文档库 最新最全的文档下载
当前位置:文档库 › 单相接地的现象及处理方法

单相接地的现象及处理方法

单相接地的现象及处理方法
单相接地的现象及处理方法

单相接地的现象及处理方法2

在小电流接地的配电网中,一般装设有绝缘监察装置。当配电网发生单相接地故障时,由于线电压的大小和相位不变(仍对称),况且系统的绝缘水平是按线电压设计的,所以不需要立即切除故障,尚可继续运行不超过2h。但非故障相对地电压升高1.732倍,这对系统中的绝缘薄弱点可能造成威胁。此外,在仍可继续运行时间内,由于接地点接触不良,因而在接地点会产生瞬然熄的间歇性电弧放电,并在一定条件激励下产生谐振过电压,这对系统绝缘造成的危害更大。为此,必须尽快处理排除单相接地故障,确保电网安全可靠运行。

1 单相接地故障的特征

单相接地

(1)配电系统发生单相接地故障时,变电所绝缘监察装置的警铃响,“××母线接地”光字牌亮。中性点经消弧线圈接地的,还有“消弧线圈动作”的光字牌。

(2)当生发接故障时,绝缘监察装置的电压表指示为:故障相相电压降低或接近零,另两相电压高于相电压或接近于线电压。如是稳定性接地,电压表指示无摆动,若是电压表指针来回摆动,则表明为间歇性接地。

(3)当发生弧光接地产生过电压时,非故障相电压很高,电压表指针打到头。同时还伴有电压互感器一次熔丝熔断,严重时还会烧坏互感器。

但在某些情况下,配电系统尚未发生接地故障,系统的绝缘没有损坏,而是由于产生不对称状态等,绝缘监察也会报出接地信号,这往往会引起误判断而停电查找。

2 单相接地信号虚与实的判断

(1)电压互感器高压熔断器一相熔断报出接地信号时,如果故障相对地电压降低,而另两相电压升高,线电压不变,此情况则为单相接地故障。

(2)变电所母线或架空导线的不对称排列;线路中跌落式熔断器一相熔断;使用RW型跌落式开关控制长线路的倒闸操作不同期等,均会造成三相对地电容不平衡,从而使中性点电压升高而报出接地信号,此情况多发生在操作时,而线路实际上并未发生接地。

(3)在合闸空母线时,由于励磁感抗与对地电抗形成不利组合而产生铁磁谐振过电压,也会报出接地信号。此情况多发生在单相断线,间歇性弧光接地等引起的谐振过电压所致,而系统并未发生接地故障。

(4)当10kV线路遭受雷击而产生弧光接地时,使健全相电压互感器电压突然升高,线圈流过很大励磁涌流,使互感器铁心磁饱和,导致线圈电感减少,感抗降低。当感抗小于容抗,健全相互感器铁心磁饱和后,会使中性点电压升高,这时绝缘监察也报出接地信号,实际上电网并未发生接地。

(5)10kV电网运行中,由于单相导线断线;避降调荷时的人为“缺相运行”;大功率单相设备的投运等,均会造成三相负荷的严重不平衡,从而导致中性点电压升高,此时绝缘监察也报出接地信号,而电网并未发生接地。

(6)10kV线路遭受雷击时,由于电场发生突变,导线上束缚电荷变成自由电荷,向导线两侧以近似光速运动,形成过电压进行波而产生感应过电压。此进行波到达线路避雷器时,

当冲击电压大于避雷器放电电压时,间隙击穿放电电压受到限制。但由于避雷器放电间隙伏安特性不一致,阀片非线性系数不同及制造工艺的影响等,使各相避雷器放电电压、残压、灭弧电压不等,导致放电有快有慢而出现三相电压不平衡,从而使中性点电压升高,报出接地信号,然而电网并未发生接地故障。

3 单相接地故障的处理

在小电流接地电网的运行中,当发生单相接地故障,绝级监察报出接地信号时,运行值班人员应沉着冷静进行处理。根据信号、电压表指示、天气情况、运行方式等进行综合分析,区分接地信号的虚与实。并及时向上级调度和领导汇报,做好有关现象的记录。

在进行判断处理时,首先应根据接地故障特征,判明故障性质与相别。其次进行分网运行,缩小停电范围,在分网运行时应考虑各部分之间功率平衡,继电保护配合等因素。而后再检查所内电气设备有无故障:如设备瓷质部分有无损坏,有无放电闪络;设备上有无落物、小动物及外力破坏现象;有无断线接地。再检查互感器熔丝有无熔断,避雷器、电缆头有无击穿损坏等,在确定所内设备无问题的前提下,用瞬停依次拉闸查找法。

目前,有些35kV变电所10kV出线装有接地信号装置,或微机选线装置,当装置正常投入运行时,接地故障线路是很容易区分查出。若是出线未装接地信号装置,其查找处理办法是:依次断开10kV线路母线的分路开关,如断开某路开关接地信号消失,绝缘监察电压表指示恢复正常,即表明所停电线路有接地故障,即可安排消除故障。

假如瞬停分路开关后接地信号仍然存在,说明接地故障不发生在此线路,应立即恢复供电,再依瞬停其他线路,千万不可将所有出线全部断开进行查找。如是将所有10kV出线开并全部断开,就是切除所有出线的对地电容电流,这样会造成系统电容电流的大幅度降低,导致残余电流过大,消弧线圈失去消弧作用,从而在接地点产生间歇性弧肖放电,引发产生过电压,威胁设备绝缘安全。为此,采用瞬停查找法时,千万不可全部断开出线开并查找,而是停一路查一路,恢复供电后再停另一路。

在查出接地故障线路后,对一般不重要的用户线路,可停电排除接地故障,待接地故障排除后方可恢复供电。如属重要用户的供电线路发生接地,应采用措施转移用电负荷,或是投入备用线路,在做好这些工作之后,方可停电查找排除接地故障,尽快排除故障恢复供电以减少停电损失。

单相接地的现象及处理方法3

在小电流接地的配电网中,一般装设有绝缘监察装置。当配电网发生单相接地故障时,由于线电压的大小和相位不变(仍对称),况且系统的绝缘水平是按线电压设计的,所以不需要立即切除故障,尚可继续运行不超过2h。但非故障相对地电压升高1.732倍,这对系统中的绝缘薄弱点可能造成威胁。此外,在仍可继续运行时间内,由于接地点接触不良,因而在接地点会产生瞬然熄的间歇性电弧放电,并在一定条件激励下产生谐振过电压,这对系统绝缘造成的危害更大。为此,必须尽快处理排除单相接地故障,确保电网安全可靠运行。

1 单相接地故障的特征

单相接地

(1)配电系统发生单相接地故障时,变电所绝缘监察装置的警铃响,××母线接地光字牌亮。中性点经消弧线圈接地的,还有消弧线圈动作的光字牌。

(2)当生发接故障时,绝缘监察装置的电压表指示为:故障相相电压降低或接近零,另两相电压高于相电压或接近于线电压。如是稳定性接地,电压表指示无摆动,若是电压表指针来回摆动,则表明为间歇性接地。

