文档库 最新最全的文档下载
当前位置:文档库 › 排列组合

排列组合

排列组合
排列组合

[例1] 下列哪些问题是排列问题:

(1)从10名学生中选2名学生开会共有多少种不同的选法?

(2)从2,3,5,7,11中任取两个数相乘共能得几个不同的乘积?

(3)以圆上的10个点为端点作弦可作多少条不同的弦?

(4)10个车站,站与站间的车票种数有多少?

1.下列命题,

①abc和bac是两个不同的排列;②从甲、乙、丙三人中选两人站成一排,所有的站法有6种;③过不共线的三点中的任两点所作直线的条数为6.

其中为真命题的是( )

A.①② B.①③

C.②③D.①②③

2.判断下列问题是不是排列,若是,写出所有排列.

(1)从张红、李明、赵华三人中选出两人去参加数学竞赛有几种不同选法?

(2)从(1)中的三人中选出两人分别去参加物理竞赛和数学竞赛有几种不同选法?

(3)从a,b,c,d,e中取出两个字母有几种取法?

[例2] 从1,2,3,4这4个数字中,每次取出3个不同数字排成一个三位数,写出所得到的所有三位数

4.A,B,C,D四名同学排成一行照相,要求自左向右,A不排第一,B不排第四,试写出所有排列方法.

3.由1,2,3三个数字可组成________个不同数字的三位数.

A59+A49 A610-A510A m-1n-1·A n-m n-m

A n-1n-1

A310

(1)5.已知An =132,则n等于

( )

(2)A.11 B.12

(3)C.13 D.14

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

高中排列组合基础题

排列、组合问题基本题型及解法 同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法. 一、相邻问题“捆绑法” 将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法” 该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端). 例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?. 分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2 种方法.则共有52 54A A =440种排法. 三、定位问题“优先法” 指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素. 例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种. 分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个 排在余下的5个位置上,有55A 种方法.则共15 45A A =480种排法.还可以优先排两端 (位置优先). 四、同元问题“隔板法” 例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ×××× 一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列 对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和. 例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( ) (A )210个 (B )300个 (C )464个 (D )600个 分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、13 33A A 个,合计300个,所以选B 例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个? 【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种, 其中0居首位的有314 544C C A 种,故符合条件的五位数共有325314 555544C C A C C A =11040个. 【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的. ①不含0的:由三个奇数字和两个偶数字组成的五位数有325 545C C A 个; ②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法, 再选三个奇数数与一个偶数数字全排放在其他数位上,共有3141 5444C C A A 种排法. 综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +3141 5444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3

排列组合c怎么算 λ-演算与组合算符初步介绍

J. Roger Hindley Lambda?Calculus and Combinators An Introduction 2008; Hardback ISBN9780521898850 J.R.欣德利等著 λ-演算和组合逻辑是逻辑的两个系统,它们都发挥了抽象编程语言的作用。这两者都旨在描述程序的极为通用的性质。在某些方面,它们是互相竞争的,在其他它们又是相互支撑的。λ-演算是美国逻辑学家A.Church在1930年左右发明的,它是作为包括高阶算子(即可以作用于其他算子的算子)在内的概括逻辑系统的一部分。事实上λ-演算语言或某些本质上等价的表示法,是大多数高阶语言的关键部分,无论这种语言是逻辑的,还是计算机编程的。本书的目的就是向读者介绍这两个领域的基本方法与结果。作者并不要求读者具有这两个领域的初步知识,但是要求读者具有一些有关命题逻辑、谓词逻辑和递归函数的知识,并且具有某些数学归纳法的经验。 本书共有16章。λ-演算;组合逻辑;λ的幂与组合算符;可计算函数的表示;不可判定性理论;形式理论λ-β与CLw;λ?演算中的外延;组合逻辑中的外延性;λ与组合逻辑之间的对应;10.简单类型化Church式样;1简单类型化组合逻辑

