文档库 最新最全的文档下载
当前位置:文档库 › 大跨度矮塔斜拉桥索力参数分析

大跨度矮塔斜拉桥索力参数分析

大跨度矮塔斜拉桥索力参数分析
大跨度矮塔斜拉桥索力参数分析

第9卷 第17期 2009年9月167121819(2009)1725245204

科 学 技 术 与 工 程

Science Technolo gy and Engi neering

Vol

19 No 117 Sep .2009n 2009 Sci 1Tech 1Engng 1

交通运输

大跨度矮塔斜拉桥索力参数分析

官 权

(华南理工大学土木与交通学院,广州510640)

摘 要 以沙湾特大桥为研究对象,采用桥梁博士310有限元程序,建立了该桥梁最大悬臂施工阶段和成桥阶段的有限元模型。对索力参数变化引起各主梁、主塔的敏感性进行分析,并提出了结构的变化趋势及原因。所得结果可以为同类桥梁设计和施工提供参考。

关键词 矮塔斜拉桥 索力 敏感性 参数中图法分类号 U448.29; 文献标志码

A 2009年5月14日收到

作者简介:官 权(1985)),男,湖南永州人,硕士,研究方向:桥梁结构分析。E 2m i a:l 252501160@qq .co m 。

矮塔斜拉桥是一种新型桥梁形式

[1)3]

。它兼有

斜拉桥和刚构桥二者的优点。它的特点是:矮塔、刚性梁、斜拉索,属于高次超静定结构。斜拉索相当于一种体外预应力作用,可以有效的降低桥梁截面高度。索力是非常重要的一个参数,目前索力变化对大跨度桥梁整体受力机制的影响不是非常清楚,国内缺乏这方面的研究资料

[4]

。本文结合施工

阶段最大悬臂状态和成桥状态,分析索力参数变化对桥梁结构的影响规律,为确保施工控制提供实用价值。

沙湾特大桥是一座预应力混凝土双塔矮塔斜拉桥,主桥跨径为13715m+248m +13715m,单索面结构,桥面宽度34m,主塔、主墩和主梁固结体系。主梁为单箱三室斜腹板截面,采用C60混凝土,梁高从根部8135m 至跨中变为3185m;主塔为独柱式钢筋混凝土矩形截面,塔柱四角设R =013m 圆角,采用C50混凝土,桥面以上主塔高度为35165m,塔高跨径之比1/6195。斜拉索采用环氧喷涂钢绞线,单股钢绞线直径1512mm,标准抗拉强度为1860MPa ,采用双索面,布置在主梁的中央分隔带

处,梁上索距410m,塔上索距018m,一侧设19对拉索。下部结构为双薄壁墩,钻孔桩基础。施工索力设计为1000,t 成桥后进行二次索力调整。

1 桥梁模型建立

采用有限原程序桥梁博士310建立全桥模型,以主桥轴线为基准划分结构,主梁、主塔、主墩为梁单元,斜拉索为索单元,共建立个326单元,343个节点,主梁划分为140个单元,悬臂施工浇筑箱梁,主梁底板高度按118次抛物线变化。全桥共分为108个施工阶段。如图1

所示。

图1 桥梁整体模型图

2 矮塔斜拉桥索力参数分析

2.1 理论依据

[5]

取斜拉索的初张力为变量,以各斜拉索的单位初张力分别作用于无应力状态的结构,得到对主梁各单元弯矩的影响值而组成影响矩阵。

不妨设x 为斜拉索初张力列阵;p 为斜拉索

索力列阵;M 为主梁各单元杆端弯矩列阵

M L

1M R

1

,

M L

m M R

m

T

,M L i 、M R

i 分别为第i 号

单元左、右端弯矩。

P =P D +A P

x (1)M =M D +A M

x

(2)

其中:P D 、M D 分别为恒载作用下的索力列阵和主梁各单元杆端弯矩列阵,下标D 表示恒载。

A P 、A M 分别为索力影响矩阵和主梁各单元杆端弯矩影响矩阵,即单位初张力作用下的索力和主梁各单元杆端弯矩。2.2 参数变化

[6]

为了深入了解大跨度矮塔斜拉桥的结构特性,反映索力参数变化对荷载效应的影响,考虑施工最大悬臂阶段和成桥阶段对比分析:

(1)在最大悬臂阶段自重荷载和施工荷载下,将初索力值减少10%、20%,将计算得到的主梁、主塔的挠度和弯矩与设计状态下的结果进行比较。

(2)在成桥状态阶段自重荷载下,将二次调索的索力值减少10%、20%,将计算得到的主梁、主塔的挠度和弯矩与设计状态下的结果进行比较。2

.3 结果分析

2.3.1 最大悬臂阶段结果分析

为了便于对比计算结果,将主梁竖向位移、弯矩和主塔水平位移、弯矩用图形表示。桥梁为对称结果,取出桥梁左半部分,符号正负规定:竖向位移向上为正,水平位移偏向边跨侧为正,主梁弯矩下端受拉为正,主塔弯矩主跨侧受拉为正,反之为负。曲线分布如图2~图4所示。

图2 施工阶段主梁竖向位移图

从图中曲线变化可得出以下结论:

(1)图2中索力减少10%、20%时,主梁竖向位移变化较大,跨中侧悬臂位移变为原来的216倍和512倍。随着悬臂跨度变大,位移增加率变大,因为其中包含了各段位移累计效应。虽然主梁截面抗弯刚度很大,但是桥梁悬臂长度达122m,相对主梁的长细比很大。可见,在施工阶段索力变化对主梁

挠度影响较大。

(2)图3中索力减少10%、20%时,主梁弯矩总

5246科 学 技 术 与 工 程9卷

体变化值相对比较平缓,在主墩位置弯矩变化最大,为原来的210倍和419倍。最大弯矩值为4166@106

MPa ,必要时可以在主墩附近加上临时支架。可见,在施工阶段索力变化对主梁弯矩影响不大。

(3)图4中索力减少10%、20%时,由于塔两侧重量不相等,主塔水平位移反而有所减少,主塔顶部位移变为原来的0195倍和0186倍,主塔最大位移值仅-1195c m ,产生的原因可能是主梁下挠位移增大,拉索水平角度增大,水平向分力变小;另外塔高很矮,只有35165m,塔的刚度很大。因此,在施工阶段主塔位移对索力变化不敏感,可以忽略不计。