(3)当发生弧光接地产生过电压时,非故障相电压很高,电压表指针打到头。同时还伴有电压互感器一次熔丝熔断,严重时还会烧坏互感器。

但在某些情况下,配电系统尚未发生接地故障,系统的绝缘没有损坏,而是由于产生不对称状态等,绝缘监察也会报出接地信号,这往往会引起误判断而停电查找。

2 单相接地信号虚与实的判断

(1)电压互感器高压熔断器一相熔断报出接地信号时,如果故障相对地电压降低,而另两相电压升高,线电压不变,此情况则为单相接地故障。

(2)变电所母线或架空导线的不对称排列;线路中跌落式熔断器一相熔断;使用RW 型跌落式开关控制长线路的倒闸操作不同期等,均会造成三相对地电容不平衡,从而使中性点电压升高而报出接地信号,此情况多发生在操作时,而线路实际上并未发生接地。

(3)在合闸空母线时,由于励磁感抗与对地电抗形成不利组合而产生铁磁谐振过电压,也会报出接地信号。此情况多发生在单相断线,间歇性弧光接地等引起的谐振过电压所致,而系统并未发生接地故障。

(4)当10kV线路遭受雷击而产生弧光接地时,使健全相电压互感器电压突然升高,线圈流过很大励磁涌流,使互感器铁心磁饱和,导致线圈电感减少,感抗降低。当感抗小于容抗,健全相互感器铁心磁饱和后,会使中性点电压升高,这时绝缘监察也报出接地信号,实际上电网并未发生接地。

(5)10kV电网运行中,由于单相导线断线;避降调荷时的人为缺相运行;大功率单相设备的投运等,均会造成三相负荷的严重不平衡,从而导致中性点电压升高,此时绝缘监察也报出接地信号,而电网并未发生接地。

(6)10kV线路遭受雷击时,由于电场发生突变,导线上束缚电荷变成自由电荷,向导线两侧以近似光速运动,形成过电压进行波而产生感应过电压。此进行波到达线路避雷器时,当冲击电压大于避雷器放电电压时,间隙击穿放电电压受到限制。但由于避雷器放电间隙伏安特性不一致,阀片非线性系数不同及制造工艺的影响等,使各相避雷器放电电压、残压、灭弧电压不等,导致放电有快有慢而出现三相电压不平衡,从而使中性点电压升高,报出接地信号,然而电网并未发生接地故障。

3 单相接地故障的处理

在小电流接地电网的运行中,当发生单相接地故障,绝级监察报出接地信号时,运行值班人员应沉着冷静进行处理。根据信号、电压表指示、天气情况、运行方式等进行综合分析,区分接地信号的虚与实。并及时向上级调度和领导汇报,做好有关现象的记录。

在进行判断处理时,首先应根据接地故障特征,判明故障性质与相别。其次进行分网运行,缩小停电范围,在分网运行时应考虑各部分之间功率平衡,继电保护配合等因素。而后再检查所内电气设备有无故障:如设备瓷质部分有无损坏,有无放电闪络;设备上有无落物、小动物及外力破坏现象;有无断线接地。再检查互感器熔丝有无熔断,避雷器、电缆头有无击穿损坏等,在确定所内设备无问题的前提下,用瞬停依次拉闸查找法。

目前,有些35kV变电所10kV出线装有接地信号装置,或微机选线装置,当装置正常投入运行时,接地故障线路是很容易区分查出。若是出线未装接地信号装置,其查找处理办法是:依次断开10kV线路母线的分路开关,如断开某路开关接地信号消失,绝缘监察电压表指示恢复正常,即表明所停电线路有接地故障,即可安排消除故障。

假如瞬停分路开关后接地信号仍然存在,说明接地故障不发生在此线路,应立即恢复供电,再依瞬停其他线路,千万不可将所有出线全部断开进行查找。如是将所有10kV出线开并全部断开,就是切除所有出线的对地电容电流,这样会造成系统电容电流的大幅度降低,导致残余电流过大,消弧线圈失去消弧作用,从而在接地点产生间歇性弧肖放电,引发产生过电压,威胁设备绝缘安全。为此,采用瞬停查找法时,千万不可全部断开出线开并查找,而是停一路查一路,恢复供电后再停另一路。

在查出接地故障线路后,对一般不重要的用户线路,可停电排除接地故障,待接地故障排除后方可恢复供电。如属重要用户的供电线路发生接地,应采用措施转移用电负荷,或是投入备用线路,在做好这些工作之后,方可停电查找排除接地故障,尽快排除故障恢复供电以减少停电损失。

小电流接地系统中单相接地故障的判断与处理

小电流接地系统是指采用中性点不接地或经消弧线圈接地的系统。在该系统中,如发生单相接地时,由于线电压的大小和相位不变(仍对称),且系统绝缘又是按线电压设计的,所以允许短时运行而不切断故障设备,从而提高了供电可靠性。但是,若一相发生接地,则其它两相对地电压升高为相电压的J3倍,特别是发生间歇性电弧接地时,接地相对地电压可能升高到相电压的2.5—3.0倍。这种过电压对系统的安全威胁很大,可能使其中的一相绝缘击穿而造成两相接地短路故障。因此,值班人员应迅速寻找接地点,并及时隔离。

当中性点非直接接地系统发生单相接地时,一般出现下列迹象:

(1)警铃响,“x x千伏母线接地”光字牌亮,个性点经消弧线圈接地的系统,常常还有“消弧线圈动作”的光字牌亮。

(2)绝缘监察电压表三相指示值不同,接地相电压降低或等于零,其它两相电压升高为线电压,此时为稳定性接地。如果绝缘监察电压表指针不停地来回摆动,出现这种现象即为间歇性接地。

(3)当发生弧光接地产生过电压时,非故障相电压很高,表针打到头,

常伴有电压互感器高压一次侧熔体熔断,甚至严重烧坏电压互感器。

当小电流接地系统发生上述迹象时,值班人员应沉着冷静,及时向上级调度汇报,并将有关现象作好记录,根据信号、表计指示、天气、运行方式等情况,判断故障。各出线装有接地信号装置的变电所(站),若装置正常投入,故障范围很容易区分,若报出母线接地信号的同时,某一线路也有接地信号,则故障点多在该线路上。若只报出母线接地信号,对于这种情况,故障点可能在母线及连接设备上。所以,处理时应注意:

(1)母线和某一线路都报出接地信号,应检查故障线路的站内设备有无异常。

(2)只报出母线接地信号,应检查母线及连接设备、变压器有无异常。如经检查,站内设备无异常,则有可能是某一线路有故障,而其接地故障失灵,应用瞬停的方法,查明故障线路。

