文档库 最新最全的文档下载
当前位置:文档库 › 基于Multisim10的振幅调制与解调电路设计与仿真

基于Multisim10的振幅调制与解调电路设计与仿真

基于Multisim10的振幅调制与解调电路设计与仿真
基于Multisim10的振幅调制与解调电路设计与仿真

基于Multisim10的振幅调制与解调电路设计与仿真

摘要:信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且使频谱资源得到充分利用。调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致互相干扰。这也是在同一信道中实现多路复用的基础。而要还原出被调制的信号就需要解调电路。所以现在调制与解调在高频通信领域有着更为广泛的应用。

关键词:振幅调制与解调,检波失真,参数选取

一、振幅调制电路原理及工作过程

首先将语音(调制)信号叠加直流后再与载波相乘,本电路采用乘法调幅进行调制

语音信号频谱为300错误!未找到引用源。到3400错误!未找到引用源。,这里选择频率为1000错误!未找到引用源。的信号模拟语音信号。选择2M错误!未找到引用源。作为载波信号。让模拟语音信号(调制信号)与载波信号经过乘法器产生调制系数错误!未找到引用源。=0.2的普通调幅波。如图:

图1(调制电路电路图)

图2(调制信号与调幅波仿真图)

二、解调电路工作原理及说明

普通调幅波的包络反映了调制信号的变化规律,其中大信号检波电路利用了二极管的整流工作原理。

解调电路输入信号为载波为2M错误!未找到引用源。,调制信号为1000错误!未找到引用

源。,调制系数错误!未找到引用源。=0.2的普通调幅波,电路如图:

图3(解调电路图)

图4(调幅波波形)

图5:(电路输出解调端波形)

我们可以看到输出波形周期为1.002ms,输出信号频率为1000错误!未找到引用源。说明解调电路成功解调出调制信号。

三、解调(检波)电路元件参数的选取

电路元件参数主要是基于检波效率、滤波效果来选取的。其中滤波效果中的检波失真是决定解调电路元件参数的主要方面。

(一)、大信号检波器存在的两种失真对参数选取的影响

1、对角线失真(放电失真)

产生原因:

错误!未找到引用源。很大,放电很慢,可能在随后的若干的高频周期内,包络线电压虽已下降,而C上的电压还大于包络线电压,这就使二极管方向截止,失去检波作用。

在截至期间,检波输出波形呈倾斜的对角线形状,对角线失真可以总结为电容放电曲线错误!未找到引用源。的下降速度慢于包络线电压下降的速度。

不发生放电失真的条件:

包络线下降速度小于错误!未找到引用源。放电速率,即:

错误!未找到引用源。<错误!未找到引用源。

将错误!未找到引用源。=0.2,错误!未找到引用源。,Ω=1k错误!未找到引用源。代入上面不等式得到

错误!未找到引用源。<8.66uF

但在实际调试中当错误!未找到引用源。=1.2uF时即产生对角线失真,如图6:

错误!未找到引用源。=1.2uF)

我们可以看到有微弱的放电失真,放电时间549.906us大于半个周期,这也在一定程度上说明了理论计算与实际应用中还是存在一定误差的;

当错误!未找到引用源。取值变大时,放电失真更加严重,如图7:

图7(错误!未找到引用源。)

此外,错误!未找到引用源。在不发生放电失真的前提下应尽量取大些,对提高检波效率及滤波效果均有利。如图:

错误!未找到引用源。=1uF)错误!未找到引用源。=1nF)

可以看到错误!未找到引用源。=1uF比错误!未找到引用源。=1nF滤波效果好。

2、割底失真

产生原因:

在接收机中,检波器输出耦合到下级的电容比较大,对检波器输出的直流而言,错误!

未找到引用源。上有一个直流电压错误!未找到引用源。,借助于有源二端网络可把错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。用一个等效电路E 和错误!未找到引用源。代替。这样如果输入信号调制度很深,即调制系数错误!未找到引用源。很大或检波器交直流电阻之比错误!未找到引用源。很小,以致在一部分时间内其幅值比E还小,则在此期间内将处于反向截止状态,产生失真,表现为输出

波形中的底部被割去。

不发生割底失真条件:

本电路中,采取将错误!未找到引用源。分成错误!未找到引用源。和错误!未找到引用源。,通过隔直流电容错误!未找到引用源。将错误!未找到引用源。并接在错误!