(4)图5中索力减少10%、20%时,主塔弯矩变化较大,塔根处弯矩变为原来的616倍和1515倍,弯矩最大值为112@106

MPa ,跨中侧受拉。斜拉桥为多次超静定结构,索力减少,各根索相互作用而有可能增大。可见,在施工阶段索力变化对主塔弯矩影响较大。为了防治塔根混凝土开裂,必须严格控制索力值。

2.3.2 成桥阶段结果分析

施工成桥阶段完后,进行二次调索,完成结构体系转换。位移和弯矩的方向同上面规定一致,曲线分布如图6~图9

所示。

图6 成桥阶段主梁竖向位移图

(5)图6中索力减少10%、20%时,主梁竖向位移增大较多,跨中附近位移最大,最大变化值为设计值的213倍和413倍。但是总体增加速率小于悬臂阶段的速率,可见,在成桥阶段,主梁能够承受一部分外荷载,且主梁刚度较大,一定程度上减少了索力的影响。总体来说,主梁竖向位移对索力的变

化比较敏感。

(6)图7中索力减少10%、20%时,主梁弯矩总体变化值相对比较缓慢,在主墩跨中侧弯矩变化最大,为原来的115倍和311倍,随着索力减少,弯矩增加速率加快。与悬臂阶段比较,增速要小。由此说明,主梁弯矩对索力变化较敏感。

(7)图8中索力减少10%、20%时,主塔水平位移稍有减少,主塔顶部最大位移变为原来的0197倍

524717期官 权:大跨度矮塔斜拉桥索力参数分析

和0193倍。主塔最大位移值仅-2187c m,大于悬臂施工阶段的位移值,因为二次调索的索力值要大,主塔两侧索力差值随之增大。可以看出,在成桥阶段主梁位移对索力变化不敏感,可以忽略不计。

(8)图9中索力减少10%、20%时,主塔底部弯矩变化较大,但是增速趋于缓慢,弯矩最大值为313@104MPa,边跨侧受拉,比起悬臂阶段弯矩小很多。由此可见,在成桥阶段索力变化对主塔弯矩影响比较大。

3结论

(1)对于大跨度矮塔斜拉桥,索力一个非常敏感的参数,可以改变结构整体性能。通过索力分析,达到使结构处于合理受力状态。

(2)在施工阶段索力减少时,主梁两侧悬臂的竖向位移、主塔弯矩比较敏感,当索力减少到80%时,最大位移变为原来的512倍,而对施工阶段主梁弯矩、主塔位移影响比较不大;在成桥阶段索力减少时,主梁竖向位移、主梁弯矩、主塔弯矩比较敏感,最大变化值为设计值的213倍和413倍,而对主梁位移影响比较不大。成桥阶段相对变化要小于施工阶段的变化值。

参考文献

1魏春明,陈淮,王艳.矮塔斜拉桥参数敏感性分析.郑州大学学报(理工版),2007,9:178)182

2蔺鹏臻,孙红红,刘凤奎.小西湖矮塔斜拉桥的特征参数研究.公路交通科技,2005;10:56)59

3吴国胜,袁保军.基于几何控制法的斜拉桥参数敏感性分析.重庆交通大学学报(自然科学版),2008;12:1020)1023

4H assan Ian.Stud i es on para m et ers of cable2stayed b ri dges.Journal of Struct u ral Eng,1998,8:1917)1928

5刘凤奎,蔺鹏臻,孙红红.矮塔斜拉桥塔高优化.铁道工程学报, 2003;4:71)75

6王学明,李平.矮塔斜拉桥拉索张力优化.铁道工程学报,2005;

4:39)42

P ara m eter R esearch of Long Span C ab le2stayed B r i dge w ith L o w Towers

G UAN Quan

(Ci vil and Traffi c College of Sou t h Ch i na Un i versity ofT echnology,Guangz hou510640,P.R.Ch i na)

[Ab stract]Sha wang bri d ge is take of f or study to estab li s h t w o stage p s FE M mode ls of th is br i d ge by the Dr Bri d ge progra m2the maxi m a l can tilever constructi o n stage and t h e co mpleted stage.The ma i n gir der and ma il tower p s sensitivities are analyzed by taking changes of the para me ters of cab le f orce,i n addition to propose the trend and cause of the structure.The valuable concl u si o ns can provide the ref erence to the design and constructi o n of si m ilar bridges.

[K ey w ord s]cable2stayed bridge w ith lo w to wer cab le f o rce sensitivity para meter

5248科学技术与工程9卷

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥得概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索与索塔三种构件组成。它就是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉与主塔受压为主得桥梁。斜拉索作为主梁与索塔得联系构件,将主梁荷载通过拉索得拉力传递到索塔上,同时还可以通过拉索得张拉对主梁施加体外预应力,拉索与主梁得结点可以视为主梁跨度内得若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁得受力性能,显著提高了桥梁得跨越能力。根据主梁所用建筑材料得不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥得主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义得混凝土斜拉桥,从此,混凝土斜拉桥进入了人们得视野。 混凝土斜拉桥得主梁与索塔一般由混凝土材料构成,为了提高主梁与索塔得适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔与主梁以受压为主,可以充分利用钢丝或钢绞线优异得受拉能力与混凝土良好得受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁得抗裂能力。从设计方面瞧,既要考虑结构总体布置、结构体系选择得合理性,又要考虑釆用何种方法寻求成桥索力得最优解,还要考虑施工得便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理得施工流程,设法寻求合理得施工初拉力,还要做好施工过程中施工参数得动态控制与调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何与材料非线性以及施工方法等因素对设计与施工得影响。 二、斜拉桥索力优化方法 斜拉桥就是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节得特点,我们可通过对拉索索力得调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理得成桥状态,国内外许多学者都做了大量得研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态得索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束得索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束得索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥得最合理得成桥状态本来也没有一个统一得标准,所以很难说哪一种方法一定优于另外得方法。下面将各种方法得原理介绍如下: ①刚性支承连续梁法 这种方法就是使用最早得方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力得竖向分力

