文档库 最新最全的文档下载
当前位置:文档库 › 1.函数概念、图像与性质(2012)

1.函数概念、图像与性质(2012)

1.函数概念、图像与性质(2012)
1.函数概念、图像与性质(2012)

1. (2012 湖北文) 已知定义在区间[]0,2上的函数()y f x =的图像如下图所示,则

(2)y f x =--的图像为( )

.

(A )

(B) (C)

(D)

答案:B

提示:由图像可知,01,()1,1 2.x x f x x ≤

(2)1,0 1.

x x y f x x -<≤?∴=--=?

-≤≤?故选(B ).

2. (2012 江西理)

下列函数中,与函数y =

定义域相同的函数为( ) (A )y =

1sin x

(B )ln x y x = (C )e x

y x = (D )sin x y x =

答案:D

提示:y =

1sin x

的定义域为{}x x k π≠,ln x y x =的定义域为{}0x x >,e x

y x =的定义域

为R ,sin x y x =

和y =的定义域为{}0x x ≠.

3. (2012 陕西理) 下列函数中,既是奇函数又是增函数的为( ).

(A )1y x =+ (B )3

y x =- (C )1

y x

=

(D )||y x x =

答案:D

提示:用排除法或分别作出四个函数的图像来判断.

4. (2012 陕西文) 下列函数中,既是奇函数又是增函数的为( ).

(A )1y x =+ (B )3

y x =- (C )1

y x

=

(D )||y x x =

答案:D

提示:用排除法或分别作出四个函数的图像来判断.

5. (2012 上海理) 已知()2

y f x x =+是奇函数,且()11f =.若()()2g x f x =+,则

()1g -= .

答案:1-

提示:因为

()2y f x x =+是奇函数,且()11f =,所以()()11(11)2f f +=--+=,所以

()13f -=-,所以()()()11211g f f -=-+=-=-.

6. (2012 上海文) 已知()y f x =是奇函数,若()()2g x f x =+且()11g =,则

()1g -= .

答案:3

提示:()()()()()()11212124143g

f f f

g -=-+=-+=-++=-+=.

7. (2012 山东理) 定义在R 上的函数()f x 满足()()6f x f x +=.当31x -≤<-时,

()()2

2f x x =-+;当13x -≤<时,()f x x =.则()()()()1232012f f f f +++

+=

( ).

(A )335 (B )338 (C )1678 (D )2012

答案:B

提示:因为函数

()f x 的周期为6,且

2)2(,1)1(,0)0(,1)1(,0)2(,1)3(===-=-=--=-f f f f f f ,所以

()()()122012f f f ++

+=()()()33510101212f f ?-+-+++++=

3353338+=.

8. (2012 山东理) 函数cos 622

x x

x

y -=

-的图象大致为( ).

答案:D

提示:令()cos 622x x x f x -=

-,则()()cos 622

x x

x

f x f x --==--,即()f x 为奇函数. 当0→x ,且0>x 时,()f x →+∞;当0→x ,且0

当x →+∞时,22

x

x

--→+∞,()0f x →;当x →-∞时,22x x --→-∞,()0f x →.

9. (2012 安徽文) 若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则a =________.

答案:6-

提示:令|2|0x a +=,解得2a x =-

,即在[,)2a -+∞上函数单调递增,3,62

a

a -==-.

10. (2012 山东文) 函数cos622x x

x

y -=

-的图象大致为( ).

答案:D

提示:令()cos 622x x x f x -=

-,则()

()cos 622x x

x

f x f x --==--,即()f x 为奇函数. 当0→x ,且0>x 时,()f x →+∞; 当0→x ,且0

当x →+∞时,22x

x

--→+∞,()0f x →; 当x →-∞时,22

x x

--→-∞,()0f x →.

11. (2012 安徽理) 下列函数中,不满足(2)2()f x f x =的是( )

(A )()f x x =

(B ) ()f x x x =- (C )()f x x =+1 (D ) ()f x x =-

答案:C

提示:由()f x kx =与

()f x k x =均满足:(2)2()f x f x =,可得:

(A)(B)(D)满足条件

12. (2012 天津理) 已知函数2-1=

-1

x y x 的图象与函数=-2y kx 的图象恰有两个交点,则实数k 的

取值范围是 .