当各出线未装接地信号装置时,首先应根据前面所述的特征,判明故障性质的相别;其次分网运行,缩小查找范围。在分网运行时,应考虑各部分之间功率平衡、继电保护的配合、消弧线圈的补偿等因素;然后再检查所内设备有无故障,如设备瓷质部分有无损坏,有无放电闪络,设备上有无落物,有无小动物及外力破坏,有无断线接地,检查互感器、避雷器、电缆头有无击穿损坏等;最后在确定所(站)内设备没问题的情况下,可以汇报调度,用瞬停拉线查找法,依次断开故障所在母线上各分路开关。如果接地信号消失,绝缘监察电压表指示恢复正常,即可以证明所瞬停的线路上有接地故障。查出故障线路之后,对于一般不重要的用户线路,可以停电并通知查找;对于重要用户的线路,可以转移负荷或者通知用户做好准备后停电查找故障点。

在某些情况下,系统的绝缘并没有损坏,而是由于其它原因产生某些不对称状态,可能报出接地信号,此种接地称为“虚幻接地”,应注意区分判断。如电压互感器内部发生故障时,电压互感器一相高压熔体可能熔断,而报出接地信号,此时应将电压互感器立即停运。又如变压器对空载母线充电时,由于开关三相合闸不同步,三相对地电容不平衡,可能使中性点发生位移,三相电压不对

称,也报出接地信号,此时一旦投入一条线路或投入一台所用变压器,使谐振条件被破坏,此现象即可消失。

单相接地故障的现象分析及处理办法

在小电流接地的配电网中,一般装设有绝缘监察装置。当配电网发生单相接地故障时,由于线电压的大小和相位不变(仍对称),况且系统的绝缘水平是按线电压设计的,所以不需要立即切除故障,尚可继续运行不超过2h。但非故障相对地电压升高1.732倍,这对系统中的绝缘薄弱点可能造成威胁。此外,在仍可继续运行时间内,由于接地点接触不良,因而在接地点会产生瞬然熄的间歇性电弧放电,并在一定条件激励下产生谐振过电压,这对系统绝缘造成的危害更大。为此,必须尽快处理排除单相接地故障,确保电网安全可靠运行。

1 单相接地故障的特征

单相接地

(1)配电系统发生单相接地故障时,变电所绝缘监察装置的警铃响,“××母线接地”光字牌亮。中性点经消弧线圈接地的,还有“消弧线圈动作”的光字牌。(图1)

(2)当生发接故障时,绝缘监察装置的电压表指示为:故障相相电压降低或接近零,另两相电压高于相电压或接近于线电压。如是稳定性接地,电压表指示无摆动,若是电压表指针来回摆动,则表明为间歇性接地。

(3)当发生弧光接地产生过电压时,非故障相电压很高,电压表指针打到头。同时还伴有电压互感器一次熔丝熔断,严重时还会烧坏互感器。

但在某些情况下,配电系统尚未发生接地故障,系统的绝缘没有损坏,而是由于产生不对称状态等,绝缘监察也会报出接地信号,这往往会引起误判断而停电查找。

2 单相接地信号虚与实的判断

(1)电压互感器高压熔断器一相熔断报出接地信号时,如果故障相对地电压降低,而另两相电压升高,线电压不变,此情况则为单相接地故障。

(2)变电所母线或架空导线的不对称排列;线路中跌落式熔断器一相熔断;使用RW型跌落式开关控制长线路的倒闸操作不同期等,均会造成三相对地电容不平衡,从而使中性点电压升高而报出接地信号,此情况多发生在操作时,而线路实际上并未发生接地。

(3)在合闸空母线时,由于励磁感抗与对地电抗形成不利组合而产生铁磁谐振过电压,也会报出接地信号。此情况多发生在单相断线,间歇性弧光接地等引起的谐振过电压所致,而系统并未发生接地故障。

(4)当10kV线路遭受雷击而产生弧光接地时,使健全相电压互感器电压突然升高,线圈流过很大励磁涌流,使互感器铁心磁饱和,导致线圈电感减少,感抗降低。当感抗小于容抗,健全相互感器铁心磁饱和后,会使中性点电压升高,这时绝缘监察也报出接地信号,实际上电网并未发生接地。

(5)10kV电网运行中,由于单相导线断线;避降调荷时的人为“缺相运行”;大功率单相设备的投运等,均会造成三相负荷的严重不平衡,从而导致中性点电压升高,此时绝缘监察也报出接地信号,而电网并未发生接地。

(6)10kV线路遭受雷击时,由于电场发生突变,导线上束缚电荷变成自由电荷,向导线两侧以近似光速运动,形成过电压进行波而产生感应过电压。此进行波到达线路避雷器时,当冲击电压大于避雷器放电电压时,间隙击穿放电电压受到限制。但由于避雷器放电间隙伏安特性不一致,阀片非线性系数不同及制造工艺的影响等,使各相避雷器放电电压、残压、灭弧电压不等,导致放电有快有慢而出现三相电压不平衡,从而使中性点电压升高,报出接地信号,然而电网并未发生接地故障。

3 单相接地故障的处理

在小电流接地电网的运行中,当发生单相接地故障,绝级监察报出接地信号时,运行值班人员应沉着冷静进行处理。根据信号、电压表指示、天气情况、运行方式等进行综合分析,区分接地信号的虚与实。并及时向上级调度和领导汇报,做好有关现象的记录。

在进行判断处理时,首先应根据接地故障特征,判明故障性质与相别。其次进行分网运行,缩小停电范围,在分网运行时应考虑各部分之间功率平衡,继电保护配合等因素。而后再检查所内电气设备有无故障:如设备瓷质部分有无损坏,有无放电闪络;设备上有无落物、小动物及外力破坏现象;有无断线接地。再检查互感器熔丝有无熔断,避雷器、电缆头有无击穿损坏等,在确定所内设备无问题的前提下,用瞬停依次拉闸查找法。

目前,有些35kV变电所10kV出线装有接地信号装置,或微机选线装置,当装置正常投入运行时,接地故障线路是很容易区分查出。若是出线未装接地信号装置,其查找处理办法是:依次断开10kV线路母线的分路开关,如断开某路开关接地信号消失,绝缘监察电压表指示恢复正常,即表明所停电线路有接地故障,即可安排消除故障。

假如瞬停分路开关后接地信号仍然存在,说明接地故障不发生在此线路,应立即恢复供电,再依瞬停其他线路,千万不可将所有出线全部断开进行查找。如是将所有10kV出线开并全部断开,就是切除所有出线的对地电容电流,这样会造成系统电容电流的大幅度降低,导致残余电流过大,消弧线圈失去消弧作用,从而在接地点产生间歇性弧肖放电,引发产生过电

压,威胁设备绝缘安全。为此,采用瞬停查找法时,千万不可全部断开出线开并查找,而是停一路查一路,恢复供电后再停另一路。

在查出接地故障线路后,对一般不重要的用户线路,可停电排除接地故障,待接地故障排除后方可恢复供电。如属重要用户的供电线路发生接地,应采用措施转移用电负荷,或是投入备用线路,在做好这些工作之后,方可停电查找排除接地故障,尽快排除故障恢复供电以减少停电损失。

电力系统常见接地故障现象与处理

一、单相接地故障的危害:

1、发生接地时,由于非故障相对地电压升高(完全接地时升至线电压值)系统中的绝缘薄弱点可能击穿,造成短路故障;

