的认识(一)

6.1线段、射线、直线

线段,射线,直线

点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A

一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB

一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB

一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB

点和直线的位置关系有两种:

①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。 (5)线段的比较:1.目测法 2.叠合法 3.度量法

线段的中点:

点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。

直线的性质

(1)直线公理:经过两个点有且只有一条直线。 (2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

M

A

B

6.2角

角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。角的表示:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°

角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较

(3)角可以参与运算。

角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

6.3余角、补角、对顶角

余角和补角

①如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°

②如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°

③同角(或等角)的余角相等;同角(或等角)的补角相等。

对顶角

①一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个

角叫做互为对顶角,其中一个角叫做另一个角的对顶角。

注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。

②对顶角的性质:对顶角相等

6.4平行

平行线:

在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

平行线公理及其推论

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

(3)平行线的定义。

6.5垂直

垂直:

两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

垂线的性质:

性质1:平面内,过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。

同一平面内,两条直线的位置关系:相交或平行。

苏科版七年级数学上册全册知识点归纳

苏科版七年级数学上册全册知识点归纳 第2章 有理数 1.像10、13、155、117.3、0.55%这样的数是正数.它们都是比0大的数。 像-2、-13、-155、-117.3、0.55%这样的数是负数.它们都是比0小的数。 特别提醒:0既不是正数,也不是负数。 2.正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数。 3.有理数:能够写成分数形式n m 的数叫做有理数。有限小数和循环小数都是有理数。 无理数:无限不循环小数叫做无理数。 实数:有理数和无理数统称为实数。 4.数轴:规定了原点、正方向和单位长度的直线叫作数轴; 数轴有三要素:原点、单位长度和正方向,三者缺一不可 。 数轴上的点和实数具有一一对应的关系。 5.在数轴上表示的两个数,右边的数总比左边的大. 正数都大于零,负数都小于零,正数大于负数. 两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。 6.绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。 相反数:符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数。 7.绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。 用字母表示:

?? ???-==)0()0(0)0(||<>a a a a a a 8.有理数加法法则: (1)同号两数相加,取相同符号,并把绝对值相加, (2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0, (3)一个数同0相加,仍得这个数。 有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 9.有理数减法法则:减去一个数,等于加上这个数的相反数。 10.有理数的乘法法则:两个数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘都得0。 几个不等于0的数相乘,积的符号由负因数的个数决定。 有理数乘法运算律: 交换律:a×b= b×a 结合律:(a×b)×c=a×(b×c) 分配律:(a+b)×c=a×c+b×c 11.有理数除法法则: 除以一个不等于0的数,等于乘这个数的倒数 两个不等于0的数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不等于0的数,都得0. 12.求几个相同因数积的运算,叫做乘法,乘方的结果叫幂。 应当注意,乘方是一种运算,幂是乘方运算的结果.

【精选】苏科版七年级上册数学 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难) 1.点在数轴上分别表示有理数,两点间的距离表示为 .且 . (1)数轴上表示2和5的两点之间的距离是________, 数轴上表示?2和?5的两点之间的距离是________, 数轴上表示1和?3的两点之间的距离是________; (2)数轴上表示x和?1的两点A和B之间的距离是________,如果|AB|=2,那么x=________; (3)当代数式|x+1|+|x?2|取最小值时,相应x的取值范围是________. 【答案】(1)3;3;4 (2)1;-3 (3)?1?x?2 【解析】【解答】解:(1)、|2?5|=|?3|=3; |?2?(?5)|=|?2+5|=3; |1?(?3)|=|4|=4; ( 2 )、|x?(?1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=?2, 所以x=1或x=?3; ( 3 )、数形结合,若|x+1|+|x?2|取最小值,那么表示x的点在?1和2之间的线段上, 所以?1?x?2. 【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案; (2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可; (3)|x+1|+|x?2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x?2|有最小值,从而得出x的取值范围. 2.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题. (1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________; (2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________; (3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,