未找到引用源。两端,错误!未找到引用源。越大,交、直流负载电阻值的差别就越小,但是输出音频电压也就越小。同时为了提高检波效率,错误!未找到引用源。宜大,但过大则交流负载与之相比就小,宜产生割底失真。

取错误!未找到引用源。=0.8,错误!未找到引用源。,错误!未找到引用源。=1nF时可以观察到割底失真,同时也可以看到与错误!未找到引用源。相比输出音频电压变大,如图10:

图10

(二)、其他电路元件参数的选取

1、检波二极管V

为了提高检波效率,应选取正向电阻小错误!未找到引用源。,反向电阻大错误!未找到引用源。、同时要求PN结电容小的管子。这里选取IN4148型号二极管。

2、输出耦合电容错误!未找到引用源。:

错误!未找到引用源。选取的比较大,这样低频也容易通过。

3、错误!未找到引用源。错误!未找到引用源。的选取:

通过图5(电路输出解调端波形)我们可以观察到,通过检波电路的输出的调制信号衰

减很大,所以一般会在检波电路后接低频功率放大器,这样错误!未找到引用源。等效为检

波电路后下一级低频功率放大器的输入电阻。

四、结束语

至此,本课题所设计的电路设计与仿真就结束了,虽然电路实现比较简单,但是其中体

现的原理还是很深奥的,通过此次电路仿真,也对振幅调制与解调电路的实现有了更为直观

的认识。笔者相信随着近几年电子元件制作工艺越来越精湛,调制与解调在通信领域必将会

有更广泛的应用。

五、参考文献

1.于洪珍,《通信电子电路》,清华大学出版社

2.聂典,《Multisim9计算机仿真在电子电路设计中的应用》,电子工业出版社

课程设计报告

题目:基于Multisim的DSB的调制与

解调电路的仿真分析

学生姓名: ***

学生学号: ********

系别:电气信息工程学院

专业:通信工程

届别: 2014届

指导教师: ***

电气信息工程学院制

2013年4月

基于Multisim的DSB的调制与解调电路的仿真分析

学生:***

指导教师:***

电气信息工程学院通信工程专业

1 课程设计的任务与要求

1.1 课程设计的任务

本课程设计是实现DSB的调制解调。在此次课程设计中,我将通过多方搜集

资料与分析,来理解DSB调制解调的具体过程和它在multisim中的实现方法。

通过这个阶段学习,更清晰地认识DSB的调制解调原理,同时加深对multisim

这款通信仿真软件操作的熟练度,并在使用中去感受multisim的应用方式与特

色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今

后的自主学习研究提供具有实用性的经验。

1.2 课程设计的要求

(1)熟悉multisim的使用方法,掌握DSB信号的调制解调原理,以此为基

础在软件中画出电路图。

(2)绘制出DSB信号调制解调前后在时域和频域中的波形,观察两者在解

调前后的变化,通过对分析结果来加强对DSB 信号调制解调原理的理解。

(3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

1.3 课程设计的研究基础(设计所用的基础理论)

(1)DSB 调制过程的分析:在AM 信号中,载波分量并不携带信息,信息完全有边带传送。如果在AM 调制模型中将直流分量错误!未找到引用源。去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB-SC ),简称双边带信号(DSB ),表示为:t w t u k t u c a cos )()(0Ω= 显然,它与调幅信号的区别就在于其载波电压振幅不是在0m V 上下按调制信号规律变化。这样,当调制信

号)(t u Ω进入负半周时,)(t u o 就变为负值。表明载波电压产生0180相移。因而当)

(t u Ω自正值或负值通过零值变化时,双边带调制信号波形均将出现0180的相移突变。双边带调制信号的包络已不再反映)(t u Ω的变化,但它仍保持频谱搬移的特性,因而仍是振幅调制波的一种,并可用相乘器作为双边带调制电路的组成模型,如图所示,图中a cm M k V A =。

