文档库 最新最全的文档下载
当前位置:文档库 › 库仑土压力理论

库仑土压力理论

库仑土压力理论
库仑土压力理论

库仑土压力理论

1776年法国的库伦(C.A.Coulomb)根据极限平衡的概念,并假定滑动面为平面,分析了滑动楔体的力系平衡,从而求算出挡土墙上的土压力,成为著名的库伦土压力理论。

一、基本原理

库伦研究了回填砂土挡土墙的土压力,把挡土墙后的土体看成是夹在两个滑动面(一个面是墙背,另一个面在土中,如图6-12中的AB和BC面)之间的土楔。根据土楔的静平衡条件,可以求解出挡土墙对滑动土楔的支撑反力,从而可求解出作用于墙背的总土压力。这种计算方法又称为滑动土楔平衡法。应该指出,应用库伦土压力理论时,要试算不同的滑动面,只有最危险滑动面AB对应的土压力才是土楔作用于墙背的Pa或Pp

库伦理论的基本假设:

1.墙后填土为均匀的无粘性土(c=0),填土表面倾斜(β>0);

2.挡土墙是刚性的,墙背倾斜,倾角为ε;

3.墙面粗糙,墙背与土本之间存在摩擦力(δ>0);

4.滑动破裂面为通过墙踵的平面。

二、主动土压力计算

如图所示,墙背与垂直线的夹角为ε,填土表面倾角为β,墙高为H,填土与墙背之间的摩擦角为δ,土的内摩擦角为φ,土的凝聚力c=0,假定滑动面BC通过墙踵。滑裂面与水平面的夹角为α,取滑动土楔ABC作为隔离体进行受力分析(图6-11b)。土楔是作用有以下三个力:

1.土楔ABC自重W,由几何关系可计算土楔自重,方向向下;2.破裂滑动面BC上的反力R,大小未知,作用方向与BC面的法线的夹角等于土的内摩擦角φ,在法线的下侧;

3.墙背AB对土楔体的反力P(挡土墙土压力的反力),该力大小未知,作用方向与墙面AB的法线的夹角δ,在法线的下侧。土楔体ABC在以上三个力的作用下处于极限平衡状态,则由该三力构成的力的矢量三角形必然闭合。已知W的大小和方向,以及R、P的方向,可给出如图所示的力三角形。按正弦定理可求得:

求其最大值(即取dP/dα=0),可得主动土压力

式中Ka为库伦主动土压力系数,可按下式计算确定

沿墙高度分布的主动土压力强度pa可通过对式(6-21)微分求得:

由此可知,主动土压力强度沿墙高呈三角形分布,主动土压力沿墙高的分布图形如图所示。主动土压力合力作用点在离墙底的H/3高度处,作用方向与墙面的法线成δ角,与水平面成δ+ε角。

四、库尔曼图解法

上述库伦土压力计算公式只适用于c=0且填土表面为平面的情况。对于墙后填土为曲线斜面或不规则形状表面的情况,或填土表面有局部荷载作用及填土为粘性土的情况,则前述的库伦公式不能适用,这种情况下可用库尔曼(C.Culmann)图解法求土压力。

(一)基本原理

如图所示,假定滑动楔体ABCi上作用的反力Pi、Ri仍符合库伦规则,根据力的平衡条件,绘出矢量三角形(图6-13b),并将矢量三角形顺时针旋转90°-φ,使Ri的作用方向与滑面重合。

旋转后的重力Wi作用方向与水平线的夹角为φ角。根据Wi的大小和Pi的方向,则可由矢量三角形而求得Pi的大小。假定多个不同的破裂滑动面,求出各土楔对应的土压力Pi值。

对应于楔体下滑,求出的各Pi值中的最大值Pmax,即主动土压力Pa,在楔体向上滑动条件下,求出的各Pi值中的最小值Pmin,即被动土压力Pp。

(二)基本方法

1.如图所示的挡土墙和土坡,过B点作BL线,使BL与水平面成φ角,BL线为重力W顺时针旋转90°-φ后的方向;

2.以BL为基线顺时针方向旋转ψ=90°-δ-ε,作BF线,

BF即旋转变化后的土压力P的方向;

3.任意假定一个破裂面AC1,计算滑动土楔的重量W1,按一定比例在BL线上标定BD1=W1;

4.过D1点作BF的平行线E1D1,按与BD1=W1同样的比例可以确定E1D1=P1的大小;

5.重复3和4的步骤可以确定。E2D2=P2,E3D3=P3,……;

6.连接E1、E2、E3……,可得一曲线,称为库尔曼土压力轨迹线,它表示在各不同假想滑裂面的情况下,墙背AB上受到的土压力大小的变化情况;