矮塔斜拉桥挂索施工总结

矮塔斜拉桥挂索施工总结 1 工程概况 2.1、塔梁结构:该矮塔斜拉桥为(75+2×125+75)米三塔单索面预应力混凝土部分斜拉桥。采用塔梁固结、中间主塔墩梁固结、另两个主塔墩梁分离的体系,主塔结构高24.5m,主塔采用钢筋混凝土独柱实心矩形截面,顺桥长 3.0m,横桥向宽2m,布置在中央隔离带上,并与主梁固接。此处桥梁内侧波形梁护栏改为0.5米宽的防撞护墙,以便放置索塔。塔身上部设有鞍座,以便拉索通过。每根斜拉索对应一个鞍座,斜拉索横桥面呈两排布置,鞍座亦设两排,鞍座采用分丝管结构形式,预埋于混凝土塔内,斜拉索逐根穿过分丝管。 2.2、斜拉索布置: 斜拉索为单索面,布置在中央隔离带上。每个塔上设有9对18根斜拉索,全桥共108根(两联)。塔上竖向索距为100cm,梁上纵向标准索距为4.0m。拉索采用双排索,拉索在塔上通过鞍座,两侧对称锚于箱梁体的横梁上。斜拉索采用OVM250-31、34、37可换索式斜拉索体系,锚具内为灌注环氧砂浆的拉索群锚,索体为带PE护套的低松驰环氧钢绞线,强度等级为1860Mpa,每根拉索由31、34或37根Фj15.24mm单根环氧钢绞线组成。索体采用三层防护措施,由内向外依次为环氧树脂和油脂层;钢绞线外热挤PE层和索外面套的HDPE整圆式套管。采用先单根挂索张拉,再整体张拉的施工工艺。

2.3、斜拉索构造体系 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成。 2.3.1锚固段:主要由锚板、夹片、锚固螺母、锚筒、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚筒、锚固螺母是加工上主要控制件,也是结构上的主要受力件;密封装置主要起防止漏浆、防水的密封作用。它由隔板、o型密封圈、内外密封板、密封圈构成; 防松装置主要由锁紧螺母和压板构成,在钢绞线单根张拉结束后安装,对夹片起防松、挡护作用;保护罩安装在锚具后端,并内注无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2.3.2过渡段:主要由预埋管及垫板、减振器组成。预埋管及垫板在体系中起支承作用,同时垫板正下方最低处设有排水槽,以便施工过程中临时排水;减振器对索体的横向振动起减振作用,从而提高索的整体寿命。

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

矮塔斜拉桥的设计与施工

文章编号:1671-2579(2004)01-0014-03 矮塔斜拉桥的设计与施工 ———日本新东明高速公路上的京川桥 金增洪 编译 (中交公路规划设计院,北京市 100010) 摘 要:日本新东明高速公路上的京川桥,位于观光和娱乐区,而且处在地震高发区。因此,桥梁既要考虑高抗震特性又要考虑美学特性。该矮塔斜拉桥的悬臂跨度达到96.5m ,已属日本国内此类桥梁中最大者。此悬臂跨径几乎等效于现有PC 斜拉桥的跨径。桥墩由高耸的钢管混凝土结构形成的组合桥墩,高56.5m 。 关键词:预应力混凝土;矮塔斜拉桥;斜拉索;预制;组合桥墩 Ξ 1 引言 矮塔斜拉桥是由法国马秀佛特(Mathivat )教授于1988年建议的,称谓超配量体外索PC 桥(Extradosed prestressing concrete bridge )。这种桥梁是从体外预应力桥发展而来,从应用跨径长度观点来看,矮塔斜拉桥的性态处于PC 箱梁桥和PC 斜拉桥之间。 京川桥跨越日本二级河流,该河为流经日本滨松市和滨北市行政管辖区之间的一条界河。建桥地点是观光和娱乐区域,还是地震高发区。因此,既要考虑桥梁的高抗震特性,也要考虑美学设计。至于矮塔斜拉桥悬臂跨径长度,是日本国内同类桥梁中的最大跨径。这种悬臂跨径相当于现有PC 斜拉桥的跨径(译者注:指日本国内现有斜拉桥的跨径)。京川桥的总体布置见图1所示 。 图1 京川桥总体布置图(单位:cm ) 2 一般概念 京川桥是由三肢桥墩支承的双幅箱梁组成的,而 桥面的长度为268m 。两主跨各长133m ,由44根间距为6m 的斜拉索支承(每一幅桥面在塔的每一侧各 有2×11根=22根斜拉索)。塔的高度为20m ,在顶 上安装索鞍。桥墩总高度为56.5m 。各墩截面:在基底部位尺寸为9.0m ×7.0m ;在与上部结构联结部位的尺寸为5.0m ×7.0m 。桥墩和桥塔都选用钢管混凝土新结构。钢管混凝土组合结构,不仅展示其特有的高延展性和高抗震性能效应,采用螺旋高强钢索箍 14 中  外 公 路 第24卷 第1期 2004年2月 Ξ 收稿日期:2003-03-11