苏教版初一数学上册知识点.doc

初一数学(上)应知应会的知识点 代数初步知识 1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×2 11应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a 3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做 a-b 和b-a . 3.几个重要的代数式:(m 、n 表示整数) (1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ; (2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ; (3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数 是: n-1、n 、n+1 ; (4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;

苏科版七年级上册数学知识点 教案

《有理数》知识点总结归纳 正数和负数 ⒈正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如: 有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分 正整数正整数 整数 0 正有理数 负整数正分数 有理数有理数 0 (0不能忽视)正分数负整数 分数负有理数 负分数负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。

苏教版七年级上册数学知识点整理

有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分 正整数正整数 整数 0 正有理数 负整数正分数 有理数有理数 0 (0不能忽视) 正分数负整数 分数负有理数 负分数负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。 2.数轴上的点与有理数的关系 ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数) 3.利用数轴表示两数大小 ⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数; ⑶两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的最大(小)数 ⑴最小的自然数是0,无最大的自然数; ⑵最小的正整数是1,无最大的正整数; ⑶最大的负整数是-1,无最小的负整数 5.a可以表示什么数

苏科版七年级上册数学试卷

2010—2011学年度第一学期期末试卷 七年级数学 (满分:150分 测试时间:120分钟) 题 号 一 二 三 总分 合分人 1-10 11-18 19 20 21 2 2 23 2 4 25 26 得 分 一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 1、下列式子中,正确的是 A .55-=- B .55-=- C .10.52-=- D .1122 --= 2、实数a 、b 在数轴上的位置如图所示,则下列式子成立的是 2011.01 学校 姓名 考试 班级 密 封

A .a +b>0 B .a >-b C .a +b<0 D .-a

苏教版七年级数学上册基本知识点

苏教版七年级数学知识点 一、有理数 1、正数:比0大的数是正数; 2、负数:比0小的数是负数; 3、0既不是正数也不是负数。 4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。 5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面: 1)数轴的三要素:原点、正方向和单位长度,缺一不可。 2)数轴是一条直线,可以向两边无限延伸。 3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。 6、数轴的画法 1)画:画一条水平直线。 2)取:在直线上选取一点为原点,并在原点的下面标上“0”。 3)定:确定正方向,画上箭头(向右为正)。 4)选:根据需要选取适当的长度作为单位长度。根据需要从原点右向左选取各点。 7、数轴上的点与有理数的关系 1)任何一个有理数都可以数轴的一个点来表示。 2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。 3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。 8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。 9、绝对值的概念 1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。 2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=0 3) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。│a│≥0 4)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。再根据绝对值的意义确定去掉绝对值符号后的形式。 如:是正数,就等于它的本身;是负数,就等于它的相反数。是0,就等于0。 5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。 10、相反数的概念 1)几何意义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,就是相反数。 2)代数意义:只有符号不同的两个数,我们说其中一个数就另一个数的相反数。 3)0的相反数是0本身。 4)相反数的表示法:a的相反数是-a 这里的a 表示任意一个数,可以是正数、负数和0还可以是任意一个代数式子。 5)正数的相反数是负数,负数的相反数是正数,0的相反数是0 6)两个互为相反数的数的绝对值相等。反过来,绝对值相对的两个数相等或互为相反数。 11、两个负数,比较大小时,绝对值大的反而小。 12、有理数的加法法则 1)同号两数相加,取相同的符号,并把绝对值相加; 2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;