答案:)4,1()1,0(?

提示:22

1

1111

1(1)111

x x x x x y x x x x ?-=+≤->??-=?-?=-+-<

画出分段函数的图象,如下图所示:

2-=kx y 过定点)2,0(-,当4,1,0===k k k 为三处临界位置,结合图像可知k 的取值范围。

13. (2012 北京文) 已知()(2)(3),()22x f x m x m x m g x =-++=-,若x ?∈R ,()0

f x <或()0

g x <,则m 的取值范围是_________。

答案:(4,0)-

提示:“x ?∈R ,()0f x <或()0g x <”的含义是:对于实数x 所取任意具体值时,()f x 与

()g x 中至少有一个为负,结合图象来分析,如图所示:

首先,当0=m 时)(x f 的图像为x 轴,在1≥x 时两个函数图像都没有在x 轴下方的情况,显然不合题意;而当0>m 时对于max{1,}(()0M M x x x f x ≥=为的较大的根),这两个函数图像都在x 轴上方,不合题意;故有0

1M x x ≤≤范围这两个函数图像不在x 轴下方的情况,即必须有1

1}3,2m a x {<--m m 得(4,0)-为所求。

14. (2012 北京理) 已知()(2)(3),()22x f x m x m x m g x =-++=-,同时满足两个条件:

①x ?∈R ,()0f x <或()0g x <, ②(,4)x ?∈-∞-,使得()()0f x g x <, 则实数m 的取值范围是_________。

答案:(4,2)--

提示:条件① “x ?∈R ,()0f x <或()g x <0”的含义是:对于实数x 所取任意具体值时,

()f x 与()g x 中至少有一个为负,结合图象来分析,如图所示:

首先,当0=m 时)(x f 的图像为x 轴,在1x ≥时两个函数图像都没有在x 轴下方的情况,显

然不合题意;而当0>m 时对于max{1,}M x x ≥,这两个函数图像都在x 轴上方,不合题意;故有0

x ;即解1}3,2max{

<--m m 得 04<<-m ;同理,分析条件②:由于在(,4)-∞-内已有()0f x <,故只要存在()0g x >的

情况即可,故有min{2,3}4m m --<-,解得2m <-;结合上述04<<-m 可得

42m -<<-

15. (2012 浙江文) 设函数()f x 是定义在R 上的周期为2的偶函数,当[]0,1x ∈时,

()1f x x =+,则3

()2

f =_______________.

答案:

2

3 提示:根据三个已知条件得,2

3121)2

1()2

1()22

3()2

3(=+=

=-=-=f f f f .

16. (2012 天津文) 已知 1.2

0.8

51=2,=(

),=2log 22

a b c -,则,,a b c 的大小关系是( ). (A )<

答案:A

提示: 1.2

0.80.8

12>(

)=2>12

-.又550<2log 2=log 4<1,所以<

17. (2012 天津文) 已知函数2-1=

-1

x y x 的图象与函数=y kx 的图象恰有两个交点,则实数k 的取

值范围是 .

答案:)4,1()1,0(?

提示:22

1

1111

1(1)111

x x x x x y x x x x ?-=+≤->??-=?-?=-+-<

画出分段函数的图象,如下图所示:

2-=kx y 过定点)2,0(-,当4,1,0===k k k 为三处临界位置,结合图像可知k 的取值范围。

18. (2012 江西文) 设函数()21,1,2,x x f x x x

?+≤?

=???>1,则()()3f f =( ).

(A )

15 (B )3 (C )23 (D )139

答案:D

提示:()()()2

22133,31339f f f ??

==+= ???

,故选(D ).