7.在土压力轨迹线上作一条平行于BL的切线,切点为E,过切点E作BF的平行线ED,按同一比例尺确定Pa=ED。

8.连接BE,并延长至坡面C,则BC就是实际破裂面;

9.求ABC土楔的形心点m,过m点作与BC平行的直线交墙背于n点,则n点可近似作为总主动土压力Pa的作用点。

五、对库伦力作用的思索

一、应用

无疑,库伦土压力理论同其他理论一起构成了我们在工程过程中解决挡土墙的设计问题的一把利器。挡土墙能够有效地处理边坡稳定问题,在对防止滑坡发生过程中起到了很大的作用,

中国重庆市武隆县发生山体滑坡性地质灾害的现场。此次滑坡产生土石方二万余立方米,由于山体中发生风化,加上大量雨水浸泡,

诱发了山体一侧突然发生滑坡灾害。

挡土墙应用举例

在挡土墙的设计施工过程中,应该对充分考虑土压力的作用效果,如果考虑不当很有可能酿成事故,

垮塌的重力式挡墙

失稳的立交桥加筋土挡土墙

讨论:减少库仑土压力的影响方法:

1.从挡土墙的本身考虑,为了增加其稳定性,可以改善挡土墙的材料性质,譬如采用混合型材料,增加其刚性,在材料中添加

混合剂,在迎土面采用有柔性的材料,譬如刚性大的弹性材料,利用材料的形变缓减力的强度,另外增加迎土面的摩擦系数,增加承受荷载。

2.从挡土墙的形状考虑,现在的挡土墙,大部分都采用的是梯形,在此形状上,可以使迎土面成弧形,弧形的角度与土和强的角

度有关。

3.从附加方法考虑,可以在离挡土墙一定距离的地方预先打桩,并且每隔一段距离均匀分布

4.从土的性质考虑,增加土的粘聚力,改善植被,植树造林,在坡地挖沟,疏导地表水。

朗肯土压力理论

第二节 朗肯土压力理论 二、几种常见发问下的主动土压力计算 1、成层填土情况:无连续荷载作用: 成层土:自重应力计算:∑= i i z h γσ ∑-=a a i i a k c k h p 2γ (1)C 1=0、C 2=0 (2)C 1、C 2≠0 2、填土表面有连续的均布荷载作用 (1)无粘性土,C=0 1)压强分布为梯形 a a a qk K q z p =+=)(1γ a a a k q H K q z p )()(2+=+=γγ 2)合力: 大小: H k q H qk E a a a ])([2 1 ++= γ 矩形:距墙底H/2 作用点:压力图形 三角形:距墙底H/3 方向:水平 (2)粘性土:C ≠0 强度分布 (3)若填土表面局部有均布荷载作用: 3、墙后填土中有地下水的情况 第四节 土压力计算的影响因素及减小土压力的措施 一、影响土压力的因素 (一)墙背影响:形状 粗糙程度 倾斜程度: (二)填土条件 填土表面 填土性质 二、减小主动土压力的措施 (一)选择合适的填料 (二)改变墙体结构和墙背形状 (三减小地面堆载 (四)挡土墙上设置排水孔,墙后设置排水盲沟来加强排水

第三节朗肯土压力理论 1857年英国学者朗肯(Rankine)从研究弹性半空间体内的应力状态,根据土的极限平衡理论,得出计算土压力的方法,又称极限应力法。 一、基本原理 朗肯理论的基本假设: 1.墙本身是刚性的,不考虑墙身的变形; 2.墙后填土延伸到无限远处,填土表面水平(β=0); 3.墙背垂直光滑(墙与垂向夹角ε=0,墙与土的摩擦角δ=0)。 考察挡土墙后土体表面下深度z处的微小单元体的应力状态变化过程: (1)当用挡土墙代替半空间的土体,且不发生位移时,作用在微分土体上的应力为自重应力,此时,挡土墙土压力即为静止土压力,大小等于水平向自重应力σh。 (2)当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力σv保持不变,而水平向应力σh逐渐减小,直至达到土体处于极限平衡状态,此时水平向应力(σ3)即为主动土压力强度p a 。观看动画演示 (3)当挡土墙在土压力的作用下向着土体方向位移时,作用在微分土体上

挡土墙计算

6.2 挡土墙土压力计算 6.2.1 作用在挡土墙上的力系 挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。 作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力. 主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括: 1.挡土墙自重G及位于墙上的衡载; 2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载); 3.基底的法向反力N及摩擦力T; 4.墙前土体的被动土压力Ep . 对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。 附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。 特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。 在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。 6.2.2 一般条件下库伦(coulomb)主动土压力计算 土压力是挡土墙的主要设计荷载。挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力.