最新苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结 第一章数学与我们同行 知识点1 数字与生活 生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。例如,身份证号码、学生的学籍号、火车的列次等。 知识点2 图形与生活 生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。 知识点3 动手操作 动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。这类题病根是培养学生的创新能力和实践能力。动手操作包括折叠、裁剪、拼图等各种活动。 知识点4 找规律 这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。 知识点5 统计知识 在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。 第二章有理数 2.1正数与负数 正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。正数可分为正整数和正分数。 负数:小于零的数,负数前面放上“-”来表示。负数可分为负整数和负分数。 注意:0既不是正数,也不是负数。同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。 我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。 2.2 有理数与无理数 整数和分数统称为有理数。 我们把能够写成分数形式m n(m、n是整数,n≠0)的数叫做有理数。 实际上,有限小数和循环小数都可以化为分数,它们都是有理数。无限不循环小数叫做无理数。

有理数 有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。 (2)在分类时,要注意0的地位和意义。 (3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。 (4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。 无理数知识点提示 (1)只有满足“无限”和“不循环”这两个条件,才是无理数。 (2)圆周率π是无理…… (3)无理数与有理数的和差一定是无理数。 (4)无理数乘或除以一个不为0的有理数一定是无理数。 (5)无理数分为正无理数和负无理数。 注意: (1)容易出错的原因是不按标准分类,即分类标准混乱;(2)易将0忽略,0既不是正数, 也不是负数;(3)如π2 有分数线,但它不是分数,是无理数。 2.3数 轴 单位长度: 像这样规定了原点、单位长度和正方向的直线叫做数轴。 数轴定义包含三层含义:①数轴是一条可以向端无限延伸的直线;②数轴有三要素:原点、正方向、单位长度;③注意“规定”二字,是说原点的位置、正方向的选取、单位长度的大整 数 分 数 正整数 零 负整数 自然数 正分数 负分数

苏科版七年级上册数学数学参考答案

七年级数学参考答案 一、填空填:(每小题2分,共20分) 1.-12 2.> 3.-ab 2或-a 2b 4.608914.7281 5.(1-40%)a(或a-40%a 或60%a 或0.6a) 6.x 2+x 7.< 8.(略) 9.11 10.3, 1. 二、选择题:(每小题2分,共16分) 11~14 ADCA 15~18 ADBA 三、解答题: 19.-|-3.5|<-12<0<112 <+2.5<-(-4). (2分) 数轴上点表示正确.(4分) 20.(1)原式=2-2 (3分) =0. (4分) (2)原式=(-13-16)+(14-12)=-12-14 (3分) =-34 .(4分) (3)原式=1-14 (3分) =34 . (4分) (4)原式=-1+2-8 (3分) =-7.(4分) 21.(1)原式=-a-4b. (3分) (2)原式=2x+5x-3y-6x-2y (2分) =x-5y. (3分) (3)原式=5ab 2-3[2a 2b-2a 2b+4ab 2] =5ab 2-6a 2b+6a 2b-12ab 2 (2分) =-7ab 2. (3分) 22.由已知,得a=-1.(1分) (1)当a=-1时,a 3-1=-2; (2分) (2)(a-1)(a 2+a+1)=-2(1-1+1)=-2;(4分) (3)发现a 3-1=(a-1)(a 2+a+1). (6分) 23.所求多项式:(2a 2-4ab+b 2)+(-3a 2+2ab-5b 2)(2分) = 2a 2-4ab+b 2 -3a 2+2ab-5b 2(3分) = 5a 2-6ab+6b 2. (4分) 四、解答题:24.(1)图略;(画图正确给4分) (2)C 村离A 村为:2+4=6(km);(4分) (3)小华一共走了:2+3+9+4=18(km).(6分) 25.原式=7x 3-6x 3y+3x 2y+3x 3+6x 3y-3x 2y-10x 3=0;(2分) 当x=-2007,y=2008时,原式=0.(4分) 26.(1)当a=15时,b=0.8(220-15)=164(次). (2分) (2)当a=45时,b=0.8(220-45) =140(次). (3分) 因为22×60÷10=132<140, 所以他没有危险.(4分) 27.(1)游泳池面积:mn.(1分) 休息区面积:14 πn 2.(2分) (2)绿地面积:ab-mn-14 πn 2. (3分) (3)设计不合理.(4分) 理由:由已知,得a=1.5b,m=0.5a,n=0.5b. 所以12ab-mn-14 πn 2=π16>0.即小亮设计的游泳池面积达不到要求. (5分) 28.(1)付款:方案一:1062元;方案二:1079元:方案三:1039元:方案四:1056元.(2分) 所以选择方案三付款省钱.(3分) (2)正确填写下表(4分) 规律:商品标价接近600元的按促销方式②购买,标价接近800元的按促销方式①购买.或标价大于600元且小于720元按促销方式②购买,标价大于720元且小于800元按促销方式①购买.(6分) (其它表述正确,或能将两种购物方式抽象概括成一次函数并能正确解答的均可给分)