2、接地故障点产生电弧,会烧坏设备并可能发展成相间短路故障;

3、接地故障点产生间歇性电弧时,在一定条件下产生串联谐振过电压,其值可达相电压的2.5—3倍,对系统绝缘危害很大。

4、发生弧光接地时,产生过电压,非故障相电压很高电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。

二、单相接地故障的现象及处理:

1、电压互感器保险熔断

1)当电压互感器高压保险熔断时,受电压二次回路的负载影响,熔断相电压降低,但不为零,此时其他两相电压应保持为正常相电压或稍低。同时由于断相出现在互感器高压侧,互感器低压侧会出现零序电压,大小高于接地信号定值,会发出接地信号。退出电压互感器,更换保险后投入运行。

2)当电压互感器低压保险熔断时,在二次侧的反映和高压保险

基本类似,但是由于保险熔断发生在低压侧,影响的将只是某一个绕组的电压,不会出现零序电压。在这种情况下,中央信号报警“电压互感器断线”,熔断相电压为零,另两相电压正常,可以确认为该低压保险熔断,否则,判断为互感器高压保险熔断。退出保护更换二次保险。

2、用变压器对空载母线充电时开关三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,也会报接地信号。这种情况只在操作时发生,只要检查母线及配出设备无异常,即可以判定,投入一条线路接地信号就会消失。

3、系统的接地故障

线路发生接地,是电网中最常见的非正常运行状态,沿线杆塔、横担、绝缘子、避雷器等设备,线路两旁树枝,落小物体等都容易引起系统接地,尤其大风和雷雨天气,接地现象更是频繁发生。

1)金属性接地:线路断线,电源侧直接接地,易造成金属性接地。发生金属性接地时,故障相电压为零或接近于零,非故障相电压上升为线电压或接近于线电压,且完全接地时,电压表显示无摆动。有的变电所有"小电流接地巡检装置",根据接地时产生零序电流,能判断出接地的线路,汇报调度及时通知巡线人员去处理。

2)非金属性接地:不完全接地时,故障相电压降低,低于相电压,非故障相电压升高,大于相电压,低于线电压,且间歇接地时,电压表显示不停的摆动。

4、接地故障的处理

1)判断故障性质,并汇报调度。

2)检查站内设备有无故障。缩小范围后,应对故障范围以内的站内一次设备进行外部检查。主要检查各设备瓷质部分有无损伤、放电闪络,检查设备上是否有杂物,小动物及外力破外现象,检查各引线有无断线接地,检查互感器;避雷器有无击穿损坏等。

3)检查站内设备未发现问题的处理,汇报调度,用“小电流巡检装置”检查或使用“旁路”转带分支多,线路长,易发生故障的线路,查找配出线路是否接地,查出有故障的线路,对于一般不重要用户的线路,可汇报调度后,停电并通知查线;对于重要用户的线路,可以转移负荷或通知用户做好停电准备后,再切除该线路,进行检修处理。

5、查找接地故障时的注意事项:

1)检查站内设备时,应穿绝缘靴,接触设备外壳,构架及操作时,应戴绝缘手套。

2)当接地运行期时,应严密监视该设备的运行状况,防止其发热严重而烧坏,注意高压保险是否熔断。

3)中性点经消弧线圈接地的系统,监视消弧线圈的运行状况,发现接地设备消弧线圈故障或严重异常,应立即断开故障线路。严禁在有接地故障时,停运消弧线圈。

4、系统带电接地故障运行,一般不得超过2h。

系统接地的现象及处理

一、单相接地故障的危害:

1、发生接地时,由于非故障相对地电压升高(完全接地时升至线电压值)系统中的绝缘薄弱点可能击穿,造成短路故障;

2、接地故障点产生电弧,会烧坏设备并可能发展成相间短路故障;

3、接地故障点产生间歇性电弧时,在一定条件下产生串联谐振过电压,其值可达相电压的2.5—3倍,对系统绝缘危害很大。

4、发生弧光接地时,产生过电压,非故障相电压很高电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。

二、单相接地故障的现象及处理:

1、电压互感器保险熔断

1)当电压互感器高压保险熔断时,受电压二次回路的负载影响,熔断相电压降低,但不为零,此时其他两相电压应保持为正常相电压或稍低。同时由于断相出现在互感器高压侧,互感器低压侧会出现零序电压,大小高于接地信号定值,会发出接地信号。退出电压互感器,更换保险后投入运行。

2)当电压互感器低压保险熔断时,在二次侧的反映和高压保险基本类似,但是由于保险熔断发生在低压侧,影响的将只是某一个绕组的电压,不会出现零序电压。在这种情况下,中央信号报警“电压互感器断线”,熔断相电压为零,另两相电压正常,可以确认为该低

压保险熔断,否则,判断为互感器高压保险熔断。退出保护更换二次保险。

2、用变压器对空载母线充电时开关三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,也会报接地信号。这种情况只在操作时发生,只要检查母线及配出设备无异常,即可以判定,投入一条线路接地信号就会消失。

3、系统的接地故障

线路发生接地,是电网中最常见的非正常运行状态,沿线杆塔、横担、绝缘子、避雷器等设备,线路两旁树枝,落小物体等都容易引起系统接地,尤其大风和雷雨天气,接地现象更是频繁发生。

1)金属性接地:线路断线,电源侧直接接地,易造成金属性接地。发生金属性接地时,故障相电压为零或接近于零,非故障相电压上升为线电压或接近于线电压,且完全接地时,电压表显示无摆动。有的变电所有"小电流接地巡检装置",根据接地时产生零序电流,能判断出接地的线路,汇报调度及时通知巡线人员去处理。

2)非金属性接地:不完全接地时,故障相电压降低,低于相电压,非故障相电压升高,大于相电压,低于线电压,且间歇接地时,电压表显示不停的摆动。

4、接地故障的处理

1)判断故障性质,并汇报调度。

2)检查站内设备有无故障。缩小范围后,应对故障范围以内的站内一次设备进行外部检查。主要检查各设备瓷质部分有无损伤、放

电闪络,检查设备上是否有杂物,小动物及外力破外现象,检查各引线有无断线接地,检查互感器;避雷器有无击穿损坏等。

3)检查站内设备未发现问题的处理,汇报调度,用“小电流巡检装置”检查或使用“旁路”转带分支多,线路长,易发生故障的线路,查找配出线路是否接地,查出有故障的线路,对于一般不重要用户的线路,可汇报调度后,停电并通知查线;对于重要用户的线路,可以转移负荷或通知用户做好停电准备后,再切除该线路,进行检修处理。

5、查找接地故障时的注意事项:

1)检查站内设备时,应穿绝缘靴,接触设备外壳,构架及操作时,应戴绝缘手套。

2)当接地运行期时,应严密监视该设备的运行状况,防止其发热严重而烧坏,注意高压保险是否熔断。

3)中性点经消弧线圈接地的系统,监视消弧线圈的运行状况,发现接地设备消弧线圈故障或严重异常,应立即断开故障线路。严禁在有接地故障时,停运消弧线圈。

4、系统带电接地故障运行,一般不得超过2h。

配电网单相接地故障的仿真分析

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:配电网单相接地故障的仿真分析学习中心:天津滨海奥鹏学习中心 年级专业:网络10春电气工程及其自动化 学生姓名:吴燕燕学号: 18 指导教师:郑淑慧职称:教授 导师单位:中国石油大学(华东) 中国石油大学(华东)远程与继续教育学院 论文完成时间: 2011 年 12 月 23日 摘要

为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于Matlab的Simulink仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(O~O.02 s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。 关键词:配电网;仿真模型零序电流;单相接地故障;补偿度;故障相电压

第一章引言 我国35 kV、10 kV(6 kV)配电网中性点运行方式一般为不接地或经消弧线圈接地。当发生单相接地故障时允许继续运行1~2 h,及时查找故障线路和故障点是提高供电可靠性的保证。基于稳态分量的单相接地选线方法有5次谐波电流的幅值方向法【1,2】,注入信号源法【3】,零序电流有功分量法【4,5】等,由于稳态零序电流幅值较小,基于稳态分量的单相接地选线准确率不高;消弧线圈短时并联电阻【6,7】,可提高接地选线的可靠性,但不能很好发挥消弧线圈的作用。近年来,以小波变换为理论研究工具,分别提出了应用零序电流小波变换系数模值大小与极性【8-13】零序电流小波变换系数模值的积分【14】、零序电压流的小波变换系数之比【15】作为选线判据,但受短路时刻、网络结构、线路长度、接地点的位置、电弧电阻及被分析信号的数据长度、小波基的选取等多因素的影响较大。研究小电流接地系统单相接地暂态过程特点是单相接地故障选线和测距方法的理论基础,目前关于这方面的文献很少。

城市景观水体污染现状及其修复对策

作者简介:孙健,高级工程师,黑龙江环境保护科学研究院,黑龙江?哈尔滨。邮政编码:150056 文章编号:1672-6758(2009)05-0149-2 城市景观水体污染现状及其修复对策 孙 健 摘 要:结合城市景观水体的特点和污染状况,主要分析物理、化学、生物等多种修复技术的特征及优缺点,并提出有效修复城市景观水体的方法。 关键词:城市景观水体;修复;对策中图分类号:X52 文献标识码:A 随着我国工业化、城市化的不断发展,人们也越来越 重视生活环境的质量。许多城市绿地、公园、居住小区里,人工湖泊等景观水体不断涌现。但许多城市景观水体都出现不同程度的污染问题,全国有93%的公园水体遭到不同程度污染,水体发臭及富营养化现象比较严重。这样既严重影响周围景观的视觉效果,丧失了景观水体的功能,也使人居环境质量下降,影响城市生态化的建设,因此,对受污染的景观水体进行治理与修复已刻不容缓。 一 城市景观水体的特点 城市景观水体一般水域面积都较小,多为静止或流动性较差的封闭缓流水体,水环境容量小,水体自净能力低,因此容易受到污染。 二 城市景观水体的污染状况 景观水体主要污染源有内源与外源两种。内源主要是水体的底泥污染,外源则较多,例如居民的生活污水、养鱼投放过量的饵、游人随手丢弃的垃圾杂物、游艇等娱乐设施的污染等等。这些水体一旦被污染,就很容易出现水中悬浮物增多、浊度增大、细菌含量增高等现象,特别是一些难降解的有机污染物和重金属残留在水中,危害水生生物的生长繁殖,当水体中N 、P 等营养盐长期大量积存时,就会造成水体的富营养化,导致藻类泛滥,破坏环境的生态平衡,严重的时候还发出臭味。 因为城市景观水体的污染一般多为微污染,发生期短,所以需要因地制宜地采取一些有效的措施进行修复。 三 市景观水体的物理修复1.控制点、面源污染。只有加强统一监管,严禁生活污水排入景观水体,禁止游人乱丢垃圾,严格控制水中鱼饵的投放量;定期对水面杂物清理等,这样才能有效控制和减少各种污染源的污染。 2.底泥环境疏浚修复。污染的底泥是水体潜在的污染源,尤其是对城市许多景观水体来说,底泥中沉积了大量污染物,如重金属离子、N 、P 营养盐、难降解的有毒有害物等,当水体环境发生变化时,底泥中的营养盐就会重新释放出来,容易造成二次污染,使水体发生富营养化。目前,使用挖泥船进行底泥的疏浚是修复湖库、河流的一项很有效和常用的技术。但对于小水域的景观水体则需要因地制宜,由于底泥厚度、密度、污染物浓度分布差别很大,所以在施工前,应确定挖泥量和挖泥深度。需要注意的是,在底泥疏浚过程中,底泥被泛起、搅拌,会导致污染物重新进入表层水体,有可能引起藻类疯长,出现富营养化现象。另外,底泥清除后,水底生态系统会受到 一定程度的破坏,需及时进行修复,再加上费用较高,所以底泥疏浚修复不是修复污染水体最有效的方法。 3.曝气修复。城市景观水体的曝气修复是用压缩空气向水体底部曝气,进行人工复氧,这种方式可以在不改变水体分层的状态下,提高溶解氧浓度,使底泥界面的厌氧环境改善为好氧条件,这些都有利于加快污染物质的氧化速度,降低N 、P 等离子性物质的浓度。 四 城市景观水体的化学修复 1.除藻。城市景观水体一旦出现富营养化现象,就很容易滋生藻类,藻类的异常繁殖会影响景观效果。传统的除藻方法是投加硫酸铜等化学药品,但是该方法不能去除N 、P 等营养盐,所以无法从根本上解决水体的富营养化现象,另外,化学药品不可长期使用,否则会造成生物富集和生物放大,所以化学除藻只是一种应急措施。要有效控制藻类,应综合使用生化、化学、微生物法, 2.沉淀除磷。底泥中的磷主要是无机态的正磷酸盐,所以向水中投放碳酸钙、硫酸铝、明矾等试剂,这样可使水中磷沉淀,延缓底泥中磷的释放。但是当出现温度升高、厌氧、酸性或碱性等有利于钙、铝等不溶性磷酸盐沉淀物溶解的条件时,磷就会重新释放出来,所以,该方法也只能作为临时应急措施使用,不可长期使用。 五 城市景观水体的生物修复 生物修复是一种利用特定的生物,对水体污染物进行吸收、转化或降解,达到减少或消除水体污染,恢复水体生态功能的生物措施。生物修复技术是目前发展潜力大的新兴技术。对于多数受污染的水体来说,目前较多采用人工的生物修复技术。生物修复技术的优点是费用少、效益高、副作用少,再加上该技术能与水体景观功能相结合,使人更加亲近自然,达到绿化环境与改善景观相结合的目的。 1.微生物修复。近年来,在微生物修复技术中,有效微生物修复是一种较成熟的生物试剂添加技术,有效微生物是由乳酸菌、酵母菌、放线菌、光合细菌等四大类,80余中微生物组成的复合菌剂的统称。有效微生物修复是在被污染的水体中投加有效微生物,有效微生物在生长过程中,能迅速分解污水中有机物,同时依靠相互间共同繁殖,激活水中其他有净化功能的水生生物,通过这些生物的结合效应,从而达到净化与恢复水体的目的。 2.水生植物修复。水生植物是水体生态系统的初级生产者,它们对无机营养盐类的吸收、积累和转化,是植物修复的基础。通常用作水体修复的水生植物有沉水植物、挺水植物、浮叶植物和湿生植物,它们主要通过根、 ? 941?第9卷 第5期2009年10月 鸡西大学学报JOURNAL OF J I X IUN I V ERSI TY Vol .9 No .5 Oct .2009