19. (2012 江西文) 如下图,2OA =(单位:m ),1OB =(单位:m ),OA 与OB 的夹

角为

6

π

,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s )沿线段OB 行至点B ,再以速率3(单位:m/s )

沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s )沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为()()()00,S

t S =则函数

()y S t =的图象大致是( )

答案:A

提示:设t 时刻时,甲、乙所到的两点分别为,,E F 由题意可知,当0t <<1时,FE AB ∥,此时,()S

t 的平均变化率越来越大,

即当切点横坐标越大时,函数()S t 的切线的斜率越来越大,其图像表现为下凸的曲线;当E 在圆弧BDC 运动时,()S t 的平均变化率为常数,即当切点横

坐标越大时,函数()S

t 的切线的斜率不变,其图像表现为一条直线.故选(A ).

20. (2012 福建理) 设函数()1,0,x D x x ?=?

?为数,

为无数,

有理理则下列结论错误的是( ).

(A )()D x 的值域为{0,1} (B )()D x 是偶函数 (C )()D

x 不是周期函数 (D )()D x 不是单调函数

答案:C

提示:若x 为无理数,则1x +也是无理数,故有(1)0()D x D x +==;若x 为有理数,则1x +也是有理数,故有(1)1()D x D x +==;综上,1是()D x 的一个周期,故选(C ).

21. (2012 福建理) 函数()f x 在[],a b 上有定义,若对任意[]12,,x x a b ∈,有

()()12121

22

x x f f x f x +??≤+?? ???

??,则称()f x 在[],a b 上具有性质P .设()f x 在[]1,3上具有性质P ,现给出如下命题: ①

()f x 在[]1,3上的图像是连续不断的;

②()2

f x

在??上具有性质P ;

③若

()f x 在2x =处取得最大值1,则()1f x =,[]1,3x ∈;

④对任意[]1234,,,1,3x x x x ∈

,有()()()()123

41234144

x x x x f f x f x f x f x +++??≤+++??

?????. 其中真命题的序号是( ).

(A )①② (B )①③ (C )②④ (D )③④

答案:D

提示:取函数2(1),[1,2)(2,3],

()2,2,

x x f x x ?-∈=?=?则函数()f x 满足题设条件具有性质P ,但函

数()f x 的图象是不连续的,故①为假命题,排除(A )(B );取函数(),13f x x x =-≤≤,则函数()f x 满足题设条件具有性质P

,但22(),1f x x x =-≤P ,故②为假

命题,排除(C ),应选(D ).

22. (2012 广东文)

函数y x

=_________.

答案:[)()1,00,-+∞∪

提示:

y =

x 满足:10100x x x +≥??-≤

或0x >.

23. (2012 江苏文) 设()f x 是定义在R 上且周期为2的函数,在区间[]1,1-上,

1,10

()2

,011

ax x f x bx x x +-≤

=+?≤≤?+?其中,a b ∈R ,若13()()22f f =,则3a b +的值为 .

答案:10-;

提示:∵()f x 是定义在R 上且周期为2的函数,∴31()()22f f =-,由11()()22

f f -=得

121

1(2)232

a b -+=+,即322a b +=-…①,再由(1)(1)f f -=得2b a =-…②,由①②

联立解得2,

4

a b =??

=-?,∴310a b +=-.

24. (2012 重庆文) 设函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在2x =-处取

得极小值,则函

数()y xf x '=的图象可能是( ).

答案:C

提示:在(A )中,当2x <-时,由图像知()0y xf x '=>,则()0f x '<;当20x -<<时,由图像知()0y xf x '=>,则()0f x '<,所以函数在2x =-处没有极值;

在(B )中,当2x <-时,由图像知()0y xf x '=<,则()0f x '>;当20x -<<时,由图像知()0y xf x '=<,则()0f x '>,所以函数在2x =-处没有极值;

在(C )中,当2x <-时,由图像知()0y xf x '=>,则()0f x '<;当20x -<<时,由图像知()0y xf x '=<,则()0f x '>,所以函数在2x =-处取得极小值;

在(D )中,当2x <-时,由图像知()0y xf x '=<,则()0f x '>;当20x -<<时,由图

像知()0y xf x '=<,则()0f x '<,所以函数在2x =-处取得极大值. 综上所知,选(C ).