苏教版初一数学上知识点整理

⑴按有理数的意义分类 ⑵按正、负来分 初一数学上知识点总结归纳 代数初步知识 1.代数式:用运算符号“+ — X 十 代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义; 单独一个数或一个字母也是代数式) 2. 列代数式的几个注意事项: (1) 数与字母相乘,或字母与字母相乘通常使用“ ? ”乘,或省略不写; (2) 数与数相乘,仍应使用“X”乘,不用“? ”乘,也不能省略 乘号; (3) 数与字母相乘时,一般在结果中把数写在字母前面,如 a x 5应写成5a ; 1 3 (4) 带分数与字母相乘时,要把带分数改成假分数形式,如 a x 1丄应写成-a ; 2 2 (5) 在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如 3十a 写成?的形式; a (6) a 与 b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为 a 、 b 时,则应分类, 写 做a-b 和b-a . 3. 几个重要的代数式:(m n 表示整数) (1) a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b ) 2 (2) 若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数 是:100a+10b+c ; (3) 若m n 是整数,则被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连 续整数是: n-1、n 、n+1 ; 负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a 可以表示任意数,当 a 表示正数时,-a 是负数;当a 表示负数时, 示0时,-a 仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的, 例如+a,-a 就不能做出简单判断) ② 正数有时也可以在前面加“ +”,有时“ +”省略不写。所以省略“ +”的正数的符 号是正号。 2. 具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8C 表示为:+8C ;零下8 C 表示为:-8 C 3.0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线, 0既不是正数,也不是负数。 不是有理数; 有理数1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①n 是无限不循环小数,不能写成分数形式,不是有理数。② 有限小数和无限循连接数及表示数的字母的式子称为 (4)若b > 0,则正数是:a 2+b ,负数是: 正数和负数1?正数和负数的概念 -a 2 -b ,非负数是: aj_,非正数是: 2 -a -a 是正数;当 a 表

苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理 第二章有理数 2.1正数和负数 ⒈正数和负数的概念 负数:比0小的数正数:比0大的数 0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义 ⑴0表示“没有”; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。 2.2有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分 正整数正整数整数 0 正有理数 负整数正分数 有理数有理数 0 正分数负整数分数负有理数 负分数负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 2.3数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版七年级数学(上册)教(学)案全集