采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。 路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全. 主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。 (一)各种边界条件下主动土压力计算 路基挡土墙因路基形式和荷载分布的不同,土压力有多种计算图式. 以路堤挡土墙为例,按破裂面交于路基面的位置不同,可分为5种图示:破裂面交于内边坡,破裂面交于荷载的内侧、中部和外侧,以及破裂面交于外边坡。兹分述如下: 1.破裂面交于内边坡(图6—13) 这一图式适用于路堤式或路堑式挡土墙。图中AB为挡土墙墙背,BC为破裂面,BC与铅垂线的夹角θ为破裂角,ABC为破裂棱 体。棱体上作用着三个力,即破裂棱体自重G、主动土压力的反力Ea和破裂面上的反力R。Ea的方向与墙背法线成δ角,且偏于阻止棱体下滑的方向; R的方向与破裂面法线成φ角,且偏于阻止棱体下滑的方向。取挡土墙长度为1m计算,作用于棱体上的平衡力三角形abc可得:

采用朗肯土压力理论计算主动

采用朗肯土压力理论计算主动、被动土压力 朗肯土压力理论是依据半空间体的应力状态和土的极限平衡理论推出土压力强度的计算式。它的假设条件1.挡土墙背垂直;2.墙后填土表面水平;3.挡墙背面光滑即不考虑墙与土之间的摩擦力。 应用范围: 1.墙背与填土条件: (1)墙背垂直,光滑,墙后填土面水平 (2)墙背垂直,填土面为倾斜平面, (3)坦墙(工程上把出现滑裂面的挡土墙定义为坦墙)。 (4)还适应于“∠”形钢筋混凝土挡土墙计算 2.地质条件 粘性土和无粘性土均可用,均有公式直接求解 影响土压力的因素: 作用在挡土支护结构上的土压力受以下因素制约: 1不同土类中的侧向土压力差异很大。采用同样的计算方法设计的挡土支护结构,对某些土类可能安全度很大,而对另一些土类则可能面临倒塌的危险。因此在没有完全弄清挡土支护结构土压力的性能之前,对不同土类应区别对待。 2 土压力强度的计算及其计算指标的取值与基坑开挖方式和土类有关。当剪应力超过土的抗剪强度时,背侧土体就会失去稳定,发生滑动。由于基坑用机械开挖,一般进度均较快,开挖卸荷后,土压力很快形成,为与其相适应采用直剪快剪或三轴不排水剪是合理的。但剪切前是否要固结,则根据土的渗透性而定。渗透性弱的土,由于加荷快、来不及固结即可能剪损,此时宜采用不固结即进行剪切;反之,渗透性强的土,宜固结后剪切。 3土压力是土与挡土支护结构之间相互作用的结果,它与结构的变位有着密切的关系,从而导致设计土压力值的不确定性。如经典的库仑土压力仅考虑主动与被动状态;在挡土支护结构变形很小时,要采用静止土压力(其值无统一求法);对于作用于多支点挡土支护结构的土压力则按弹塑性理论进行计算。

库仑主动土压力计算

1.库仑主动土压力(1)库仑主动土压力计算 如图6-12(a)所示,设挡土墙高为h,墙背俯斜,与垂线的夹角为ε,墙后土体为无粘性土(c=0),土体表面与水平线夹角为β,墙背与土体的摩擦角为δ。挡土墙在土压力作用下将向远离主体的方向位移(平移或转动),最后土体处于极限平衡状态,墙后土体将形成一滑动土楔,其滑裂面为平面BC,滑裂面与水平面成θ角。 沿挡土墙长度方向取1m进行分析,并取滑动土楔ABC为隔离体,作用在滑动土楔上的力有土楔体的自重W,滑裂面BC上的反力R和墙背面对土楔的反力E(土体作用在墙背上的土压力与E大小相等方向相反)。滑动土楔在W,R,E的作用下处于平衡状态,因此三力必形成一个封闭的力矢三角形,如图6-12(b)所示。根据正弦定理并求出E的最大值即为墙背的库仑主动土压力: 图6-12库仑主动土压力计算 (a)挡土墙与滑动土楔(b)力矢三角形 公式推导(6-12) 库仑主动土压力计算公式推导 在图6-13(b)的力矢三角形中,由正弦定理可得:

(6-12a) 式中ψ=90o-ε-δ,其余符号如图6-13所示。 土楔自重为 在三角形ABC中,利用正弦定律可得: 由于 故 在三角形ADB中,由正弦定理可得: 于是土楔自重可进一步表示为 将其代入表达式(6-12a)即可得土压力E的如下表达式:

E的大小随θ角而变化,其最大值即为主动土压力E a。令 求得最危险滑裂面与水平面夹角θ0=45o+?/2,将θ0代入E的表达式即得主动土压力E a的如下计算公式: 这里 式中K a为库仑主动土压力系数,其值为: (6-13) 2.库仑被动土压力 库仑被动土压力计算公式的推导与库仑主动土压力的方法相似,计算简图如图6-14,计算公式为: (6-14)