的Curry式样;1简单类型化λ中的Curry式样;1类型化推广;1组合逻辑模型;1λ-演算模型;1Scott的D∞与其他模型。最后是5个附录。 本书值得向任何想要研究组合逻辑与λ-演算的逻辑学家及计算机科学家郑重推荐。 胡光华, 高级软件工程师 (原中国科学院物理学研究所) Hu Guanghua, Senior Software Engineer (Former Institute of Physics,CAS)

排列组合概念

排列与组台的概念教案 教学目标 1.正确理解排列、组合的意义. 2.掌握写出所有排列、所有组合的方法,加深对分类讨论方法的理解.3.发展学生的抽象能力和逻辑思维能力. 教学重点与难点重点:正确理解两个原理(加法原理、乘法原理)以及排列、组合的概 念.难点:区别排列与组合. 教学过程设计师:上节课我们学习了两个基本原理,请大家完成以下两题的练习:(用投影仪出示) 1.书架上层放着50 本不同的社会科学书,下层放着40 本不同的自然科学的书.(1)从中任取1 本,有多少种取法? (2)从中任取社会科学书与自然科学书各 1 本,有多少种不同的取法? 2 .某农场为了考察三个外地优良品种A, B, C,计划在甲、乙、丙、丁、戊共 五种类型的土地上分别进行引种试验,问共需安排多少个试验小区? (全体同学参加笔试练习. ) 4 分钟后,找一同学谈解答和怎样思考的? 生:第1(1)小题从书架上任取1 本书,有两类办法,第一类办法是从上层取社会科学书,可以从50 本中任取1 本,有50 种方法;第二类办法是从下层取自然科学书,可以从40 本中任取1 本,有40 种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各 1 本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书, 根据乘法原理,得到不同的取法种数是:50 X 40=2000 ?第2题说,共有A , B , C 三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3X 5=15个实验小区. 师:学习了两个基本原理之后,继续学习排列和组合,什么是排列?什么是组合?这两个问题有什么区别和联系?这是我们讨论的重点.先从实例入手: 1 .北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?希望同学 们设计好方案,踊跃发言. 生甲:首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制 2 种飞机票;若起点站 是广州,终点站是北京或上海,又需要2 种飞机票,共需要2+2+2=6 种飞机票. 师:生甲用加法原理解决了准备多少种飞机票问题.能不能用乘法原理来设计方案呢? 生乙:首先确定起点站,在三个站中,任选一个站为起点站,有 3 种方法.即

超全排列组合二十种经典解法

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

排列组合教案

数学广角 《课题一排列组合》教学设计 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析: 课标中指出数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。教学目标: 1使学生通过观察、猜测实验等活动,找出最简单的事物排列数和组合数。 2培养学生初步的观察能力、分析能力及推理能力 3初步培养学生有序的全面思考问题的意识。 情感态度与价值观:通过解决生活中的一些实际问题,感受数学与生活的密切联系培养学生积极思维的品质。 教学重点:有序排列的思想和方法 过程与方法:通过实践活动,经历找排列数与组合数的过程,体验排

列与组合的思想方法。 课时:1课时 教学设计 情景导入 师:同学们喜欢去广场吗?为什么? 走进新课 师:今天我们也要到一个有意思的地方,哪呢?课件(数学广角)对,那里没有好吃的,好玩的,但是那里有趣的数学问题等待我们开动我们聪明的小脑袋瓜儿解决他们,想去吗? 在去之前,我们先打扮一下自己,穿上漂亮的衣服,老师这有四件衣服(课件)你喜欢那套衣服,同学们有这么多的选择。那到底能搭配多少套呢?拿出手中的学具摆摆看。 学生分组讨论 汇报交流 同学们表现的真不错,你喜欢那一套,我们就在心理穿上你喜欢的衣服去数学广角了。 展开活动 1、开启大门 数学广角的大门是由1和2 这两个数字摆成的两位数,这道 门的密码可能是那些数? 生;12、21。 师:这两个数字有什么不同?

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排列组合基本知识

有关排列组合的基本知识 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列,当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!