独塔宽幅矮塔斜拉桥的设计与分析

文章编号:0451-0712(2006)05-0057-04 中图分类号:U 448.27 文献标识码:B 独塔宽幅矮塔斜拉桥的设计与分析 陈从春1,夏巨华2,肖汝诚1,何 鹏1 (11同济大学桥梁工程系 上海市 200092;21中国市政工程中南设计研究院 武汉市 430010) 摘 要:介绍了江苏昆山吴淞江大桥的设计与分析过程,并对平面应力和空间应力进行了讨论。该桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥,是目前同类结构中跨度较大、桥幅最宽的结构,主梁、桥塔、拉索等构造均比较新颖,可作其他桥梁设计借鉴参考之用。 关键词:矮塔斜拉桥;宽幅;设计;分析 吴淞江大桥位于江苏省昆山市吴淞江河跨处,主桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥。该桥在目前同类结构中跨径居第3位,宽度居第1位。桥上设计行车速度为50km h ;设计荷载,汽车为城市-A 级,人群为214kPa ,地震设防烈度为7度。桥梁采用塔、梁、 墩固结体系,主要构件都有一定的新颖性,效果 较好。1 设计概要111 总体布置 吴淞江大桥全桥共设14对拉索,索间距为 410m ,近塔端设有28m 的无索区段, 边墩附近设有20167m 的无索区段。总体布置如图1所示。 单位:m 图1 主桥立面布置 112 主梁 主梁采用变截面箱梁,塔根处梁高为510m ,跨中梁高310m ;梁高变化段在塔根无索区段,变化线 型为半径为16229m 的圆曲线。箱梁断面为单箱五室,箱底宽2514m ,顶宽33m ,其中悬臂长318m 。箱梁断面如图2所示。斜拉索锚固在中室内。箱形断 收稿日期:2005-11-28  公路 2006年5月 第5期 H IGHW A Y M ay 12006 N o 15

南澳大桥矮塔斜拉桥主塔施工技术总结

南澳大桥矮塔斜拉桥主塔

施工技术总结 摘要: 本文以广东省南澳大桥主墩工程实例为依托,详细介绍了采用翻模法施工塔柱时钢管脚手架布置、劲性骨架设置及钢筋、模板、混凝土等关键

工艺;以及采用牛腿支架法施工上横梁支架设计安装、钢筋、模板、混凝土等关键工艺;为类似工程提供参考。

1工程概况 1.1地理位置 广东省南澳大桥工程起点桩号为 K1 + 110.00,位于莱芜旅游度假 区治安岗处,与S336 (莱美路)相接。路线在柴井围上桥后江湾海 峡,于南澳长山尾苦路坪接入环岛公路,项目终点 K12+190.00,环 岛公路接入点桩号约为 K9+550。全线总长11080m ,其中桥梁全长 9341m ,占路线总长84.31%,道路全长1739m ,占路线总长15.69% 全线采用2车道二级公路标准修建,设计时速 80km/h ,路基宽 度12m ,主桥宽度14m ,桥面净宽11m 。 1.2桥型布置 主桥全长490m ,为预应力混凝土矮塔斜拉桥,桥型布置为 126+238+126m ,见主桥桥型布置示意图。本段桥梁桩号范围 K9+755?K10+245 ,平面位于直线上,立面位于以K10+000为变坡 点、两侧各3%纵坡、半径8000m 的竖曲线上。 项目所在地理位置如下图所示: ■iilhiH f' F 賓 議,上三舌 4th 南澳大桥项目地理位置图

主桥桥型布置示意图 1.3施工部位划分 南澳大桥主塔由下塔柱、上塔柱及横梁组成,上塔柱、横梁均为 单箱单 室截面,下塔柱为实心截面,材料采用 C50混凝土,承台顶 高程为+6.000m ,塔顶高程为+75.415m ,塔高69.415m ,下塔柱高 31.415m ,上塔柱 30m 。 主塔总体施工节段划分示意图 2下塔柱施工 2.1下塔柱结构形式 下塔柱位于承台与0#块之间,分为南、北两个塔柱,为单箱单室 空心 结构,横桥向设R=300.75m 竖向大半径圆曲线,上端伸入主桥 0# 块中,下 岂 I i 11 I [ I 川 萬f J U 二:」H :.a. IB 戶 Tms 一 二厂 J II U III I fl f I JU mi ........... I M Ml I u T ) [ II [ELIL

矮塔斜拉桥概述

矮塔斜拉桥概述 1.1矮塔斜拉桥的定义和特点 矮塔斜拉桥为近20年来出现的一种新桥型,瑞士、日本、韩国等一些国家这几年修建了多座这种桥梁。由于它优越的结构性能,良好的经济指标,越来越显示出巨大的发展潜力。我国在这种桥型上起步稍晚,2001年建成的漳州战备大桥,是国内第一座真正意义上的矮塔斜拉桥。 对于这种桥型的称谓尚未统一。日本的屋代南桥与屋代北桥为两座轻载铁路桥,初看起来象斜拉桥,因而日本的桥梁界对其笼统地称为斜拉桥。小田原港桥是一座公路桥,日本桥梁界没有把它称为斜拉桥,而是沿用了法国工程师1988年提出的名称—Extra-dosed Prestressing Concrete Bridge,即超配量体外索PC桥,简称EPC桥。实际上屋代南、北桥与小田原港桥其结构体系非常相似,同样可以称为EPC桥。在美国,这种桥有称为“Extra-dosed Prestressing Concrete Bridge”的,也有称为“Extra-dosed Cable-stayed Bridge”的。国内的称谓也一直存在争论,1995年我国著名桥梁专家严国敏先生首次把它定义为“部分斜拉桥”。其含义是:在结构性能上,斜拉索仅仅分担部分荷载,还有相当部分的荷载由梁的受弯、受剪来承受。“部分斜拉”即源于斜拉索的斜拉程度。后来国内一些文章根据这种桥型塔高较矮的特点,又把这种桥型定义为矮塔斜拉桥。 矮塔斜拉桥的受力是以梁为主,索为辅,所以梁体高度介于梁式桥与斜拉桥之间,大约是同跨径梁式桥的1/2倍或斜拉桥的2倍。截面一般采用变截面形式,特殊情况采用等截面。 矮塔斜拉桥的桥塔一般采用实心截面。塔高为主跨的1/8~1/12,由于桥塔矮,刚度大,一般不考虑失稳问题。梁上无索区较之一般斜拉桥要长,而且除了主孔中部和边孔端部的无索区段之外,还有较明显的塔旁无索区段。边孔与主孔的跨度比值较之斜拉桥要大。一般斜拉桥边孔与主孔的跨度比值一般小于0.5,多数在0.4左右,而矮塔斜拉桥与一般连续梁(刚构)桥相似,为避免端支点出现负反力,边孔与主孔的跨度之比一般会大于0.5,较合理的比值在0.6左右。 为了充分利用部分的高度,拉索多成扇形布置,拉索尽量向塔上部集中通过。塔顶索鞍的作用如同体外预应力索的转向点,斜拉索在转向点一般被固定而无滑动。在建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,即外钢管埋设于混凝土塔内,内套管套在外钢管中,斜拉索穿过内钢管,在两侧出口处设置抗滑锚头顶紧内管口,阻止内管滑移。斜拉索在梁上宜布置在边跨中及1/3中跨处。此外,矮塔斜拉桥由于塔较矮,塔顶水平位移不会很大,因此没有斜拉桥的特征构