第八章 土压力与挡土墙

第八章土压力与挡土墙 主要内容 ?第一节概述 ?第二节静止土压力计算 ?第三节朗肯土压力理论 ?第四节库伦土压力理论 ?第五节挡土墙设计

第一节概述 土压力(earth pressure):土对挡土墙的侧向压力。 一、土压力分类 1、依据 ⑴挡土墙的位移:平移和转动 ⑵墙后填土的应力状态 2、分类 ⑴静止土压力E 0(earth pressure at rest):挡土墙位 移为0时的土压力。 ⑵主动土压力E a (active earth pressure):挡土墙离开土体位移,且墙后填土的应力达到极限平衡状态,此时的土压力称为主动土压力。

第一节概述 ⑶被动土压力E p (passive earth pressure ):挡土墙向土体方向位移,且墙后填土的应力达到极限平衡状态,此时的土压力称为被动土压力。 二、土压力与挡土墙位移的关系 若挡土墙的位移以墙挤压填土为正,离开填土为负,则土压力与挡土墙位移的关系可用图示曲线表示。可见,在土压力中,主 动土压力最小,被动土压力最 大。静止土压力、主动土压力 和被动土压力三者的关系为 p a E E E <<0

任意深度z 处竖向自重应力为γz ,则该点的静止土压力强度为 z K p γ00=μ μ-=10K ?' -=sin 1式中 γ:墙后填土的重度,kN/m 3; z :计算点到墙顶的距离,m ; K 0:静止土压力系数。 ?':土的有效内摩擦角。

静止土压力沿墙高为三角形分布,取单位墙长计算,作用于墙上的静止土压力为静止土压力分布图形的面积。 0202 1K H E γ=

库仑土压力理论

库仑土压力理论 1776年法国的库伦(C.A.Coulomb)根据极限平衡的概念,并假定滑动面为平面,分析了滑动楔体的力系平衡,从而求算出挡土墙上的土压力,成为著名的库伦土压力理论。 一、基本原理 库伦研究了回填砂土挡土墙的土压力,把挡土墙后的土体看成是夹在两个滑动面(一个面是墙背,另一个面在土中,如图6-12中的AB和BC面)之间的土楔。根据土楔的静平衡条件,可以求解出挡土墙对滑动土楔的支撑反力,从而可求解出作用于墙背的总土压力。这种计算方法又称为滑动土楔平衡法。应该指出,应用库伦土压力理论时,要试算不同的滑动面,只有最危险滑动面AB对应的土压力才是土楔作用于墙背的Pa或Pp 库伦理论的基本假设: 1.墙后填土为均匀的无粘性土(c=0),填土表面倾斜(β>0); 2.挡土墙是刚性的,墙背倾斜,倾角为ε; 3.墙面粗糙,墙背与土本之间存在摩擦力(δ>0); 4.滑动破裂面为通过墙踵的平面。

二、主动土压力计算 如图所示,墙背与垂直线的夹角为ε,填土表面倾角为β,墙高为H,填土与墙背之间的摩擦角为δ,土的内摩擦角为φ,土的凝聚力c=0,假定滑动面BC通过墙踵。滑裂面与水平面的夹角为α,取滑动土楔ABC作为隔离体进行受力分析(图6-11b)。土楔是作用有以下三个力: 1.土楔ABC自重W,由几何关系可计算土楔自重,方向向下;2.破裂滑动面BC上的反力R,大小未知,作用方向与BC面的法线的夹角等于土的内摩擦角φ,在法线的下侧; 3.墙背AB对土楔体的反力P(挡土墙土压力的反力),该力大小未知,作用方向与墙面AB的法线的夹角δ,在法线的下侧。土楔体ABC在以上三个力的作用下处于极限平衡状态,则由该三力构成的力的矢量三角形必然闭合。已知W的大小和方向,以及R、P的方向,可给出如图所示的力三角形。按正弦定理可求得: 求其最大值(即取dP/dα=0),可得主动土压力 式中Ka为库伦主动土压力系数,可按下式计算确定