10kV系统单相接地故障分析及处理

10kV系统单相接地故障分析及处理 随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。 标签:单相接地故障;危害;处理;注意事项 1 概述 电力系统在进行分类时常分大电流接地系统和小电流接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。 2 10kV系统发生单相接地故障的原因及危害 导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因: (1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。 (2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。 (3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。 (4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。 (5)人为操作失误致使发生单相接地故障等。 10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

常见景观水处理的技术和方法集合

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 常见景观水处理的技术和方法集合常见景观水处理的技术和方法集合景观水主要面临以下几种主要污染因素: 1、雨水地表径流所带来的地表和土壤中的有机物和氮磷元素(地表雨水污染程度相当于生活污水); 2、大气降尘所带来的外来有机物和氮磷元素; 3、湖泊本身不断衍生死亡的生物群落积累而成的有机物等; 4、夏季高温时太阳暴晒导致蓝藻大量爆发。 景观水处理在我国是个新行业,真正产生需求只是最近 3-5 年的事,而且市场相对较小。 缺乏专业的治理公司和研究人员是该领域的痼疾,现在有一批新公司景观水处理领域,方法各种各样,效果差强人意。 有的是泳池水处理公司转行,用治理游泳池的过滤法来治理景观水;有的是科研机构参与,用水草、养鱼来治理;还有其他方法:投药法、投生物制剂法、生态基法、投虫法等。 实践是检验真理的唯一标准,面对众多杂乱无章的治理方法,只有经过大量实践验证成功的技术才可以相信。 成功案例越多,运行时间越长,就越值得信赖。 我国真正成功可行的景观水治理技术还很少,相反,大多数治理技术效果糟糕,或者仍处于探索试错阶段,甚至有些存在重大缺陷。 作为业主方或设计方的工程技术人员需要认真理解露天景观水的 1/ 5

主要污染根源,考核某种治理方法是否对每个污染根源都能对症下药,都能有有效地应对方法,这样才能避免所选中的方案存在重大缺陷。 常用的景观水处理技术 1、呼吸溶氧增加水体溶解氧、鲜化、活化模拟自然界的瀑布水流方式,根据氧转移原理提高含氧总量,在水流过程中降低液膜厚度,加速气、液界面的更新、增大气、液面的接触面积。 也就是说充分水流细分,增大水流与空气的接触面积,在空气中充分曝气,使得水中富含溶解氧,同时水中的氨气、二氧化碳等有害气体从表面溢出。 因为氧化还原作用是水体净化的重要作用,水中的熔解氧可以与污染物发生激烈的化学反应,由此去除水中的有害物质。 根据水质检测,处理后水中的溶解氧保持着饱和状态,使水始终鲜化、活化 2、水力浮选去除水体中有机无机物质通过具有呼吸功能(即曝气)作用,使水体产生了大量泡沫。 产生泡沫的原因是水中的皂类和蛋白质类物质充当起泡剂,也就是氮、磷、油脂、蛋白质、叶绿素和阴离子合成剂等。 当夹杂着泡沫的原水流到过滤层上时,由于泡沫比水轻,所以浮在水面以上,设备内部压力极小,滤层采用粒径较小、比较大的天然反复合滤料,泡沫不能通过下面滤层,只能浮在表面。 当泡沫越积越多时只能通过呼出管道排出,或者当滤罐反冲洗时,泡沫随着水流被冲走,此过程使水中发炮的各种有机无机物质得到较

坡地建筑设计的方法

坡地建筑设计的方法 坡地建筑设计的方法 摘要: 由于我国的幅员辽阔,地形复杂,人口众多,使得坡地建筑越来越多。坡地的地形处理是一种在新型建筑设计中很重要的工作,比平坦的地形更复杂,通过设计,探讨边坡的环境如何结合实际需要,分散的高和低的地形,科学合理利用,建筑设计点的地形,和努力营造一个健康的、良好的、与建筑环境的生态原则相一致的。 关键字:坡地建筑,建筑设计 中图分类号:TU2文献标识码: A 引言: 坡地建筑以其独特的地理条件和环境愈发地受到欢迎,坡地建筑指的是建在地面起伏较大处的建筑物,坡地是自然界的原生态资源,坡地建筑应该是景观建筑、原生态建筑和人文建筑。坡地建筑设计的基本理念是充分利用自然与坡地资源,使坡地建筑有别于其他建筑,形成独特的建筑风格。服从坡地自然形态,创造丰富的建筑空间,使建筑成为自然的有机组成部分,达到人、建筑、自然的和谐统一。 坡地建筑的定义 坡地建筑,即建于地面不同地形坡度的建筑物。坡地建筑是基于地貌环境的一种建筑类型,与其他建筑不同,它不同于一般的一段时间,风格,流派或功能划分的建筑类型。它具有以下特性:环境形态的复杂性—坡地环境是坡地建筑生成基因之一,它的空间属性和形态特征直接影响了坡地建筑形态的组织与体现。坡地是自然地貌中最常见的一种类型,然而由于它千变万化,庞杂浩繁,因而很难准确地以某一种方式加以分类。坡地建设用地常采用坡度为5~25%的坡地,其建筑的接地条件表现出良好的适地性、节地性、通达性和安全性等人居环境的条件要素。坡地建筑设计的基本理念是充分利用自然与坡地资源,服从坡地自然形态,创造丰富的建筑空间,使建筑成为自然的有机组成部分,达到人、建筑、自然的和谐统一。这样可使人们享受