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

矮塔斜拉桥全桥斜拉索调索施工工法.

矮塔斜拉桥全桥斜拉索调索施工工法 1 前言 “矮塔斜拉桥”也称“部分斜拉桥” ,是介于“斜拉桥”与“体外预应力箱梁桥” 之间的一种新型结构体系。矮塔斜拉桥和连续梁相比具有结构新颖跨度能力大、施工简单、经济优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得埃塔斜拉桥具有广阔的发展空间。 佛肇城际铁路桂丹立交特大桥预应力矮塔斜拉斜跨桂丹路与佛 山一环互通立交,主桥位于R=1800m的圆曲线上,孔跨为 (75+86+168+86+75 m采用塔梁固结并简支于桥墩之上的连续体系。 主梁为预应力混凝土结构,采用单箱双室变高度箱形无翼缘截面,斜拉索锚固于箱体之内。主梁斜拉索采用双塔双索面扇形分布,每个桥塔8对,共16对,梁顶面塔高为26m,最大斜拉索在桥面以上高度为24.355m,其高跨比为24.355:168=1:6.898,桥面宽14.9m,宽跨比为14.9:168=1:11.28, 梁上锚固点间距为14.9,塔上转向鞍横桥向间距15.4m。斜拉索采用喷涂钢绞线(中心丝与边丝各钢丝外表均单独形成环氧树脂涂膜,涂层厚度应在 0.12mm- 0.2mm之间)单层无粘接筋,单根钢绞线规格直径为15.24mm每根斜拉索有55根钢绞线组成。为了确保质量和施工进度,科学管理,积极采用新技术,经过归纳总结形成本工法。

图1.1 1/2 全桥立面图 2工法特点 2.1工序简单,施工进度快。 2.2施工条件得到了改善,劳动强度低,安全性强。 2.3采用单根等值法张拉,可以控制每根斜拉索各股钢绞线的离 散误差不 大于理论值的士 3% 2.4可以实现一对斜拉索对称、交叉单根张拉,同步整体张拉, 确保两根斜拉索间的差值不大于理论值的士 1% 2.5采用JMM-268动测仪进行索力监控,可以确保斜拉索整索索 力误差 不大于理论值的士 2% 2.6斜拉索采用多重防腐处理,锚固端灌注防腐油脂,延长了斜 拉索使用 寿命。 3适用范围 本工法适用于埃塔斜拉桥斜拉索调索施工。 4施工工艺流程及操作要点 在中跨合拢段施工完成后,纵向、竖向、横向预应力束张拉完 成后,进行全桥第一次斜拉索索力复测、桥面线形监控控制点复测, 由线形监控单位根据桥面高程目标值进行计算 (利用MIDAS 软件进行 数学建模计算),给出斜拉索调索索力,根据线形监控单位所给索力 7485 8600 16800/2=8400 j 1550 6x700= (拉索区) 6x700= (拉索区) 1350 拉索编号 C1 C8 C8拉索编号C1 2850 2850 5 」 q 1 - 1" I I |||1 nnrirsrinriri