挡土墙及土压力计算

第六章:挡土墙及土压力计算 挡土墙:为防止土体坍塌而修建的挡土结构。土压力:墙后土体对墙背的作用力称为土压力。 一、三种土压力——根据墙、土间可能的位移方向的不同,土压力可以分为三种类型: 1.主动土压力Ea ——在土压力作用下,挡土墙发生离开土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为主动土压力,记为Ea 。 2.被动土压力Ep ——在外力作用下,挡土墙发生挤向土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为被动土压力,记为Ep 。 3.静止土压力Eo ——墙土间无位移,墙后填土处于弹性平衡状态,此时墙背上的土压力称为静止土压力,记为Eo 。 二、三种土压力在数量上的关系 墙、土间无位移,墙后填土处于弹性平衡状态,与天然状态相同,此时的土压力为静止土压力;在此基础上,墙发生离开土体方向的位移,墙、土间的接触作用减弱,墙、土间的接触压力减小,因此主动土压力在数值上将比静止土压力小;而被动土压力是在静止土压力的基础上墙挤向土体,随着墙、土间挤压位移量的增加,这种挤压作用越来越强,挤压应力越来 越大,因此被动土压力最大。即:Ea

库伦土压力与朗肯土压力计算理论

2.1 土压力理论 土压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的侧向压力。土压力的计算是个比较复杂的问题。它随挡土墙可能位移的方向分为主动土压力、被动土压力和静止土压力。土压力的大小还与墙后填土的性质、墙背倾斜方向等因素有关。 2.1.1 库伦土压力[22] 1773年著名的法国学者库伦(C.A.Coulomb)提出了一种计算土压力的理论。这种理论是根据墙后所形成的滑动楔体静力平衡条件建立起来的,这种理论具有计算简单,适用范围广泛,且计算结果接近实际等优点,至今仍然被广泛使用于工程实践之中。其基本假定如下: (l)墙后填土为理想散粒体(无粘聚力); (2)墙后填土产生主动土压力或被动土压力时,填土形成滑动楔体,且滑动面为通过墙踵的平面; (3)滑动楔体为刚体,不考虑滑动楔体内部的应力和变形条件 1、主动土压力公式: 21 2 a a E H K γ= 2a K = 式中:α—为墙背与铅直线夹角,逆时针为正值; K a —库仑主动土压力系数; β—填土表面与水平面所成坡角; δ—墙后填土与墙背的摩擦角,由试验或规范确定。 2、被动土压力公式 21 2 p p E H K γ=

2p K =式中:K p —为库仑被动土压力系数。 2.1.2 朗肯土压力[23] 朗肯土压力是英国学者朗肯在1857 年提出的一种经典的土压力理论,这种土压力理论是根据半空间体的应力状态和土的极限平衡理论得出的土压力计算理论之一。这种土压力理论的计算方法比较简单,计算结果比较接近实际,至今仍然被广泛用于工程实践之中。其基本假定如下: 1).墙本身是刚性的,不考虑墙身的变形; 2).墙后填土面水平且填土延伸到无限远处; 3).墙背直立、光滑。 1、主动土压力公式 无粘性土: 2(45-)2 a Ztg ? σγ=。 粘性土: 2 (45-)2(45-)2 2 a Ztg Ctg ? ? σγ=-。 。 式中:C 一为土的粘聚力, Z —计算点距离填土面的深度(m); φ一内摩擦角 σa 一为主动土压力 γ—填土的重度