图1 双边带调制信号组成模型

调制过程的数学表达式:设载波电压为:t w U t u c cM c cos )(=。调制信号为: t M t m Ω=cos )(00。经过模拟乘法器A1后输出电压

为抑制载波双边带调制信号,其数学表达式为:

)()()(0t m t u K t Sm c ??=

=t M t w U K c cM Ω??cos cos 0

=[]2)cos()cos(0t w t w M KU c c cM Ω-+Ω+

图3 DSB 调制过程的波形及频谱

(2)DSB 解调过程的分析:调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。

双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图所示:

图2 双边带解调信号组成模型

解调过程的数学表达式:双边带调幅波的电压可表示为:

t w KU t Sm c cM cos )(=

本机载波电压为:

t w U t u c cM c cos )(=

解调波的表达式:

)()()(0t u t Sm K t m ??=

=t S t w U K m c cM Ω??cos cos

=[]

2)cos()cos(t w t w U KS c c M m Ω-+Ω+Ω

2 DSB 的调制与解调系统方案制定

2.1 方案提出(需有系统框图,系统功能参数)

振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为载波)的幅度,是已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(AM )、抑制载波的双边带调幅(DSB )、抑制载波的单边带调幅(SSB )等。AM 的载波振幅随调制信号大小线性变化。DSB 是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。SSB 是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。它们的主要区别是产生的方法和频谱的结构不同。

这里重点研究抑制载波的双边带调幅(DSB )。下图为DSB 调制与解调的系统框图。

图4 DSB 调制与解调的系统框图

2.2 方案论证

在现实的环境中,我们所得到的一般信号振幅,频率都比较低,不能满足远距离,高清度的传输要求,必须将信号采用高频载波调制传输。我们在实际的生活中要将声音,图像,语言,文字等这些采集的低频信号进行远距离的传输是不

理性的信号。由于要传输的基于低频范围,如果信号直接发射出去,需要的发射和接受天线尺寸太大,辐射效率太低,不易实现。我们知道,天线如果要想有效的辐射,需要天线的尺寸l与信号的波长v可以比拟。即使天线的尺寸为波长的十分之一,即l=v/10,对于频率为10kHz的信号,需要的天线长度为3Km,这样长的天线几乎是无法实现的。若将信号调制到10MHz的载波频率上,需要的天线长度仅为3m,这样的天线尺寸小,实现起来也比较容易。

在模拟调制中,AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。DSB与AM信号相比,因为不存在载波分量,DSB调制效率是100%,即将全部功率都用于信息传输,所以选择DSB调制与解调作为课程设计的题目具有很大的实际意义。

3 DSB的调制与解调系统方案设计

3.1各单元模块功能介绍及电路设计

由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。

所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。

图5 DSB的调制电路部分

图6 DSB的解调电路部分

3.2电路参数的计算及元器件的选择

在本次课程设计电路图中,所用到的元器件包括电容、电阻、直流电源、交

流电源、单刀双掷开关、集成功放LM741CN、相乘器、示波器等。

3.3 特殊器件的介绍

(1)LM741CN的介绍:LM741CN是一款普通的8脚单通道运算放大器,其工作电压范围7~36V,单位增益带宽1MHz,输入失调电压6mV(最大值)。

图7 实物图图8 外部引脚图

(2)模拟相乘器的介绍:模拟乘法器具有两个输入端(常称X输入和Y 输入)和一个输出端(常称Z输出),是一个三端口网络,电路符号如图所示:如果两个输入信号只能为单极性的信号的乘法器为“单象限乘法器”;一个输入信号适应两种极性,而一个只能是一种单极性的乘法器为“二象限乘法器”;两个输入信号都能适应正、负两种极性的乘法器为“四象限乘法器”。