单相接地故障的特征及处理

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

最新中性点不接地系统-发生单相接地故障问答大全

多用在中压10~35kV ;(1kV以下低压,1~10kV中低压) 中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。系统正常运行时,三相电压U A、U B、U C 是对称的,三相的对地电容电流i c0也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。 当系统出现单相接地故障时(假设C相接地) 。则C相对地电压为0,而A相对地电压U’A=U A+(-U C)=U AC,而B相相对地电压U′B=U B+(-U C)=U BC。由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3 倍,即1.732倍)。 C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:IC=-(ICA+ ICB)。IC在相 位上超前U C 90o(流过故障线路始端的零序电流是电容电流,所以零序电流超前零序电压 90°;由于在不接地系统中,单相接地是不会产生电流(对地分布电容的容性电流不算,所以小电流接地),即不会产生额外负载,所以不会影响各相电压包括相对中性点的电压关系);而在量值上由于IC=I CA又因I CA=U’A/X C= UA/XC= I C0,因此I C=3I C0,即一相接地的电容电流为正常运行时每相电容电流的三倍。 由于线路对地电容C很难确定,因此I C0和I C也不能根据电容C来精确计算。一般采用下列经验公式来计算中性点不接地系统的单相接地电容电流:I C=Ue(Ik+35IL)/350 Ue(为线路额定电压KV) Ik(为同一电压的具有电的联系的架空线路总长度) IL(为同一电压的具有电的联系的电缆线路总长度) 在不完全接地(即经过一些接触电阻接地,中性点经消弧线圈接地)时,故障相对地的电压将大于0而小于相电压,而未接地相对地电压小于线电压,接地电容电流也比较小。 必须指出,当中性点不接地的系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论是相位还是量值均未发生变化,因此三相用电设备仍照常运行。但是这种线路允许在一相接地的情况下长期运行,因为如果另一相又发生接地故障时就会发展成为相间短路,两相接地短路,这是很危险的,会产生很大的短路电流,可能损坏线路设备。所以在中性点不接地的系统中,应该装置专门的接地保护或绝缘监察系统,在发生单相接地时,给予报警信号,以提醒值班人员注意及时处理。按我国规程规定:中性点不接地电力系统发生单相接地故障时,允许暂时运行2小时。运行维修人员应争取在两小时以内查出接地故障,予以排除。 绝缘监察装置由测量和发信两部分组

配电网接地故障原因分析及处理对策实用版

YF-ED-J1584 可按资料类型定义编号 配电网接地故障原因分析及处理对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

配电网接地故障原因分析及处理 对策实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 引言 在10~35kV电网中,各类接地故障相对较 多,使电网供电的可*性降低,对工农业生产及 人民生活造成很大影响,所以必须认真分析故 障原因,采取有效的防护措施。 2 故障原因 (1) 雷害事故。10~35kV系统网络覆盖面 较大,遭受雷击的概率相对增多,不仅直击雷 造成危害,而且由于防雷设施不够完善,绝缘 水平和耐雷水平较低,地闪、云闪形成的感应

过电压也能造成相当大的危害,导致设备损坏,危及电网安全。 (2) 污闪故障。10~35kV配电网络中因绝缘子污秽闪络,使线路多点接地的故障也经常发生。据对10kV配电线路的检查发现,因表面积污而放电烧伤的绝缘子不少。绝缘子污秽放电,是造成线路单相接地和引起跳闸的主要原因。 (3) 铁磁谐振过电压。10~35kV系统属于中性点不接地系统,随着其规模的扩大,网络对地电容越来越大,在该网络中电磁式电压互感器和空载变压器的非线性电感相对较大,感抗比容抗大得多,而且电磁式电压互感器一次线圈中性点直接接地,受雷击、单相地和倒闸操作等的激发,往往能形成铁磁谐振,谐振产

10KV线路单相接地故障处理方法初探

10KV线路单相接地故障处理方法初探 10KV配网线路故障的多发期,所有故障中最突出的故障是线路接地故障,且查找和处理起来也比较困难。如果线路长时间接地运行,可能烧毁变电站TV一次侧保险丝,引起值班人员拉闸停电,导致整条10KV馈路停电,更严重的是在接地运行可能引发人身事故。 传统处理方法 线路接地时,变电站运行人员在听到告警铃响后,会推拉确定具体的10KV接地馈路,然后电话通知供电站查线。供电站传统的接地查线处理方法可分为2种:经验判断法和推拉法。 1.经验判断法 一般情况下,供电站在接到变电站查线通知后,有经验的运行人员会首先分析故障线路的基本情况:线路环境(有无存在未及时处理的树害),历史运行情况(原先经常接地)等,判断可能引起的接地点,然后去现场进行确认。但不在掌握线路情况或线路分段较少的情况下,一般直接将运行人员分组对线路进行逐杆设备全面巡视,直至发现接地点。 经验判断法的缺点:①对供电站的要求较高。要求供电站线路日常巡视维护扎实到位,管理基础资料详实准确,并且人员对情况非常熟悉,否则经验判断就无从谈起。②在白天,由于接地现象表现不明显,带电

巡视接地故障存在人身安全隐患;在夜晚,接地现象表现为弧光放电,有放电声音,较为明显,但由于需要照明灯具及交通车辆进行配合,增大了另一种安全隐患。③对意外情况,故障经验法不适用。 2. 推拉法 由线路运行人员对线路分断点的形状或断路器进行开断操作,并同时用电话与变电站进行联系,根据操作前后线路接地是否消失来确定接地点的所在范围。 下面以某村变电站179某桥线为例来说明,图为179某桥线接线图。假设179某桥线接地,首先由供电站操作人员拉开96号杆分路丝具,再用电话询问某村变电站值班人员接地是否消失。若接地消失,可判定接地点在96号杆以后;否则,可判定96号杆前段肯定有接地点(不能排除96号杆后段没有接地点)。再拉开川道支线,扶托支线杆分路丝具,再询问接地是否消失。然后再依次拉开干线41号杆、19号杆分路丝具,直至判定接地点的某一支线或干线某一段为止。 推拉法也存在明显的不足:线路单相接地时,规程规定允许继续运行时间不超过2小时。受此限制,经常会出现接地原因尚未查清,查找工作仍在进行,但变电站就已经拉闸停电的情况。此时会使接地查找工作变得复杂,停电时间延长。 绝缘摇测判断法

故障应急处理方案

故障应急处理方案 1.电源不正确引发的设备故障。电源不正确大致有如下几种可能:供电线路或供电电压不正确、功率不够(或某一路供电线路的线径不够,降压过大等)、供电系统的传输线路出现短路、断路、瞬间过压等。特别是因供电错误或瞬间过压导致设备损坏的情况时有发生。因此,在系统调试中,供电之前,一定要认真严格地进行核对与检查,绝不应掉以轻心。 2.由于某些设备的连结有很多条,若处理不好,特别是与设备相接的线路处理不好,就会出现断路、短路、线间绝缘不良、误接线等导致设备的损坏、性能下降的问题。在这种情况下,应根据故障现象冷静地进行分析,判断在若干条线路上是由于哪些线路的连接有问题才产生那种故障现象。因此,要特别注意这种情况的设备与各种线路的连接应符合长时间运转的要求。 3.设备或部件本身的质量问题。各种设备和部件都有可能发生质量问题,纯属产品本身的质量问题,多发生在解码器、电动云台、传输部件等设备上。值得指出的是,某些设备从整体上讲质量上可能没有出现不能使用的问题,但从某些技术指标上却达不到产品说明书上给出的指标。因此必须对所选的产品进行必要的抽样检测。如确属产品质量问题,最好的办法是更换该产品,而不应自行拆卸修理。 4.设备(或部件)与设备(或部件)之间的连接不正确产生的问题大致会发生在以下几 个方面: ⑴阻抗不匹配。 ⑵通信接口或通信方式不对应。这种情况多半发生在控制主机与解码器或控制键盘等有通信控制关系的设备之间,也就是说,选用的控制主机与解码器或控制键盘等不是一个厂家的产品所造成的。所以,对于主机、解码器、控制键盘等应选用同一厂家的产品。 ⑶驱动能力不够或超出规定的设备连接数量。比如,某些画面分割器带有报警输入接口在其产品说明书上给出了与报警探头、长延时录像机等连接的系统主机连成系统,如果再将报警探头并联接至画面分割器的报警输入端,就会出现探头的报警信号既要驱动报警主机,又要驱动画面分割器的情况。 解决类似上述问题的方法之一是通过专用的报警接口箱将报警探头的信号与画面分 割器或视频切换主机相对应连接,二是在没有报警接口箱的情况时,可自行设计加工信号扩展设备或驱动设备。 5.视频传输中,最常见的故障现象表现在监视器的画面上出现一条黑杠或白杠,并且或向上或向下慢慢 滚动。因此,在分析这类故障现象时,要分清产生故障的两种不同原因。 要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一台电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并逐个检查每台摄像机。如有,则进行处理。如无,则干扰是由地环路等其它原因造成的。 6.监视器上出现木纹状的干扰。这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因: ⑴视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω以及参数超出规定也是产生故障的原因之一。由于产生上述的干扰现象不一定就是视频线不良而产生的故障,因此这种故障原因在判断时要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。若真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。