土压力理论

王洪新[1](2011)工程实践表明,狭窄基坑有更好的稳定性。因此,其他条件相同时,狭窄基坑围护结构插入深度可以适当减小。目前常用的基坑稳定性分析方法基本不考虑基坑宽度的影响,造成狭窄基坑设计时插入深度过大,引起较大浪费。以宽度与插入深度之比为依据,把基坑宽度分成窄基坑、一般宽度基坑和宽基坑三类。基于经典土压力理论,推导考虑基坑宽度影响的抗倾覆稳定安全系数计算公式, 考虑被动区加固土体的无限侧抗压强度。分析表明,基坑越深,宽度越小,就越要考虑基坑宽度对稳定性的影响。提出的公式完全基于经典土压力理论,没有引入新的假设,较为科学,对狭窄基坑减小插入深度提供了理论依据,适合在基坑设计和施工中推广。 丁翠红、周玲[2](2009)支护结构内力和变形计算结果的合理性在很大程度上取决于作用在支护结构上的土压力,寻找更加符合基坑工程特点的土压力计算模型具有重要的现实意义和理论价值.但是现在沿用的朗肯土压力理论存在明显的弱点,随着深基坑支护结构的进一步发展复杂化,土压力理论已经不适用.根据国内外学者采用的不同研究方式,针对两种不同的支护结构分别讨论,对深基坑支护结构土压力分布规律及土压力计算方法研究进展进行综述,并分析其中存在问题及今后研究方向. 应宏伟,郑贝贝,谢新宇[3](2011)对于地铁车站、地下管道沟槽等狭窄基坑,其被动区土体宽度有限,不满足半无限体的假定,采用经典的库仑、朗肯土压力理论计算挡墙被动土压力是不合适的。首先建立了无黏性土中狭窄基坑刚性挡墙的有限元分析模型,研究了挡墙相对平移时不同宽度土体的被动滑裂面的分布规律;借鉴库仑平面土楔假定,建立了狭窄基坑刚性平动挡墙被动土压力的理论计算模型,推导了被动极限状态下滑裂面倾角及被动土压力系数的解析公式;再采用水平薄层单元法,得到了被动土压力分布、土压力合力作用点高度的理论公式。结合算例,深入研究了这种工程背景下挡墙被动滑裂面倾角的影响因素,以及被动土压力合力、土压力分布及合力作用点位置与经典库仑土压力理论的差别,与数值计算结果的对比验证了该理论方法的合理性。研究发现,当被动区土体宽度小于满足半无限体的临界值、且墙土摩擦角大于0时,被动滑裂面倾角大于传统库仑被动滑裂面倾角,被动土压力大于经典库仑解,合力作用点高度则小于库仑解,且基坑越窄,墙土摩擦角越大,其差别越大。 李峰,郭院[4](2008)成在深基坑工程中,拟开挖基坑距已有建筑物地下部分较近时,基坑支护体系承受的是有限土体的土压力,若根据Rankine理论计算,常导致计算土压力偏大,造成浪费。针对基坑工程中有限粘性土体的土压力计算问题,基于滑楔体平衡理论,本文推导了考虑土体变形情况的有限土体土压力计算模式,通过工程实例计算进行对比分析,提出了基坑工程中有限粘性土体土压力的计算方法,结果表明有限土体土压力分布模式及其量值与半无限土体土压力分布模式及其量值间存在显著差异,当有限土体宽度不大于坑深的0.75倍时,宜按有限土体土压力计算模式进行计算。 金亚兵,刘吉波[5](2009)基坑工程实践中,经常遇到相邻基坑土条土压力如何计算的问题,现行基坑规范尚没有计算方法。通过理论探索和工程实践,对前、后期的基坑支护型式进行了归类和组合,提出了相临基坑宽度的确定原则;提出了建立在库仑土压力理论基础之上的简化计算方法——叠加法,推导并给出了非黏性土和黏性土在不同坡率和地面分布有荷载条件下主动土压力系数和土压力的计算公式,并提出了临界宽度的概念和土条土压力折减系数的

土主动被动土压力概念及计算公式

主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p >P o >P a 。 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。土体中产生的两组破裂面与水平面的夹角为2 45?- ?。 朗肯主动土压力的计算 根据土的极限平衡条件方程式 σ1=σ3tg 2 (45°+2?)+2c ·tg(45°+2?) σ3=σ1tg 2(45°- ?)-2c ·tg(45°-?)

(库伦土压力理论)

Chapter 6 Lateral Earth Pressure 6.3 Coulomb ’s Earth Pressure Theory (库伦土压力理论) (i) Coulomb (1776) proposed that a condition of limit equilibrium exists in a soil wedge between a retaining wall and a trial slip plane. (库伦土压力理论假设一个滑动面,整个滑动块体处于极限平衡状态). (ii) The force between the wedge and the wall is determined by considering the equilibrium of forces acting on the wedge. (利用整个滑动块体上静力平衡条件来确定土压力). (iii) Among these trial slip planes, the critical slip plane is the one which gives the maximum lateral pressure on the wall (在假定滑动面中,临界滑动面产生最大的土压力). (iv) Poncelet (1840) used Coulomb’s limit equilibrium approach to obtain the active and passive earth pressure coefficients for the following cases: (a) backfill is dry, homogenous and cohesionless soil with an angle of internal friction φ, (填土 是干,均质和无粘性土) (b) backfill is sloping at an angle a to the horizontal, (填土表面与水平面夹角为α) (c) wall friction φo is present, (墙背与填土之间的摩擦角为φo ) (d) wall face inclined at an angle e to the vertical, (墙背面与竖直线的夹角为ε) (v) For active failure, the wall moves away from the soil mass. The forces acting on the soil wedge above the slip plane are shown in Figure 6.11. The forces acting on soil wedge ABC is under equilibrium: its weight [W], the reactions on the slip plane AC [R] and the wall AB [P a ]. (墙体离开填土方向,产生主动破坏,滑动块体上力的分布见图6.11:土体ABC 的重量W,滑动面A C 上的反力R 与墙背A B 上的反力P a 达至静力平衡) (vi) Consider the sine rule (通过正弦定律) () ) 90sin(W sin P o a θ-ε+φ+φ+?= φ-θ ) sin() 90sin()90sin(AB 2 1W 2 ABC α-θθ-ε+??ε-α+?? ? γ=??γ= ) sin(cos ) 90sin()90sin(H 21W 2 2 α-θ?εθ-ε+??ε-α+?? ?γ= ) cos()sin(cos )sin()cos()cos(H 2 1P o 2 2 a ε-φ-φ-θ?α-θ?εφ-θ?ε-θ?α-ε? ?γ= Differentiating the above expression for P a w.r.t. θ and equating the derivative to zero, we can obtain the critical value of θ that gives maximum P a : (将P a 对θ 求导数,并令其等於零) 2 o o o 2 2 2 a )cos()cos()sin()sin(1)cos(cos ) (cos H 21.)(max P ? ? ? ? ??? ? α-ε?φ+εα-φ?φ+φ+ ?φ+ε?εε-φ??γ= a 2 a K H 2 1.)(max P ??γ=