图9 模拟相乘器

3.4 系统整体电路图

图10 系统整体电路图

4 Multisim软件系统仿真和调试

4.1 仿真软件介绍

Multisim软件前身是加拿大IIT公司在20世纪八十年代后期推出的电路仿真软件EWB(Electronics Workbench),后来,EWB将原先版本中的仿真设计更名为multisim,2005年之后,加拿大IIT公司隶属于美国国家仪器公司(National Instrument,简称NI公司),美国NI公司于2006年初首次推出Multisim9.0版本。目前最新版本是美国NI公司推出的multisim10。包含了电路原理图的图形输入、电路的硬件描述语言输入方式,具有丰富的仿真能力。它具有更形象直观的人机交互界面,并且提供了更加丰富的元件库、仪表库和各种分析方法。完全满足电路的各种仿真需要。

Multisim软件是迄今为止使用最方便、最直观的仿真软件,其基本元件的数学模型是基于Spice版本,但增加了大量的VHDL元件模型,可以仿真更复杂的数学元器件,另外解决了Spice模型对高频仿真不精确的问题。Multisim在保留了EWB形象直观等优点的基础上,大大增强了软件的仿真测试和分析功能,大大扩充了元件库中的元件的数目,特别是增加了大量与实际元件对应得元件模

型,使得仿真设计的结果更加精确、更可靠、更具有实用性。

4.2 系统仿真实现

图11 用乘法器组成的抑制载波双边带(DSB)输入波形及调制波形

图12 同步检波器输入的双边带信号(上)及其输出信号(下)

4.3 系统测试(要求测试环境、测试仪器、测量数据)

由于加性噪声只对已调信号的接收产生影响,因而调制系统的抗噪声性能主要用解调器的抗噪声性能来衡量。为了对不同调制方式下各种解调器性能进行度量,通常采用信噪比增益G (又称调制制度增益)来表示解调器的抗噪声性能。 有加性噪声时解调器的数学模型如图所示。

图中()m t S 为已调信号,()n t 为加性高斯白噪声。 ()m t S 和()n t 首先经过带通滤波器,滤出有用信号,滤除带外的噪声。经过带通滤波器后到达解调器输入端的信号为()m t S 、噪声为高斯窄带噪声()i n t ,显然解调器输入端的噪声带宽与已调信号的带宽是相同的。最后经解调器解调输出的有用信号为()o m t ,噪声为()o n t 。

图13 有加性噪声时解调器的数学模型

设解调器输入信号为

()()cos m c s t m t t ω=

与相干载波cos c t ω相乘后,得

211()cos ()()cos 222

c c m t t m t m t t ωω=+ 经低通滤波器后,输出信号为

1()()2

o m t m t = 因此,解调器输出端的有用信号功率为

221()()4

o o S m t m t == 解调DSB 信号时,接收机中的带通滤波器的中心频率o ω与调制载频c ω相同,因此解调器输出端的窄带噪声()i n t 可表示为

()()cos ()sin i c c s c n t n t t n t t ωω=-

它与相干载波相乘后,得

()cos [()cos ()sin ]

11()[()cos 2()sin 2]22

i c c c s c c c c s c n t t n t t n t t n t n t t n t t ωωωωω=-=+- 经低通滤波器后,解调器最终的输出噪声为

1()()2

o c n t n t = 故输出噪声功率为

2211()()44

o o c o N n t n t n B === 这里,2H B f =,为DSB 信号的带通滤波器的带宽。

解调器输入信号平均功率为

2221()[()cos ]()2

i c m S s t m t t m t ω=== 可得解调器的输入信噪比

21()2i i o m t S N n B

= 同时可得解调器的输出信噪比

221()()414

o o o i m t S m t N n B N == 因此制度增益为

2o

o DSB i i

S N G S N == 由此可见,DSB 调制系统的制度增益为2。也就是说DSB 信号的解调器使信噪比改善了一倍。这是因为采用相干解调,使输入噪声中的正交分量()s n t 被消除的缘故。

4.4 数据分析(对比系统功能及参数与设计要求是否相符)

通过观察调制波形可以得知,示波器中的红线为高频载波,绿线为调制信号,载波信号把调制信号搬移到更高频带处,与书中DSB 信号的调制理论一致。通过观察解调波形可以得知,示波器中的红线为同步检波器输入的双边带信号,绿线为解调输出的信号,与调制信号一致。