配电网发生单相接地故障解决方法

配电网发生单相接地故障解决方法 发表时间:2017-07-04T16:01:00.710Z 来源:《电力设备》2017年第7期作者:王海燕 [导读] 由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。 (云南电网公司楚雄鹿城区供电局云南省楚雄市 675000) 单相接地是10kV通常是指小电流接地系统单相接地,单相接地故障是配电系统最常见的故障,多发生在潮湿、多雨天气。由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。熟悉接地故障的处理方法对值班人员十分重要。 随着优质服务要求的不断提高,减少停电时间,提高供电可靠性显得愈加重要。变电站发生单相接地故障时,《调规》中允许继续运行不超过120分钟,但这对于用户的用电质量有很大影响,甚至拉路时会扩大停电范围,不满足优质服务的需要 一、分析接地故障处理情况 (1)公司整合近三年来接地故障排除和处理记录,统计发生接地故障的原因,主要有:线路单相故障、瓷瓶炸裂、引线烧断、断线故障、绝缘损坏、保险遭雷击等。 (2)分析总结接地故障处理情况,主要流程如下: 通过对上表统计得出结论,在本次故障中查找故障点所用时最长,这也是配网线路接地故障处理时间长的主要原因。 综上,影响配电网接地线路查找时间的原因,主要为以下四点: (1)不能缩小故障查找范围; (2)未实现配网自动化; (3)未与用户建立良好的沟通机制; (4)接地选线信号可靠性差。 二、针对措施,变电站安装KC-XDL综合判据小电流接地选线装置 (1)分析以往母线接地故障的原因,往往是因为断线故障,或是引线烧断、瓷瓶炸裂、绝缘损坏等。因此可以在EMS系统中,通过查看接地时负荷的变化情况来分析判断; (2)若是接地线路绝缘损坏,故障处会产生放电,此时反映到负荷曲线上就是该线路负荷突然增高,如图5所示,与正常运行时负荷相比,接地时负荷突然升高;

坡地建筑十原则

坡地建筑十原则 尊重自然原则,系统原则,亲水原则,择高原则,择坡原则,留顶原则,占边原则,经济原则,美学原则。 坡地建筑的杂谈 坡地住宅挑战最大的是成本问题,因为在坡地上面搞建筑活动,必然会增加成本,至于成本增加多少,增加20%,30%都是有可能的。所以我们成本控制上面要做得更加的精细,另外我们也会动一些脑筋,想一些办法,比如在坡地上景观地利用,提到水景,我们坡地本身有很好的一些山地的溪流的水景,这些水景我们充分地利用,把这些溪流的沟床做一些处理,下雨的时候水很大,不下雨的时候水就很小。这个没关系,我们把沟床进行景观化处理了以后,有水是有水的景观,没水是没水的景观。这是我们可以利用的地方。坡地跟平地是一个矛盾体,坡地有坡地的优势,但是同时它也有很多的劣势,所以关键的是开发商拿到坡地以后,如何最大限度地发挥它的优势,而最大限度地抑制它的劣势。 开发商如果要把坡地的优势发挥出来,这个优势主要是这样几个方面: 第一个就是对坡地住宅他有平地住宅所无法比拟的视线和景观的优势,这实际上是一种心理上的感受和享受,在坡地上形成退台之后,后面的房子不会被前面的房子挡住,那么他视线的开阔度和私密性各方面都会比平地的小区要好很多。平地上的小区所有的房子都一样高,每一户的窗子都是互相的对望,你保持18米的间距,还是会有私密性的干扰。 那么坡地建筑大部分的住宅能够保证他的私密性能够得到很好的保护,这是坡地建筑最伟大的价值,第二个坡地建筑本身有很好的生态环境,景观很好,空气好,我们学府大道69号,我们专门做一个空气质量的测试,我们对于悬浮物和污染物的含量,我们专门请重庆大学环境测评所给我们测试,比我们主城区里面的平地的数值有很明显的区分。所以居住坡地建筑有很明显的生态上的享受,那么你要得到这些享受,肯定相应就要克服一些困难,主要就是高差的困难,那么在重庆来讲,重庆的坡地建筑在80年代,90年代以前,重庆市场没有真正的坡地建筑,只是因为重庆没有这么多平地,所以就有大部分房子是盖在坡地上面,可能有些房子就是上面是8层,然后下面还吊了6层,那么整个有十几层,但是还没有电梯。我们在解决居民的入住的舒适度上面做了很多的探索,包括路网和车行道和步行系统上面有一个合理的搭配,再配上现代化的扶梯和电梯这些交通工具,加上家庭小车越来越普及之后,利用小车能够上去之后,慢慢的以前坡地所固有的这些抗性,慢慢就会化解。反过来对坡地所得到的好处和享受的坡地的价值会慢慢超过坡地的劣势,两者比较,他认为得到的好处比付出的代价更多的时候,他就会愿意买你这个房子。 若是描绘一桢生活场景,不应忽略了嵌在山腰的坡地。看到坡地,就自然想起温馨四溢的炊

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线 间电压(升高 3 倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -= 3A E 0 150j e -,C U ' =CA U =C E -A E = 3A E 0 150j e ,由于相电压和电容电流的 对称性已破坏,因而出现了零序电压和零序电流,因为A U ' =0,所以 零序电压0 3U =B U ' +C U ' =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流, B I = C B jX U -' =B U ' 0 jWC , C I = C C jX U -' =C U ' jWC ,其有效值为B I +C I = 3X U WC ,X U 为相电压的有效 值,从故障点流回的电流即零序电流为:0 3I =-(B I +C I )=-(B U ' +C U ' )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为0 3I =3X U 0 WC ,

相关文档
相关文档 最新文档