25. (2012 江苏理) 设()f x 是定义在R 上且周期为2的函数,在区间[]1,1-上,

1,10

()2

,011

ax x f x bx x x +-≤

=+?≤≤?+?其中,a b ∈R ,若13()()22f f =,则3a b +的值为 .

答案:10-;

提示:∵()f x 是定义在R 上且周期为2的函数,∴31()()22f f =-,由11()()22

f f -=得

121

1(2)232

a b -+=+,即322a b +=-…①,再由(1)(1)f f -=得2b a =-…②,由①②联立解得2,4a b =??=-?

,∴310a b +=-.

26. (2012 四川文)

函数()f x =____________.(用区间表示)

答案:1(,

)2

-∞. 提示欲使函数有意义,必须120x -≥且120x -≠,解得12

x <

27. (2012 北京理) 某棵果树前n 年的总产量n S 与n 之间的关系如图所示,从目前记录的结果

看,前m 年的年平均产量最高,m 的值为( ) (A )5 (B )7 (C )9 (D )11

答案:C

提示:设(,)(1,2,3,

,)m m Q m S m n =,则(1,2,3,,)m

m S k m n m

=

=

连线观察可得9OQ 的“斜率”最大,故9m =,选(C).

28. (2012 北京文) 某棵果树前n 年的总产量n S 与n 之间的关系如图所示,从目前记录的结果

看,前m 年的年平均产量最高,m 的值为( ) (A )5 (B )7 (C )9 (D )11

答案:C

提示:设(,)(1,2,3,

,)m m Q m S m n =,则(1,2,3,,)m

m S k m n m

=

=

连线观察可得9OQ 的“斜率”最大,故9m =,选(C )

29. (2012 福建文) 设??

?

??<-=>=0

,10,00

,1)(x x x x f ,??

?=为无理数为有理数x x x g ,0,1)(,则))((πg f 的值为( ) (A )1 (B )0 (C )1- (D )π

答案:B

提示:∵()0,(0)0g f π==.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 梁市西城区教育研修学院 函数是中学数学中的重点容,它是描述变量之间依赖关系的重要数学模型. 本专题容由四部分构成:关于函数容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析. 研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等. 一、关于函数容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859提出是与之间的一种对应的观点[对应关系角度];Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]. Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义). Veblen,1880-1960用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象. (二)初高中函数概念的区别与联系 1.初中函数概念:

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

一次函数的概念和性质

课题一次函数的概念及其性质 一、本次课授课目的及考点分析:授课目的: 1、掌握一次函数的定义、图象和主要性质; 2、了解一次函数与正比例函数的关系; 3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思维和渗透数形结合思想. 教学重点: 会根据已知条件求出一次函数的解析式; 教学难点: 在y=kx+b中,k和b的数与形的联系; 二、本次课的内容:一次函数的概念、一次函数的图像、一次函数的性质 教学过程 一、错题回顾: 二、教授新课: (一)复习 1.写出正比例函数的解析式. 2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样? (二)新课 这些函数的共同的特点都是含自变量的一次式. (1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数. (2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况. (3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出两

个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件. 例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是[ ]. (A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6) 这六个式子是 (1)y=3x+5;(2)3x+5;(3)y=3x2+5; 分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D). 例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______. 解:设此一次函数式为y=kx+b.由已知,可列出方程组 所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10. (4)一次函数图象与正比例函数的图象的关系. 我们从下面的列表,观察、归纳.