综上所述,本电路设计能够实现DSB 信号的调制与解调。

5 总结

5.1 设计小结

模拟调制系统是通信工程专业方向最主要的模块之一,通过在课堂上对理论知识的学习,我们了解到模拟调制系统的基本方式以及其原理。然而,如何将理论在实践中得到验证和应用,是我们学习当中的一个问题。而通过本次课程设计,我们在强大的Multisim平台上对数字信号的调制解调进行了一次仿真,有效的完善了学习过程中实践不足的问题,同时进一步巩固了原先的基础知识。

5.2 收获体会

通过这次的课程设计,一方面,我们对调制和解调有了更进一步的认识,尤其是在系统设计方面,尽管是非常基础的DSB调制与解调的传输,也是经过若干设备协同工作,才能保证信号有效传输,而小到仅仅是一个电容电阻参数,都有可能导致整个仿真过程无法正常运行。

另一方面,我们通过本次的课程设计,着实领教了Multisim强大的功能和实力。通过在Multisim环境下对系统进行模块化设计与仿真,使我们获得两方面具体经验,第一是Multisim中各个功能模块的使用方法,第二是图形化和结构化的系统设计方法。这些经验虽然并不高深,但是对于刚入门的初学者来说,对以后步入专业领域进行设计或研发无疑具有重大的意义。

6 参考文献

[1]电子线路:非线性部分/谢佳奎主编:谢佳奎,宣月清,冯军编.——4版.——北京:高等教育出版社,(2010重印)

[2]通信原理/樊昌信,曹丽娜编著. ——6版.——北京:国防工业出版社,2011.8重印

[3]张肃文,陆兆熊.高频电子线路.第三版.高等教育出版社,1993年

[4]董在望,肖华庭.通信电路原理.高等教育出版社,1989年

[5]黄智伟.基于Multisim2001的电子电路计算机仿真设计与分析.北京电子工业出版社。2004

[6] Multisim7电路设计及仿真应用/熊伟等编著。——北京:清华大学出版社,2005.7

[7] Multisim7 User Guide.Interactive Image Technology Ltd.Canda,3003

[8]曾兴雯,刘乃安,陈健.高频电路原理与分析[M].西安:西安电子科技大学出版社,2003,

6.

[9]郑步生,吴渭.Multisim2001电路设计及仿真入门与应用[M].北京:电子工业出版

社,2002,2.

7附录

系统主要功能展示图

器件清单

AM调制与解调

高频电子线路 振幅调制电路(AM,DSB,SSB)调制与解调 目录

摘要 (3) 引言 (4) 原理说明 (5) 实验分析 (10) 总结 (20) 参考文献 (21) 摘要

解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提取调制信号的过程。而在在实际应用当中大型、复杂的系统直接实验是十分昂贵的,而采用仿真实验,可以大大降低实验成本。在实际通信中,很多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓正弦载波调制。利用仿真软件对系统进行仿真可以弥补真实的实验设备所不能满足的条件,减少实验成本。

引言 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。 振幅调制的方法分为包络检波和同步检波,本文选用乘积型同步检波。

原理说明 AM 调制与解调 首先讨论单频信号的调制情况。如果设单频调制信号 ,载 波 ,那么调幅信号(已调波)可表示为 式中,为已调波的瞬时振幅值。由于调幅信号的瞬时振幅与调制信号成线性关系,即 有 = 由以上两式可得 包络检波是指检波器的输出电压直接反应输入高频调幅波包络变化规律的一种检波方式。由于AM 信号的包络与调制信号成正比,因此包络检波只适用与AM 波的解调,其原理方框图如图1: 图1 包络检波器的输入信号为振幅调制信号,其频谱由载频和 边频,组成,载频与上下边频之差就是。因而它含有调制信号的信息。 非线性电路 低通滤波器