矮塔斜拉桥研究的新进展

矮塔斜拉桥研究的新进展 陈从春1,周海智2,肖汝诚1 (1.同济大学桥梁工程系,上海200092; 2.同济大学建筑设计研究院,上海200092) 摘 要:简要叙述矮塔斜拉桥在国内外的应用及研究状况,讨论该种桥型的中文和英文关键词,提出索梁恒载比、索梁活载比和名义刚度的概念,并对这种桥型进行界定,试图揭示这类桥梁的力学本质,最后对该种桥型的发展作了展望。 关键词:矮塔斜拉桥;应力幅;索梁恒载比;索梁活载比;名义刚度中图分类号:U 448.27 文献标识码:A 文章编号:1671-7767(2006)01-0070-04 收稿日期:2005-11-22 作者简介:陈从春(1970-),男,博士生,1992年毕业于湖南大学公路与城市道路专业,工学学士,1999毕业于武汉理工大学岩土工程专业,工学硕士。 0 引 言 随着桥梁技术的发展,桥梁应用的两大趋势是十分明显的,即传统桥梁的轻型化和组合化。组合体系桥梁极大地丰富了桥梁造型。组合体系桥中比较有代表性的是拱梁组合体系、斜拉-连续梁(刚构)体系等,其中斜拉-连续梁(刚构)体系是一种比较新颖的桥型,近10年来应用较多,受到广泛的关注。普遍认为,由Chr istian M enn 设计的建于1980年的的甘特(Ganter)大桥,是斜拉-连续(刚构)体系桥的先驱,其混凝土箱形梁由预应力混凝土斜拉板/悬挂0在非常矮的塔上,这种板可以看成是一种刚性的斜拉索,该桥的出现形成了斜拉桥的一个分支)))板拉桥,由于其与环境的完美结合,成为一道风景。甘特大桥的出现为其后的矮塔斜拉桥的出现奠定了基础。甘特大桥之后,又有墨西哥的帕帕加约(Papagayo )大桥、美国得克萨斯州的巴顿河(Bar -to n Creek)大桥及葡萄牙的索科雷多斯(Socorr-i dos)大桥等相继建成[1]。 1988年法国工程师Jacg ues M athivat 在设计位于法国西南的阿勒特#达雷(Arr ?t Darr ü)高架桥的比较方案时,首次明确提出了矮塔斜拉桥的方案。该方案是跨度为100m 的预应力混凝土等截面箱梁,塔、梁固结,斜拉索穿过矮塔上的鞍座与主梁锚固。 与此同时,1990年德国的Antonie Naaman 提出了一种组合体外预应力索桥,体外索的一部分伸出主梁之上,锚固在墩顶处主梁的刚柱上[2] 。这一种体系与法国Jacgues M athivat 的方案十分类似。 目前这种桥在各国得到广泛应用,日本已建成此类桥梁20多座,中国大陆地区已建和在建的已达 10多座,中国台湾地区有2座,瑞士、菲律宾、老挝、帕劳群岛、克罗地亚各1座,美国珍珠港在建1座;其中,中国在建的惠青黄河公路桥、江珠高速荷麻溪大桥分别达到220m 和230m (预应力混凝土梁),芜湖长江大桥达到340m(钢桁梁),分别为同类桥梁最大跨径。 尽管这种桥梁发展很快,但仍然有很多问题没有很好地解决,本文将就研究的最新情况作一论述。1 矮塔斜拉桥的称谓 对于这种桥型的称呼尚未统一,法国工程师Jacgues M athivat 在提出他的方案时,命名为/ex -tra -dosed PC bridg e 0,直译为/超剂量预应力混凝土桥梁0;日本工程界一直采用这种名称( ¨é?ー ?橋);在美国,这种桥有称为/extra -dosed PC bridg e 0的,也有称为/extrado sed cable -stay ed bridg e 0的;在我国台湾,最初将这种结构称为/外置预应力桥0,后来根据其外形类似恐龙高耸的脊背,而称为/脊背桥0、/拱背桥0。国内的称呼一直存在争论,学者严国敏将其称为/部分斜拉桥0,理由是这种桥型受力特性介于斜拉桥和连续梁之间,桥的刚度主要由梁体提供,斜拉索主要起体外预应力的作用;王伯惠、顾安邦、徐君兰等学者认为应该称为/矮塔斜拉桥0,而/部分斜拉桥0不够明确,没有道出其外在的形状与内在的结构特征,早期的稀索结构也有/部分0的性质。 目前,这种体系与最初相比又丰富了很多,主梁不仅采用预应力混凝土结构,还可采用钢结构(如中国的芜湖长江大桥),以及钢与混凝土的组合结构(如波形钢腹板梁及结合梁),不仅可以采用刚性梁,

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

矮塔斜拉桥

浅谈矮塔斜拉桥和多塔斜拉桥 矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。 矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得矮塔斜拉桥具有广阔的发展空间。 矮塔斜拉桥结构特点: 1、塔高较矮。拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。一般塔高可取主跨的1/8-1/12; 2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用; 3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索; 4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁; 5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整; 6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m. 7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。 矮塔斜拉桥的受力特点: 索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。索塔对索力的分配作用不仅与自身高度有关,同时还与索力大小有关。拉索、预应力钢筋的用量和索塔塔高是相互影响的,索塔高些,拉索用量可少些,则预应力筋也可以相应少些,反之,亦然。在一定的范围内,通过索力优化调整因塔高降低对结构的负面影响,具有十分重要的意义。同