1.1 生活数学 一、教学目标及教材重难点分析 (一)教学目标 1.通过对生活中常见的图形、数字的观察和思考,感受生活中处处有数学。 2.乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具。 (二)教学重难点 1.重点:学生通过观察、操作、实验、交流等活动,感受生活中处处有数学; 2.难点:通过“做数学”的过程与方式进行,初步了解数学是研究数量和形状的科学。. 二、教学过程 1.创设情境引入 (出示投影)展示四幅富有美感的图片:天安门、金字塔、长江二桥、上方明珠电视塔等建筑,从中寻找熟悉的图形(立体的或平面的),感受丰富的图形世界,以上一组画面与我们今天的数学课有什么关系呢?请问你看到的容哪些与数学有关?(同桌讨论后回答)2.探索新知识 1). 结合以上画面以及教室、学习用品,让学生举例生活中常见的物体可以看成什么样的几何图形,加强对几何图形的感性认识 2). 展示一些其他的与数字有关的生活情境,如股市信息、邮政编码、、手机、汽车牌照、条形码等(这里可让学生自己举例) 3). 从观察P5 “车票中提供的信息”再到““,感受数字与生活的联系及其发挥的作用4). 让学生自己设计学号,并解释它的意义 3.课堂练习: P7页试一试 4.归纳小结与知识的与拓展 1、归纳小结 2、知识的与拓展 (1).某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差() A、0.8kg B、0.6kg C、0.5kg D、0.4kg (2).小华每天起床后要做的事情有穿衣(4分钟)、整理床(3分钟)、洗脸梳头(5分钟)、上厕所(5分钟)、烧饭(20分钟)、吃早饭(12分钟),完成这些工作共需49分钟,你认为最合理的安排应是多少分钟? (3).趣味数学 猜谜语:(1)数字虽小却在百万之上(打一数字)(一) (2)2、4、6、8、10(打一成语)(无独有偶) (3)从严判刑(打一数学名词)(加法) 三.自我检测 1、某中学举行校园歌手大赛,7位评委给某选手的评分如下表。计分方法是:去掉一个最

苏教版七年级上数学知识点总结

第一章我们与数学同行(略) 第二章有理数 一、正数和负数 ⒈正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如: 二、有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分 正整数 整数 0 正有理数 正分数 有理数有理数 0 (0不能忽视) 负整数 分数负有理数 负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 三、数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。

苏科版七年级上册数学练习题

七 年 级 数 学 练习题 一、静心填一填(每题2分,共24分) 1、把长江的水位比警戒水位高0.2米,记为+0.2米,那么比警戒水位低0.25米, 记作__________。 2、绝对值等于3的数是___________。 3、在数轴上,表示与—2的点的距离为3的数是 。 4、某天早晨的气温是—7℃,中午上升了11℃,则中午的气温是 ℃。 5、某粮店出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意 拿出两袋,它们的质量最多相差 kg 。 6、对代数式“5x ”,我们可以这样来解释:某人以5千米/小时的速度走了x 小时, 他一共走的路程是5x 千米。请你对“5x ”再给出另一个生活实际方面的解释: 。 7、合并同类项:3a+2b —5a —b = 。 8、如图所示是计算机程序计算,若开始输入x =-1,则最后输出的结果是___ __。 9、128米长的绳子,第一次截去一半,第2次截去剩下的一半,如此截下去, 第7次后剩下的绳子长为 米。 10、请你把这五个数:+5,—2.5, 2 1 ,—4,0, 按从小到大,从左到右串成葫芦状(数字写在○内) 11、某校去年初一招收新生x 人,今年比去年增加20%, 用代数式表示今年该校学生人数为 。 12、一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分 (如右图),则这串珠子被盒子遮住的部分有________颗。 二、开心选一选(每题2分,共12分) 13、 |-2|的相反数是( ) A .- 21 B . -2 C .2 1 D . 2 14、 下列四个数中,在-2到0之间的数是( ) A .-1 B . 1 C .-3 D . 3 15、-2的倒数是( ) A .2 B . 21 C .-2 D . -2 1 16、下列等式一定成立的是( ) A .3x+3y=6xy B .16y 2 -7y 2 =9 输入x ×(—3) —4 输出