AM调制解调电路的设计与仿真报告

AM调制解调电路的设计仿真与实现 1.Proteus 软件简介 Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus软件具有4大功能模块:智能原理图设计、完善的电路仿真功能、独特的单片机协同仿真功能、实用的PCB设计平台。由于Proteus软件界面直观、操作方便、仿真测试和分析功能强大,因此非常适合电子类课程的课堂教学和实践教学,是一种相当好的电子技术实训工具,同时也是学生和电子设计开发人员进行电路仿真分析的重要手段。 Proteus软件具有其它EDA工具软件(例:multisim)的功能。这些功能是: (1)原理布图 (2)PCB自动或人工布线 (3)SPICE电路仿真 革命性的特点 (1)互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 (2)仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 本次Proteus课程设计实现AM调制解调电路的原理图绘制以及电路的仿真。运用由三极管组成的乘法器调制出AM信号,再经非线性元件二极管与电容等组成的包络检波电路解调得到解调信号。

调制放大解调设计(正文)有PCB图哦!

目录 第一章前言 (1) 第二章设计说明 (2) 2.1整体功能 (2) 2.2系统结构 (2) 2.3设计条件需求 (2) 第三章单元电路设计 (4) 3.1电源电路设计 (4) 3.2信号发生电路设计 (4) 3.3调制解调电路设计 (5) 3.4整体电路图 (6) 3.5整机原件清单 (7) 第四章调试 (8) 第五章心得体会 (10) 第六章参考文献 (11) 附录 (12)

第一章前言 调制主要应用于广播、语音通信领域。调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。 调制解调器是由调制器和解调器两部分组成。目前调制解调器主要有两种:内置式和外置式。 调制解调器的一个重要性能参数是传输速率,目前市面上28.8K、33.6K 和56K的调制解调器都有,而且56K的调制解调器已经成为市场的主流产品。但由于国内通信线路的限制,以及用户太多、国际出口太少的缘故,平时使用很难达到上述速率。 本设计是设计出调制放大解调设计电路。通过产生正弦波,进行与高频波相乘,再解调出来,经过滤波,去掉杂波后,完成信号的恢复。

基于Simulink的2FSK调制解调系统设计

二○一二~二○一三学年第二学期 电子信息工程系 课程设计计划书 班级: 课程名称: 学时学分: 姓名: 学号: 指导教师: 二○一三年六月一日

一、课程设计目的: 通过课程设计,巩固已经学过的有关数字调制系统的知识,加深对知识的理解和应用,学会应用Matlab Simulink 或SystemView等工具对通信系统进行仿真。 二、课程设计时间安排: 课程设计时间为第一周。首先查找资料,掌握系统原理,熟悉仿真软件,然后编写程序或构建仿真结构模型,最后调试运行并分析仿真结果。 三、课程设计内容及要求: 1 设计任务与要求 1.1 设计要求 (1)学习使用计算机建立通信系统仿真模型的基本方法及基本技能,学会利用仿真的手段对于实用通讯系统的基本理论、基本算法进行实际验证; (2)学习现有流行通信系统仿真软件MATLAB7.0的基本实用方法,学会使用这软件解决实际系统出现的问题; (3)通过系统仿真加深对通信课程理论的理解,拓展知识面,激发学习和研究的兴趣;(4)用MATLAB7.0设计一种2FSK数字调制解调系统; 1.2设计任务 根据课程设计的设计题目实现某种数字传输系统,具体要求如下; (1)信源:产生二进制随机比特流,数字基带信号采用单极性数字信号、矩形波数字基带信号波形; (2)调制:采用二进制频移键控(2FSK)对数字基带信号进行调制,使用键控法产生2FSK 信号; (3)信道:属于加性高斯信道; (4)解调:采用相干解调; (5)性能分析:仿真出该数字传输系统的性能指标,即该系统的误码率,并画出SNR(信噪比)和误码率的曲线图;

2 方案设计与论证 频移键控是利用载波的频率来传递数字信号,在2FSK 中,载波的频率随着二进制基带信号在f1和f2两个频率点间变化,频移键控是利用载波的频移变化来传递数字信息的。在2FSK 中,载波的频率随基带信号在f1和f2两个频率点间变化。故其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见。2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: )cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ 1 1 1 1 t ak s 1(t) cos (w1t+θn ) s 2(t) s 1(t) co s(w1t +θn )cos (w2t+φn) s 2(t) cos (w2t+φn) 2FSK 信号 t t t t t t 2.1 2FSK 数字系统的调制原理 2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。如下原理图:

AM及SSB调制与解调

通信原理课程设计 设计题目:AM及SSB调制与解调及抗噪声性能分析班级: 学生: 学生学号: 指导老师:

1.1概述 ......... 1.2课程设计的目的 1.3课程设计的要求 、AM 调制与解调及抗噪声性能分析 2.1 AM 调制与解调 ........ 2.1.1 AM 调制与解调原理 2.1.2调试过程 ........................................................................ 6 .............. 2.2相干解调的抗噪声性能分析 .. (10) 2.2.1抗噪声性能分析原理 .................................................................... 10 2.2.2调试过程 .. (11) 三、SSB 调制与解调及抗噪声性能分析 .......................................... 13 ......... 3.1 SSB 调制与解调原理 .......................................................................... 13 3.2 SSB 调制解调系统抗噪声性能分析 . (14) 3.3调试过程 (16) 四、心得体会 ................................................................. 20. .............. 、引言 (3) .................... 五、参考文献 (21) ................ 3 ................ 3 .............. 3 .............. 4. 4

9振幅调制与解调详解

9 振幅调制与解调 9.1.1 概述 为什么要调制?◆信号不调制进行发射天线太长,无法架设。 ◆ 信号不调制进行传播会相互干扰,无法接收。 调制的必要性:可实现有效地发射,可实现有选择地接收。 调制按载波的不同可分为脉冲调制、正弦调制和对光波进行的光强度调制等。 按调制信号的形式可以分为模拟调制和数字调制。调制信号为模拟信号的称为模拟调制,调制信号 为数字信号的称为数字调制。 正弦波调制有幅度调制AM 、频率调制FM 和相位调制PM 三种基本方式,后两者合称为角度调制。 调制是一种非线性过程。载波被调制后将产生新的频率分量,通常它们分布在载波频率的两边,并占有一定的频带。 几个基本概念:⒈ 载波:高频振荡波; ⒉ 载频:载波的频率 ⒊ 调制:将低频信号“装载”在载波上的过程。即用低频信号去控制高频振荡波的某 个参数,使高频信号具有低频信号的特征的过程; ⒋ 已调波:经调制后的高频振荡波; ⒌ 解调:从已调信号中取出原来的信息;⒍ 调制信号:低频信号(需传送的信息)。 ? 模拟调制有以正弦波为载波的幅度调制和角度调制。 ? 幅度调制,调制后的信号频谱和基带信号频谱之间保持线性平移关系,称为线性幅度调制。 (振幅调制、解调、混频) ? 角度调制中,频谱搬移时没有线性对应关系,称为非线性角度调制。(频率调制与解调电路) ⒈ 什么是调幅?定义 :载波的振幅值随调制信号的大小作线性变化,称为振幅调制,简称调幅(AM ) 实现调幅的方法有:低电平调幅和高电平调幅。 ◆低电平调幅:调制过程是在低电平进行,因而需要的调制功率比较小。有以下两种: 1.平方律调幅:利用电子器件的伏安特性曲线平方律部分的非线 性作用进行调幅。 2.斩波调幅:将所要传输的音频信号按照载波频率来斩波,然后 通过中心频率等于载波频率的带通滤波器,取出调幅成分。 ◆高电平调幅:调制过程是在低电平进行, 通常在丙内放大器中进行。 1.低集电极(阳极)调幅; 2.基极(控制栅极)调幅: 图0普通调幅电路模型 ? 普通调幅(AM ):含载频、上、下边带 ? 双边带调幅(DSB ):不含载频 ? 单边带调幅(SSB ):只含一个边带 ? 残留单边带调幅(VSB ):含载频、一个边带 9.1.2 检波简述 检波过程是一个解调过程,它与调制过程正相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号与高频调幅信号的包络变化规律一致,故又称为包络检波器。 由频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图9.1.2所示(此图为单音频 调制的情况)。检波过程也是要应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,振幅调制过程: AM 调制 DSB 调制 SSB 调制 解调过程 包络检波 (非相干): 同步检波 (相干): 峰值包络检波 平均包络检波 乘积型同步检波 叠加型同步检波