土压力的概念

第六章 土压力 第一节 土压力的概念 一、名词解释 1.土压力:是指挡土结构物背后的填土因自重或外荷载作用对墙背产生的侧向压力。 2.主动土压力:当挡土墙在墙后填土作用下,离开土体方向移动或转动,至土体达到极限平衡状态 时,作用在墙上的土压力称为主动土压力。 3.静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背的侧限作用而 处于弹性平衡状态时,墙背所受的土压力压力称为静止土压力。 4.被动土压力:挡土墙在外力作用下,墙体向填土方向平移或转动,至土体达到极限平衡状态时, 作用在挡土墙上的土压力称为被动土压力。 二、填空题 1.静止土压力 主动土压力 被动土压力 2.极限平衡 滑裂面 最小 3.增加 极限平衡 最大 三、选择题 1.A 2.C 3.C 4.B 5. B 6. C 7. B 四、判断题 1.√ 2.× 3.× 4.√ 5.√ 6.√ 五、简答题 简述挡土墙位移对土压力的影响? 答:挡土墙是否发生位移以及位移方向和位移量,决定了挡土墙所受的土压力类型,并据此将土压力分为静止土压力、主动土压力和被动土压力。挡土墙不发生任何移动或滑动,这时墙背上的土压力为静止土压力。当挡土墙产生离开填土方向的移动,移动量足够大,墙后填土体处于极限平衡状态时,墙背上的土压力为主动土压力。当挡土墙受外力作用向着填土方向移动,挤压墙后填土使其处于极限平衡状态时,作用在墙背上的土压力为被动土压力。挡土墙所受的土压力随其位移量的变化而变化,只有当挡土墙位移量足够大时才产生主动土压力和被动土压力,若挡土墙的实际位移量并未达到使土体处于极限平衡状态所需的位移量,则挡土墙上的土压力是介于主动土压力和被动土压力之间的某一数值。 六、计算题 答案:166.5KN/m 解:() 0202030sin 165.182121-???== K H P γ=166.5KN/m

土压力答案第8章

答案第8章土压力 一、简答题 1. 静止土压力的墙背填土处于哪一种平衡状态?它与主动、被动土压力状态有何不同? 2. 挡土墙的位移及变形对土压力有何影响? 3. 分别指出下列变化对主动土压力和被动土压力各有什么影响?(1)内摩擦角变大;(2)外摩擦角变小;(3)填土面倾角增大;(4)墙背倾斜(俯斜)角减小。 4. 为什么挡土墙墙后要做好排水设施?地下水对挡土墙的稳定性有何影响? 5. 土压力有哪几种?影响土压力的各种因素中最主要的因素是什么? 6. 试阐述主动、静止、被动土压力的定义和产生的条件,并比较三者的数值大小。【湖北工业大学2005年招收硕士学位研究生试题、长安大学2005、2006年硕士研究生入学考试试题(A卷)】 7. 库仑土压力理论的基本假定是什么?【长安大学2005、2006、2007年硕士研究生入学考试试题(A卷)】 8. 比较朗肯土压力理论和库仑土压力理论的基本假定及适用条件。 9. 何为重力式挡土墙? 10. 在哪些实际工程中,会出现主动、静止或被动土压力的计算?试举例说明。【华南理工大学2006年攻读硕士学位研究生入学考试试卷】 二、填空题 1. 挡土墙后的填土因自重或外荷载作用对墙背产生的侧向压力称。【同济大学土力学99年试题】 2. 朗肯土压力理论的假定是、。 3. 人们常说朗肯土压力条件是库仑土压力条件的一个特殊情况,这是因为此时、 、三者全为零。 4. 库伦土压力理论的基本假定为、、。 5. 当墙后填土达到主动朗肯状态时,填土破裂面与水平面的夹角为。 6. 静止土压力属于平衡状态,而主动土压力及被动土压力属于 平衡状态,它们三者大小顺序为。 7. 地下室外墙所受到的土压力,通常可视为土压力,拱形桥桥台所受到的一般为土压力,而堤岸挡土墙所受的是土压力。 8. 朗肯土压力理论的基本出发点是根据半无限土体中各点应力处于状态, 由平衡条件求解土压力。