新版苏科版七年级上数学第三次月考试卷

初一数学独立作业试卷第1页(共6页) 初一数学第三次独立作业 2013.12.17 (时间120分钟 满分150分) 8小题,每小题3分,共24分,每题只有一个正确答案,请将答 ( ) A .y x 2 3与2 3xy B .abc 2与ac 3- C .xy 2-与ab 2- D . 2与25 2.在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 ( ) A B C D 3.圆柱是由矩形绕着它的一边旋转一周所得到的,那么左图是以下四个图中的哪一个绕着直线 旋转一周得到的( ) A B C D 4.已知:如图,AB 、CD 相交于O ,90AOC ∠=?,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等 B .互余 C .互补 D .互为对顶角 5.点C 在线段AB 上,M 、N 分别是线段AC 、CB 的中点。若MN=5,则线段AB 的长等于( ) A .6 B .8 C .10 D . 12 6.如图是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下 列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是( ) A D 7.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。若设小明的这笔一年定期存款是x 元,则下列方程中正确的是 ( ) A .1219 %20%98.1=?+x B .1219%20%98.1=?x C .1219%)201(%98.1=-?x D .1219%)201(%98.1=-?+x x A B C D E F 2 1 O 第4题 图 第6题

苏教版初一数学[上]知识点整理

初一数学上知识点总结归纳 代数初步知识 1.代数式:用运算符号“+ - X 十……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义; 单独一个数或一个字母也是代数式) 2. 列代数式的几个注意事项: (1) 数与字母相乘,或字母与字母相乘通常使用“ ?”乘,或省略不写; (2) 数与数相乘,仍应使用“X”乘,不用“?”乘,也不能省略乘号; (3) 数与字母相乘时,一般在结果中把数写在字母前面,如a x 5应写成5a; 1 3 (4) 带分数与字母相乘时,要把带分数改成假分数形式,如a x 1丄应写成-a; 2 2 (5) 在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3十a写成?的形式; a (6) a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类, 写做 a-b和b-a . 3. 几个重要的代数式:(m n表示整数) (1)a与b的平方差是: a 2-b 2;a 与b差的平方是:(a-b ) 2 (2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c ; (3)若m n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连 续整数是:n-1、n、n+1 ; (4)若b> 0,则正数是:a 2+b,负数是:-a 2-b,非负数是:aj_,非正数是:-a2. 正数和负数1?正数和负数的概念 负数:比0小的数正数:比0大的数0 既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表 示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的, 例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“ +”省略不写。所以省略“ +”的正数的符号是正号。 2. 具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8C表示为:+8C ;零下8 C表示为:-8 C 3.0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。二不是有理数; 有理数1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①n是无限不循环小数,不能写成分数形式,不是有理数。② 有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8 …也是偶数,-1,-3,-5…也是奇数。 1. 有理数的分类 ⑴按有理数的意义分类⑵按正、负来分

苏科版七年级上数学期末综合试卷及答案

第一学期初一数学期末综合试卷(1) 知识涵盖:苏科版七年级上册;分值:130分; 一、选择题:(本题共10小题,每小题3分,共30分) 1.(2015?盘锦)12 - 的相反数是………………………………………………………( ) A .2; B .-2; C .12; D .12-; 2.(2015?玉林)下列运算中,正确的是……………………………………………………( ) A .325a b ab +=; B .325235a a a +=; C .22330a b ba -=; D .22541a a -=; 3.(2015?绥化)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是……………………………………………………………( ) 4.已知∠AOB =30°,自∠AOB 顶点O 引射线OC ,若∠AOC ︰∠AOB =4︰3,那么∠BOC 的度数是( ) A .10° B .40° C .70° D .10°或70° 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是…………( ) A .AC =BC ; B .A C +BC =AB ; C .AB =2AC ; D .BC =12 AB ; 6.若a =a -,则实数a 在数轴上的对应点一定在……………………………( ) A .原点左侧; B .原点或原点左侧; C .原点右侧 ; D .原点或原点右侧; 7.(2014?梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是………………………………………………( ) A . 15° B . 20° C . 25° D . 30° 8.如图,将一张长方形的纸片沿折痕E 、F 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12 ∠EFM ,则∠BFM 的度数为………………………………………………………( ) A .30° B .36° C .45° D .60° 9.已知a ,b ,c 在数轴上的位置如图所示,化简22a c a b c b +----的结果 第10题 A . B . C . D . 第7题 第8题