(三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力 (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合基本概念

两个基本原理 1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有 N=m1十m2十…十m n种不同的方法. 2.乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11. 答:从书架任取一本书,有11种不同的取法. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法. 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百

位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复, 这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是 N=5X5X5=125. 答:可以组成125个三位数. 排列 什么叫排列? 从n 个不同元素中,任取m(n m ≤)个元素按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 【排列数】 1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示. 2. 排列数公式:m n A =n(n-1)(n-2)…(n -m+1) 3.全排列、阶乘的意义; n !=n(n-1)(n-2)…1= n n A ,规定 0!=1 )! (!m n n A m n -= (其中m ≤n m,n Z ) 例1:⑴ 7位同学站成一排,共有多少种不同的排法? 解:问题可以看作:7个元素的全排列——7 7A =5040 ⑵ 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040 ⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

排列组合教学设计

数学广角——排列组合 绩溪县实验小学 吴晓秋 教学内容: 人教版数学三年级上册P112例1、例2。 教学分析: 排列与组合不仅是组合数学的最初步知识和学习概率统计的基 础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教 材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测、 操作可以找出最简单的事物的排列数和组合数。本册教材就是在学生 已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动 找出事物的排列数和组合数。 教学目标: 1、学生通过观察、猜测、操作、合作交流等活动,找出简单事 物的排列数和组合数。 2、初步培养有序地全面地思考问题的能力,发展学生的符号感。 3、学生在丰富的生活情境中感受数学与生活的紧密联系,增强 对数学学习的兴趣和用数学的眼光观察生活的数学素养。 教学重点: 经历探索简单事物排列与组合规律的过程,能有序地找出简单事 物的排列数和组合数。 教学难点:培养学生有序地、全面地思考问题的能力。 教具、学具准备: 课件、数字卡片

教学过程: 一、激情引趣 想和我一起去数学广角吗?相信凭借你们的智慧,今天一定会玩的非常开心! 二、操作探究 1、破译密码——体会排列。 (1)初步体会 课件出示:请输入密码 密码提示:用1、2、3组成的三位数。 有多少种可能性? (2)深入探究 用手中的数字卡片摆一摆,共有几种可能?一人摆数字卡片,一人写在答题卡上。 学生活动,教师巡视。 实物投影仪展示不同写法。 (3)比较优化:你喜欢哪一种?为什么? (4)输入密码,开启数学广角 2、握手庆贺——体会组合 (1)实际感知 同桌互相握手庆贺合作愉快。 两个人握手几次?如果每两个人握一次手,三人一共要握手多少次呢?猜猜看? 现在四人一小组,请小组长作指挥,小组内的另外三个同学握一握,看看一共握手多少次? 学生活动,教师巡视。选择小组上台展示有序握手的方法。 (2)提炼符号 有没有好方法把这个结果简单而有条理地记录下来呢?用自己喜

小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步 知识定位 理解加乘原理的根本,分辨何时使用加法原理、何时使用乘法原理 知识梳理 一、乘法原理: 我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理. 乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m 1 种不同的方法, 做第二步有m 2种不同的方法,…,做第n步有m n 种不同的方法,则完成这件事一共有N=m 1 ×m 2×…×m n 种不同的方法. 乘法原理运用的范围:这件事要分几个彼此互不影响 ....的独立步骤 ....来完成,这几步是完成这 件任务缺一不可的 .....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 二、加法原理: 无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理. 加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m 1 种不同做法,第二类 方法中有m 2种不同做法,…,第k类方法中有m k 种不同的做法,则完成这件事共有N= m 1 + m 2 +…+m k 种不同的方法. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 加乘原理的区别: 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完 成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。”

排列 组合 定义 公式 原理

排列组合公式 久了不用竟然忘了 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种?