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

第二单元 函数的概念与基本性质

第二单元 函数的概念与基本性质 考点一 函数的概念 1.(2015年浙江卷)存在函数f (x )满足:对于任意x ∈R 都有( ). A.f (sin2x )=sin x B.f (sin2x )=x 2 +x C.f (x 2 +1)=|x+1| D .f (x 2 +2x )=|x+1| 【解析】选项A 中,x 分别取0,π 2 ,可得f (0)对应的值为0,1,这与函数的定义矛盾,所以选项A 错误; 选项B 中,x 分别取0,π,可得f (0)对应的值为0,π2 +π,这与函数的定义矛盾,所以选项B 错误; 选项C 中,x 分别取1,-1,可得f (2)对应的值为2,0,这与函数的定义矛盾,所以选项C 错误; 选项D 中,取f (x )=√x +1,则对于任意x ∈R 都有f (x 2 +2x )=√x 2+2x +1=|x+1|,所以选项D 正确. 综上可知,本题选D . 【答案】D 2.(2014年上海卷)设f (x )={ (x -a)2,x ≤0, x +1 x +a,x >0, 若f (0)是f (x )的最小值,则a 的取值范围为( ). A .[-1,2] B .[-1,0] C .[1,2] D .[0,2] 【解析】∵当x ≤0时,f (x )=(x-a )2 ,f (0)是f (x )的最小值,∴a ≥0. 当x>0时,f (x )=x+1x +a ≥2+a ,当且仅当x=1时等号成立. 要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2 ,即a 2 -a-2≤0,解得-1≤a ≤2. ∴a 的取值范围为[0,2].故选D . 【答案】D 3.(2015年全国Ⅱ卷)设函数f (x )={1+log 2(2-x),x <1, 2x -1,x ≥1, 则f (-2)+f (log 212)=( ).

函数概念及其基本性质

第二章函数概念与基本初等函数 I 一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重 要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的 三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 1 10.通过实例,了解幂函数的概念,结合五种具体函数y = x,y= x3,y=x-1,y = x2的图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法. 4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质 函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究. 1.求函数值和函数表达式 对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题. 例1 已知f(x-1)=19x2+55x-44,求f(x). 解法1 令y=x-1,则x=y+1,代入原式有 f(y)=19(y+1)2+55(y+1)-44 =19y2+93y+30, 所以 f(x)=19x2+93x+30. 解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30. 可. 例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5). 解 由题设 f(-x)=-ax5+bx3-x+5 =-(ax5-bx3+x+5)+10

=-f(x)+10, 所以 f(-5)=-f(5)+10=3. 例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得 f(x)=f(x+0)=f(x ·0)=f(0)=k , 即对任意实数x ,恒有f(x)=k .所以 f(x)=f(19)=99, 所以f(1999)=99. 2.建立函数关系式 例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像. 解 因为l 2过点C(1,0),所以m +b=0,即b=-m . 设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0. 故S 的函数解析式为 例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

(人教版)北京市必修第一册第三单元《函数概念与性质》测试题(答案解析)

一、选择题 1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2 C .0 D .1 2.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 3.已知0.3 1()2 a =, 12 log 0.3b =, 0.30.3c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D . 5.奇函数()f x 在(0)+∞, 内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .() ()(),21,02,-∞--+∞ B .() ()2,12,--+∞ C .()(),22,-∞-+∞ D .()()(),21,00,2-∞-- 6.已知函数()() 22 6 5m m m f x x -=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠, 满足 ()()1212 0f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断 7.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式 (21)(3)f x f x ->的x 的解集是( )

(完整)五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。 以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

函数的概念及基本性质练习题

函数的概念及基本性质练习题 1. 下列各图中,不能是函数f (x )图象的是( ) 2.若f (1x )=1 1+x ,则f (x )等于( ) A.1 1+x (x ≠-1) B.1+x x (x ≠0) C.x 1+x (x ≠0且x ≠-1) D .1+x (x ≠-1) 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 4.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 5.已知函数f (x )=??? 2x +1,x <1 x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( ) A.12 B.4 5 C .2 D .9 6.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1}, B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数 D .A =R ,B ={正实数},f :A 中的数取绝对值 7.下列各组函数表示相等函数的是( ) A .y =x 2-3 x -3与y =x +3(x ≠3) B .y =x 2-1与y =x -1 C .y =x (x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 8.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +8 3x -2

理科数学2010-2019高考真题分类训练函数的概念和性质

专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 . 2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在 ()0,+∞单调递减,则 A .f (log 314 )>f ( 3 2 2 - )>f ( 23 2- ) B .f (log 314 )>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314 ) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________. 5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 6.(2019全国Ⅰ理5)函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D .