桥梁工程中矮塔斜拉桥的施工技术

桥梁工程中矮塔斜拉桥的施工技术 发表时间:2018-09-12T14:49:52.690Z 来源:《基层建设》2018年第20期作者:魏勇国[导读] 摘要:联系某大桥主桥矮塔斜拉桥项目的具体情况,并且结合我国矮塔斜拉桥的具体案例,分析矮塔斜拉桥的受力特性与建设过程中的重要工艺,希望能够为类似工程的建设提供参考。湖南盛鹏建设工程有限公司湖南长沙 410000摘要:联系某大桥主桥矮塔斜拉桥项目的具体情况,并且结合我国矮塔斜拉桥的具体案例,分析矮塔斜拉桥的受力特性与建设过程中的重要工艺,希望能够为类似工程的建设提供参考。关键词:矮塔斜拉桥;斜拉索;防腐;施工控制;关键技术 1矮塔斜拉桥特点 因为矮塔斜拉桥架构自身的特性,主梁作业方式相较于连续梁并没有很大差异。相较于传统斜拉桥而言,矮塔斜拉桥的优势包括:拉索塔塔高相对较小,作业简便;中途斗拉索应力并不会产生很大的变化,能够使得拉索高强钢筋建材的性能充分体现出来;梁体具备相对较大的刚度,作业过程与合拢之后,并不用调节索力[1]。 2工程概况 某大桥主桥架构是三塔四跨矮塔斜拉桥,跨径是72m+120m+120m+72m,左右桥塔位置、中间桥塔位置分别是梁塔固结、梁塔墩固结,将支座安设在桥墩位置。关键性的特性就是运用了满堂支架现浇的方式,斜拉索选择OVM 200环氧涂层的高强无粘结平行钢绞线。因为矮塔斜拉桥的优势显著,可以预见,今后会愈来愈普及,并且跨度同样会不断增大。 3矮塔斜拉桥施工关键技术 3.1斜拉索病害原因 矮塔斜拉桥拉索通常会选择平行钢绞线,并且架构和以往的斜拉桥拉索、悬索桥、拱桥吊杆并没有很大的差异。就全世界的桥梁架构来说,中索结构在防治矮塔斜拉桥拉索病害这个问题上有很大的优势。因为设计、作业技术、施工方式等方面的问题,全世界外斜拉桥拉索在实际在投入运用的寿命缩短,比如M araCaibo桥在运用16年时间之后,进行换索施工,成本投入5000万美元,施工总时长达到2年;而Kohlbrand Estuary桥投入运用3年时间之后就进行换索施工,成本投入6000万美元;我国某桥拉索投入运用9年时间之后,因为拉索PE出现严重的护套老化、钢丝锈蚀、断裂的问题,因此所有的拉索都要换新。导致斜拉桥拉索病害出现的原因包括:(1)在拉索挂设施工时,并未妥善保障拉索PE护套的稳定性与安全性,这就使得拉索护套在实际挂设拉索过程中出现刮伤、刻痕等问题,进而使得拉索PE护套使用寿命缩短。(2)在作业时,梁上索导管内含有冷凝水,这就会导致索导管与索体内存在相对较高的潮湿度,并且严重腐蚀锚头与索体。就潮白河大桥而言,因为当地温度相对较低,假若梁上索导管内存在严重的进水问题,就会产生积水冻胀的现象,进而严重影响拉索、索导管的稳定性与耐久性。(3)因为实际作业中,索管的方向与位置存在很大的偏差,就会导致下索管和拉紧之后的拉索并不处于平行的状态,甚至还会出现抵紧一侧索管的现象,使得减振器的安设被严重影响,还会导致拉索在这个位置要承担较大的剪力,进而使得拉索的承载性能极大地弱化[2]。 3.2索力离散性控制 矮塔斜拉桥中运用平行钢绞线拉索系统的特性就是要在施工现场进行逐股挂设、逐股张拉,之后还要进行整体张拉所有拉索,在安设拉索的过程中,应该科学地控制相应的离散值,并且要做到下面几点:所有斜拉索各股钢绞线的离散误差均应该≤理论值的±3%;每队斜拉索差值≤理论值的±1%;斜拉索整索索力≤理论值的±2%。鉴于此,在单股钢绞线张拉时,我国通常会选择等值张拉的方式。其实等值张拉施工技术,就是基于张拉各股拉索对已张拉的各股拉索所产生的影响,来设定之后拉索拉力大小,进而导致前面张拉拉索拉力与后续张拉拉索拉力都能够符合相应的设计标准,进而很好地掌控所有拉索股间值。 在第二根拉索左右两端锚下设置两个压力传感器,之后就能够很好地实现张拉各股钢绞线时第二根钢绞线的拉力,后张的钢绞线拉力的控制应力就等于此值,如此就能够控制所有拉索各股钢绞线拉力动态不存在差异,第一根钢绞线拉力时原本拉力的95%,并且结束最后一根钢绞线的张拉施工之后,把第二根拉索上传感器拆掉,还要基于当时传感器数值,进行第二根拉索的补充张拉操作。因为平行钢绞线锚进行锚固还是要依靠螺母顶紧梁体,并且整根拉索选择索力仪进行索力测定的时候,一定要预先完成锚具螺母紧固、千斤顶松开,如此借助索力仪测定的结果才能够与锚固后索力的具体数值相差不大,鉴于此,在实际张拉时,应该紧固螺母,避免出现因为拉索回缩减小导致要进行二次张拉施工。斜拉桥和该大桥两根拉索间并不具备较大的距离,并且两根拉索整体张拉要分别独立开展,考虑到结构变形等现象的产生,后张拉拉索一定会干扰先张拉索索力,鉴于此,一定要超张拉先张拉的拉索。本项目中先张拉的拉索是设计值的1.015倍,并且最终证实效果非常好。 3.3主梁施工线形控制 通常来说,矮塔斜拉桥拉索时一次吊索成功,主梁具备相对较大的刚度,并不可以借助调节索力的方式完成主梁线形的调节,并且在箱梁混凝土灌筑施工时,一定要严格规范立模标高,也就是要严格控制主梁作业线形,如下表1所示。在斜拉桥建设的过程中,控制线形的目标不但是要使得桥梁线达到规定标准,并且能够完成合龙操作,还要做到梁上索导管和拉索之间能够处于正确的位置上,拉索在索导管中的活动不能受限。目前为止已经出现了很多因为忽略索导管定位,使得拉索出现抵死索导管的问题,导致拉索要承担额外剪力的问题,使得桥梁耐久性严重被弱化。 表1 斜拉索引起塔、梁变形实测表

矮塔斜拉桥单侧抗滑体系介绍(OVM)全解

2)OVMAT矮塔斜拉桥拉索 1)OVMAT矮塔拉索体系介绍 矮塔斜拉桥是欧洲工程师于1988年提出的一种新型桥梁结构型式。 1994年日本建成世界第一座矮塔斜拉桥,柳州欧维姆机械股份有限公司于2000年开始立项开展新型矮塔斜拉桥拉索体系的课题研究,我国2001年建成了国内第一座矮塔斜拉桥——漳州战备桥,欧维姆公司为该桥提供了拉索产品,并承担专项施工。由于矮塔斜拉桥项目创新程度高,市场前景广阔,于2004年被广西区科技厅列为广西区科技攻关项目,文号为桂科技字<2004>28号。OVM公司研制开发全新的OVMAT矮塔斜拉桥拉索体系。先后形成了独到的拉索技术:如塔上分丝索鞍技术,塔端抗滑技术、拉索防水技术、索体防腐技术、拉索单根可换技术、索力监测系统等。 2006年7月OVMAT矮塔斜拉桥拉索体系项目通过社会鉴定,其结构体系综合评定为“国内首创,国际领先”。2007年由国家科学技术部、商务部、质量监督检验检疫总局、环保总局四部委联合签发授予“国家重点新产品”称号。经过十多年的自主研发,历经六代产品的变革,目前国内外有百余座矮塔斜拉桥采用OVMAT矮塔斜拉桥拉索体系,大大领先国内同行,已处于世界领先水平,世界范围内拥有70%以上的市场占有率。 2)桥型结构图

(图配文:OVMAT矮塔斜拉索第六代抗滑锚固装置)