库仑主动土压力计算

1.库仑主动土压力 (1)库仑主动土压力计算 如图6-12(a)所示,设挡土墙高为h,墙背俯斜,与垂线的夹角为ε,墙后土体为无粘性土(c=0),土体表面与水平线夹角为β,墙背与土体的摩擦角为δ。挡土墙在土压力作用下将向远离主体的方向位移(平移或转动),最后土体处于极限平衡状态,墙后土体将形成一滑动土楔,其滑裂面为平面BC,滑裂面与水平面成θ角。 沿挡土墙长度方向取1m进行分析,并取滑动土楔ABC为隔离体,作用在滑动土楔上的力有土楔体的自重W,滑裂面BC上的反力R和墙背面对土楔的反力E(土体作用在墙背上的土压力与E大小相等方向相反)。滑动土楔在W,R,E的作用下处于平衡状态,因此三力必形成一个封闭的力矢三角形,如图6-12(b)所示。根据正弦定理并求出E的最大值即为墙背的库仑主动土压力: 图6-12库仑主动土压力计算 (a)挡土墙与滑动土楔(b)力矢三角形 公式推导(6-12) 库仑主动土压力计算公式推导 在图6-13(b)的力矢三角形中,由正弦定理可得:

(6-12a) 式中ψ=90o-ε-δ,其余符号如图6-13所示。 土楔自重为 在三角形ABC中,利用正弦定律可得: 由于 故 在三角形ADB中,由正弦定理可得: 于是土楔自重可进一步表示为 将其代入表达式(6-12a)即可得土压力E的如下表达式:

E的大小随θ角而变化,其最大值即为主动土压力E a。令 求得最危险滑裂面与水平面夹角θ0=45o+?/2,将θ0代入E的表达式即得主动土压力E a的如下计算公式: 这里 式中K a为库仑主动土压力系数,其值为: (6-13) 2.库仑被动土压力 库仑被动土压力计算公式的推导与库仑主动土压力的方法相似,计算简图如图6-14,计算公式为: (6-14) δ作用点在离墙底H/3处,方向与墙背法线的夹角为

朗肯土压力理论doc

朗肯土压力理论doc 采用朗肯土压力理论计算主动、被动土压力 朗肯土压力理论是依据半空间体的应力状态和土的极限平衡理论推出土压力强度的计算式。它的假设条件1(挡土墙背垂直;2(墙后填土表面水平;3(挡墙背面光滑即不考虑墙与土之间的摩擦力。 应用范围: 1.墙背与填土条件: (1)墙背垂直,光滑,墙后填土面水平 (2)墙背垂直,填土面为倾斜平面, (3)坦墙(工程上把出现滑裂面的挡土墙定义为坦墙)。 (4)还适应于“?”形钢筋混凝土挡土墙计算 2.地质条件 粘性土和无粘性土均可用,均有公式直接求解 影响土压力的因素: 作用在挡土支护结构上的土压力受以下因素制约: 1不同土类中的侧向土压力差异很大。采用同样的计算方法设计的挡土支护结构,对某些土类可能安全度很大,而对另一些土类则可能面临倒塌的危险。因此在没有完全弄清挡土支护结构土压力的性能之前,对不同土类应区别对待。 2 土压力强度的计算及其计算指标的取值与基坑开挖方式和土类有关。当剪应力超过土的抗剪强度时,背侧土体就会失去稳定,发生滑动。由于基坑用机械开挖,一般进度均较快,开挖卸荷后,土压力很快形成,为与其相适应采用直剪快剪或三轴不排水剪是合理的。但剪切前是否要固结,则根据土的渗透性而定。渗透性弱的土,由于加荷快、来不及固结即可能剪损,此时宜采用不固结即进行剪切;反

之,渗透性强的土,宜固结后剪切。 3土压力是土与挡土支护结构之间相互作用的结果,它与结构的变位有着密切的关系,从而导致设计土压力值的不确定性。如经典的库仑土压力仅考虑主动与被动状态;在挡土支护结构变形很小时,要采用静止土压力(其值无统一求法);对于作用于多支点挡土支护结构的土压力则按弹塑性理论进行计算。 图1 半空间体的应力状态 (a)单元体的初始应力状态; (b)达到朗肯状态的应力路径; (c)主动朗肯状态的剪切破坏面; (d)被动朗肯状态的剪切破坏面 如图1a在半空间土体中取一竖直切面AB,在AB面上深度为Z处取一土单元体,在 ,z,,13静止土压力状态下,作用在单元体上的大主应力为竖直向应力,小主应力为水平向 k,zo01应力,单元体处于弹性平衡状态,其应力圆位于强度包线下方。假定在某种原因下 ,,13土体朝侧向松开,在保持大主应力不变的条件下小主应力不断减少,其应力圆直径随

相关文档