7.(2019全国Ⅲ理7)函数 3 2 22 x x x y - = + 在[] 6,6 -的图像大致为 A.B.C.D. 8.(2019浙江6)在同一直角坐标系中,函数y=1 x a ,y=log a(x+1 2 ),(a>0且a≠1)的图像可 能是 A. B. C. D. 2010-2018年一、选择题

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

函数函数概念及基本性质

集合 0集合的概念 我们把所要研究的事物全体称为集合,构成集合的事物称为元素,集合一般用大写字母A、B C……表示,元素一般用小写字母a、b、c……表示。 如果元素二是集合A中的元素,记二三上,否则记厘三上。 有限集:只有有限个元素的集合。 无限集:有无穷多个元素的集合。 空集:不含有任何元素的集合叫空集,记常。 臼集合的表示方法列举法:如乂■仙上心町,召-卩2和??」5 描述法:如八㈤只* 1 = —w旳,U< ,曲旳 0子集 如果集合A中的元素都是B的元素,称A是B的子集(或称A包含于B),记 A u召或月二)卫 如: 0并集:

集合A 与集合B 的元素放在一起构成的集合,称为 A 与B 的并集。记」?_」三,即 HUE = (x | re 卫或工匡5) 如:一一 .......... 「一二…-丄 …一…—. NS ■叶 2C x < 4,xs K) O 交集: 记集合A 与集合B 的公共元素构成的集合,称为 A 与B 的交集,记 卫门/ 即丿门月:{和工乞卫且工€月} ZnF-(J-- < x< 0,ie2?) 则: 2 绝对值与绝对值不等式 几何意义:点T 到原点的距离。 如: Y CUE 幻月珂*2—*忒刃 ? x> 0 x< 0 几何意义:点芒到点*的距离。 性质: 1) ?、 ■ A |20 ? 3)十 UI

4)设a>0 , 环|3}?{兀卜说""} 区间与邻域 *+y|“|+恫 6) - _ 「 7) 例1 :解下列不等式 x -4| < 4 0 <〔―分 < 4 ^r-j|2 H~ H 2… -, 3) 匕十 4| > 1 5) 解.1) - -上.、.--二 _ 4 =〕_ ?.■ _L E 2) ?.::-;; 3) 卞一一"-或 F _ 丄:_ [ — - - _ 二或二 一二 4) (^ - 2| < 2 fCl < x < 4 "2 =(工产 2 5) G >0 < 0 J A <0 或

函数的概念与性质

函数的概念与性质 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

(八)函数的概念 与性 质 【命题解读】 考向1:函数的概念与性质(包括基本初等函数) 分析定位:理解函数概念的核心是从运动与相互联系的角度理解两个变量之间的关系,定义域、值域与对应法则是函数的三要素,而单调性、奇偶性、对称性等是一个 函数特有的性质,是认识函数的重要桥梁,特别是基本初等函数的性质,常成为命题的重要载体. 例1(2015年全国Ⅰ卷第13题)若函 数()ln(f x x x =为偶函数,则 a = . 分析:先转化成()ln(g x x =为奇函数,再联想到ln(y x =是奇函数进行解决. 解:因为()ln(g x x =为奇函数,先从定义域入手,解02>++x a x 得x x a ->+2,若0>x ,则只需02≥+x a ;若0≤x ,则0>a ,否则无解; 所以0>a ,且()()ln 0g x g x a +-==,即1=a . 总结:函数的概念与性质是必考知识点,考生要抓住它们的本质进行解题,当然还要了解一些特殊的函数如x x x f e e )(±=,1 1 lg )(-+=x x x g 的性质. 考向2:函数的零点与方程的根 分析定位:函数的零点与方程的根是考查函数与方程思想、数形结合思想的重要载体,常放在压轴位置进行考查. 例2(2016年全国Ⅱ卷第12题)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x +=与()y f x =图像的交点为()11x y ,, ()22x y ,,,()m m x y ,,则()1m i i i x y =+=∑ (A )0 (B )m (C )2m (D )4m

相关文档
相关文档 最新文档