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

排列组合经典解法

排列组合问题的经典解法 一、重复排列“住店法” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。 【例1】8名同学争夺3项冠军,获得冠军的可能性有 ( ) A.38 B.83 C.38A D.38C 【解析】冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有38种不同的结果。选(A )。 评述:类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有83种结果。要注意这两个问题的区别。 二、特色元素“优先法” 某个(或几个)元素要排在指定位置,可优先将它(们)安排好,后再安排其它元素。 【例2】乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、 三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 【解析】3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;然后从其 余7名队员选2名安排在第二、四位置,有27A 种排法。因此结果为2733A A =252种。 三、相邻问题“捆绑法” 把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。不过要注意“大元素”内部还需要进行排列。 【例3】有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 【解析】将数学书与外文书分别捆在一起与其它3本书一起排,有55A 种排法,再将3本数学书 之间交换有33A 种,2本外文书之间交换有22A 种,故共有223355A A A =1440种排法。 【评述】这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。 如:7个人排成一排,要求其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,而且中间一人可从其余5 人中任取,故共有1200552215 A A C 种排法。

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

几类经典排列组合问题

一、小球放盒子问题(分组问题) (1)6个不同的小球放到6个不同的盒子里。 解析:分步乘法计数原理, 每个小球都有六种放法 答案:66。 (2)6个不同的小球放到6个不同的盒子里,要求每个盒子只能放一个小球。 解析:思路一:分步乘法计数原理, 第一个小球有6种放法 第二个小球有5种放法 …… 第六个小球有1种放法 即6*5*4*3*2*1; 思路二:将小球按顺序摆放后,与不同的盒子相对应即可,即A 6 6。 答案:720。 (3)6个不同的小球平均放到3个相同的盒子里。 解析:平均分组的问题 因为盒子相同,相当于把小球等分成三堆,设想6个小球编号为ABCDEF , 首先从6个球中选出2个,为C 2 6; 然后从剩下的4个球中选出2个,为C 2 4; 最后剩下2个球,为C 2 2; 但是:C 2 6取出AB 球、C 2 4取出CD 球、剩EF 球; C 2 6取出AB 球、C 2 4取出EF 球、剩CD 球; C 2 6取出C D 球、C 2 4取出AB 球、剩EF 球; C 2 6取出C D 球、C 2 4取出EF 球、剩AB 球; C 2 6取出EF 球、C 2 4取出AB 球、剩CD 球; C 2 6取出EF 球、C 2 4取出CD 球、剩AB 球; 得到的结果是一样的,故按照C 2 6C 2 4C 2 2组合完成后还应除去A 3 3, 答案:C 2 6C 2 4C 2 2/A 3 3 (4)6个不同的小球平均放到3个不同的盒子里。 解析:平均分组后再分配的问题 平均分组得到的结果为C 2 6C 2 4C 2 2/A 3 3,分完组后三堆小球还要放到不同的盒 子里,即再进行一个A 3 3的排列 答案:C 2 6C 2 4C 2 2 (5)6个不同的小球按1、2、3的数量,分别放到3个相同的盒子里。 解析:非平均分组的问题 因为盒子相同,相当于把小球分成数量不等的三堆, 首先从6个球中选出1个,为C 1 6; 然后从剩下的5个球中选出2个,为C 2 5; 最后剩下3个球,为C 3 3; 注意:因为这个问题是非平均分组,故不存在(3)中出现的重复的情况,

排列组合问题的几种基本方法(复习归纳)

排列组合问题 1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.) 处理问题的原则: ①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m! ②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m! ③非均分堆问题,只要按比例取出分完再用乘法原理作积. ④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列. 1. 分组(堆)问题 例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式? 解:要完成发包这件事,可以分为两个步骤: ⑴先将四项工程分为三“堆”,有 211421 2 2 6C C C A 种分法; ⑵再将分好的三“堆”依次给三个工程队, 有3!=6种给法. ∴共有6×6=36种不同的发包方式. 2.插空法: 解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. ♀ ♀ ♀ ♀ ♀ ♀ ♀ ↑ ↑ ↑ ↑ ↑ ↑ 例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法? 解:分两步进行: 55A 有=120种排法 第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔): 26A 有=30种插入法

120303600∴?共有=种排法 () 种不同的排法有22 5566P P P -∴ 3.捆绑法 相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列. 例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法? ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ 解:(1)分两步进行: 甲 乙 第一步,把甲乙排列(捆绑): 22 A 有=2种捆法 第二步,甲乙两个人的梱看作一个元素与其它的排队: 55 A 有=120种排法 几个元素不能相邻时,先排一般元素,再让特殊元素插孔. 几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.

相关文档
相关文档 最新文档