优点: ●自主研发,拥有多项国内外专利技术,技术达到国际领先水平; ●锚具抗疲劳性能优异,可达到250Mpa的高应力幅。 ●四层防护结构确保索体卓越的防腐能力,具有完善的防水、防渗漏结构; ●施工便捷,产品用于国内外多项工程,有成熟的施工技术和长期安全实践认证; ●第六代抗滑设计,保证拉索在施工阶段形成足够的抗滑力。 分丝索鞍结构设计,实现钢绞线的单根换索功能。 3)适用标准: 1、斜拉索符合国际预应力混凝土协会(fib)《预应力钢质拉索的验收推荐性规范》 2、美国后张协会《Recommendations for stay cable design testing and installation》 (PTI2007第五版) 3、环氧钢绞线满足GB/T25823-2010《单丝涂覆环氧涂层预应力钢绞线》要求。 4、镀锌钢绞线满足YB/T152-1999《高强度低松弛预应力热镀锌钢绞线》要求 5、JT/T771-2009《无粘结钢绞线斜拉索技术条件》

矮塔斜拉桥斜拉索施工工法范本

矮塔斜拉桥斜拉索 施工工法

矮塔斜拉桥斜拉索施工工法 一、前言 “矮塔斜拉桥”也称“部分斜拉桥”,介于“斜拉桥”与“体外预应力箱梁桥”之间,起源于日本,在国外发展很快,在国内来说是新桥型。兰州某黄河大桥是国内第二座矮塔部分斜拉桥,某第四工程公司采用等值张拉工艺施工斜拉索,并首次采用了分丝管和抗滑锚新技术,保证了斜拉索的安装精度和施工质量。开发研究的“双塔单索面预应力混凝土部分斜拉桥施工技术”经过了甘肃省科技厅科技成果鉴定,鉴定意见认为:桥塔索鞍采用分丝管以及抗滑锚施工新技术,为斜拉索使用期的养护和正常换索提供了方便,填补了国内外空白。成果达到国内领先水平。在汾柳高速公路某高架桥3号桥施工中应用该项技术也获得了成功,取得了良好的经济效益和社会效益。综合以上各工程实践形成本工法。 二、工法特点 1.工序简单,施工进度快。 2.施工条件得到了改进,劳动强度低,安全性强。 3.索塔内鞍座采用分丝管,能够实现单根换索。 4.采用单根等值法张拉,能够控制每根斜拉索各股钢绞线的离散误差不大于理论值的±3%。 5.能够实现一对斜拉索对称、交叉单根张拉,同步整体张拉,确保两根斜拉索间的差值不大于理论值的±1%。 6.采用JMM-268动测仪进行索力监控,能够确保斜拉索整索索力误差

不大于理论值的±2%。 7.斜拉索采用多重防腐处理,锚固端灌注防腐油脂,延长了斜拉索使用寿命。 三、适用范围 本工法适用于部分斜拉桥斜拉索安装施工。 四、施工工艺 (一)斜拉索的结构组成 斜拉索由锚固段+过渡段+自由段+塔柱内段+自由段+过渡段+锚固段组成(见图1)。 1.锚固段+过渡段组成——锚板、夹片、螺母、支撑筒、锚垫板、预埋钢导管、减震器、防松装置。 2.自由段组成——带PE护套的钢绞线、索夹、HDPE套管。 3.塔柱内段组成——分丝管、塔内锚垫板、抗滑锚。

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键 技术研究 中铁六局集团天津铁路建设有限公司 科技研发项目立项报告 申请单位:中铁六局集团天津铁路建设有限公司 项目起止时间:201*年**月至201*年**月 中铁六局集团天津铁路建设有限公司制订 一、立项目的(不少于300字) 天津津保铁路三线矮塔斜拉桥是我国首座三线铁路曲线矮塔斜拉桥,其空间行为明显,受力复杂,主墩结构特殊,施工工艺复杂,技术标准高。且工程位于天津市西青区,跨越外环桥、外环河,主墩承台侵入既有外环河,基坑挖深最大为11m,并紧邻外环桥桥墩,主塔采用搭设支架分阶段浇筑混凝土,施工工艺复杂,技术标准高,施工难度大,施工过程中需要解决如下问题: (1)软土地区临近桥墩深基坑支护研究 本工程所在的天津地区是一个地下水位高、土质差的软弱土地区,并且本桥主基坑位于外环河内。天津地区软土为渤海环境沉积形成,具有触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特性。软土地区开挖基坑的时候容易使支护结构产生过度的位移,从而导致紧临建筑物发生不均匀沉降、地下管道开裂等不良影响和后果。正是由于上述原因本工程在软土中的基坑工程成为重点处理对象,处理措施的优劣很有可能影

响整个工程的成败。 (2)跨既有桥梁支架体系方案研究 本工程桥梁作为全国首座三线铁路矮塔斜拉桥,以最大孔跨84米,净空24米的现浇箱梁横跨天津市外环线公路桥梁,支架搭设工程对保证现浇箱梁施工安全、保证下部外环线公路桥梁的结构和运营安全起到决定性作用。 (3)非对称矮塔铁路斜拉桥塔梁施工控制研究 本工程桥梁为三线曲线铁路非对称矮塔斜拉桥,在我国尚无先例,所以设计和施工可参考的依据较少,因此更加重了不确定因素对工程的影响。当结构在施工过程中出现施工状态偏离理想的设计状态时,分析原因可知,一方面由于设计构件截面尺寸、预应力筋张拉力、材料弹性模量、容重、收缩系数和徐变系数等计算参数往往与施工中实际情况有一定的差距,此外环境温度、临时荷载、施工误差等等也常常影响结构实际变位偏离设计理想状态,另一方面,结构施工立模超高、构件超重和预应力筋张拉力误差等也是导致结构出现偏差的重要因素,如不加以控制调整,就会造成结构偏离设计成桥状态,甚至危及安全。因此大跨度预应力混凝土桥梁的施工控制难度相对较大,对其施工过程进行检测和控制是十分必要的。 二、国内外现状及发展趋势(不少于300字) 1、软土地区临近桥墩深基坑支护研究 基坑工程是基础、地下工程中比较全面和复杂的问题,除了涉及到土力学古典强度理论和稳定理论,还涉及到变形问题和土的支护及相互作用

相关文档
相关文档 最新文档