苏教版七年级上册数学练习

常青教育7年级数学(上)中期考试卷(1—3章) 一、有理数有关概念的复习 1. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数是 ; 2. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ; 3. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距离是 . 4. 写出所有比-5大的非正整数为 , 比5小的非负整数 , 到原点的距离不大于3的所有整数有 . 5. 绝对值等于3的数有 ;绝对值小于3的整数有 ; 绝对值不大于2的整数有;相反数大于-1但不大于3的整数有 . 6. 一种零件的内径尺寸在图纸上是10±0.05(),表示零件标准尺寸为,加工要求最大不超 过,最小不超过. 7. 按要求填空11 4.8 73 -2.7 61 -8.12 -4 3 -π 0 正数集合( )、负数集合( )、正分数集合( ) 整数集合( )、非负数集合( )、负分数集合( ) 8. 已知a >0,b <0,且a <b ,试在数轴上表示出a ,b ,-a ,-b ,并用“〈”连结. 9. 已知3,2,则的值为 . 10.⑴已知-5-5,求x 的取值范围; ⑵已知-33-a ,求a 的取值范围. 11.已知1

(5)、3×(-5)×(-7)×4 (6)、53()(1)245- ?- (7)、1 7() 2.5()(8)516-??-?- (8)、1(8)()4??-?--??? ? 2.判断: (1)同号两数相乘,符号不变,再把绝对值相乘;( ) (2)异号两数相乘,取绝对值较大的因数的符号;( ) (3)两数相乘,如果积为正数,则这两个因数都是正数;( ) (4)0乘以任何数都得0;( ) (5)几个不为0的数相乘,积的符号由负因数的个数确定。( ) 3.确定下列各个积的符号,填在后面的空格内,并回答问题: ①3×3×3×3; ;②(-3)×3×3×3; ;③(-3)×(-3)×3×3; ; ④(-3)×(-3)×(-3)×3; ;⑤(-3)×(-3)×(-3)×(-3); ; 当三个或三个以上都不等于零的有理数相乘时,积的符号与负因数的个数有什么关系?如果有五个不等于0的数相乘,积为负数,那么在这五个乘数中,负数有几个? 4.计算: (1)(+14)×(-6); (2)(-12)×(-1 43); (3)(- 43)×0.75; (4)(-221)×(-331); (5) 21×(-41); (6)21-×(-4 1)

苏科版数学七年级上册第二单元《有理数》试题

《有理数》试题 一、填空题 (1)绝对值大于2小于8的整数中,最小的偶数是______ (2) 12的相反数的绝对值是 ,|-12|的倒数的相反数是 , -12 的绝对值的相反数是 . (3)=-+-10099)2()2(____ (4)1080亿用科学计数法表示为__________,0.00000000234用科学计数法表示________ (5)0.005499有_____个有效数字;精确到千分位是_________, (6)a ,b 互为相反数,c 与d 互为倒数,则2a-3dc+2b=____ (7)若0|1|232=-+b a ,则a=____,b=____ 二、选择题 (8)下列比较大小的式子中,错误的是____ A .(-8)×(+3)<|(-8)×(+3)| B .313.0- >- C .32)2()3(-<- D .0.01>-1000 9)下列说法中正确的个数是____ 1.有理数a 的倒数是a 1。 2.两个有理数相减,差为正,则被减数大于减数。 3.符号相反的两个数是相反数。 4.任意两个有理数的和一定大于其中的一个加数。 A .1 B .2 C .3 D .4 三、计算 (13))6 5 14()537()6155()5213(-+--+-- (14) )2 1()43()32(6)3(42+÷-+-?--?- (15)()()?? ???? -÷??? ???-----2452132324 (16)2 )6(1)]43(361)2411[(-÷-+++ 四、解答题 (17)已知有理数a ,b 在数轴上位置如图所示 请将下列各数表示在数轴上,并按从小到大的顺序排列,用“<”连接

相关文档
相关文档 最新文档