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

AM幅度调制解调

3.1.1 幅度调制的一般模型 幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。幅度调制器的一般模型如图3-1所示。 图3-1 幅度调制器的一般模型 图中,为调制信号,为已调信号,为滤波器的冲激响应,则已调信号的时域和频域一般表达式分别为 (3-1) (3-2) 式中,为调制信号的频谱,为载波角频率。 由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱在频域的简单搬移。由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。 在图3-1的一般模型中,适当选择滤波器的特性,便可得到各种幅度调制信号,例如:常规双边带调幅(AM)、抑制载波双边带调幅(DSB-SC)、单边带调制(SSB)和残留边带调制(VSB)信号等。 3.1.2 常规双边带调幅(AM) 1. AM信号的表达式、频谱及带宽 在图3-1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。 AM调制器模型如图3-2所示。 图3-2 AM调制器模型 AM信号的时域和频域表示式分别为

(3-3) (3-4) 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。点此观看AM调制的Flash; AM信号的典型波形和频谱分别如图3-3(a)、(b)所示,图中假定调制信号的上限频率为。显然,调制信号的带宽为。 由图3-3(a)可见,AM信号波形的包络与输入基带信号成正比,故用包络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,必须满足,否则将出现过调幅现象而带来失真。 由Flash的频谱图可知,AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍,即 (3-5)式中,为调制信号的带宽,为调制信号的最高频率。 2. AM信号的功率分配及调制效率 AM信号在1电阻上的平均功率应等于的均方值。当为确知信号时,的均方值即为其平方的时间平均,即

基于MATLAB的AM信号的调制与解调

通信专业课程设计一(论文) 太原科技大学 课程设计(论文) 设计(论文)题目:基于MATLAB的AM信号的调制与解调 姓名张壮阔 学号 200822080132 班级通信082201H 学院华科学院 指导教师郑秀萍 2011年12 月23 日

太原科技大学课程设计(论文)任务书 学院(直属系):华科学院电子信息工程系时间:2011年12月9日

目录 第1章绪论............................................................. - 2 - 1.1 AM信号调制解调的背景、意义和发展前景........................... - 2 - 1.2 本文研究的主要内容............................................. - 3 - 第2章AM信号调制解调的原理以及特点..................................... - 4 - 2.1 噪声模型....................................................... - 4 - 2.1.1 噪声的分类................................................. - 4 - 2.1.2 本文噪声模型............................................... - 4 - 2.2 通用调制模型................................................... - 5 - 2.3 AM信号的调制原理............................................... - 6 - 2.4 AM信号的解调原理及方式......................................... - 6 - 2.5 抗噪声性能的分析模型........................................... - 6 - 2.6 相干解调的抗噪声性能.......................................... - 7 - 第3章基于双音信号的AM调制与解调的仿真及结论.......................... - 9 - 3.1 设定的双音信号................................................. - 9 - 3.2 基于双音信号的AM调解与解调的仿真结果.......................... - 9 - 参考文献............................................................... - 14 - 附录.................................................................. - 17 -

倍频电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:倍频电路设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路设计一个倍频电路; 2. 额定电压5V,电流10~15 mA ; 3. 输入频率4MHz,输出频率12 MHz 左右; 4. 输出电压≥ 1 V,输出失真小; 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................... I Abstract.................................................................. II 1 绪论 (1) 2 设计内容及要求 (2) 2.1 设计目的及主要任务 (2) 2.1.1 设计的目的 (2) 2.1.2 设计任务及主要技术指标 (2) 2.2 设计思想 (2) 3 设计原理及方案 (3) 3.1 设计原理 (3) 3.1.1锁相环组成介绍 (3) 3.1.2锁相环原理 (5) 3.1.3 NE564芯片介绍 (6) 3.2 设计方案 (7) 4 电路制作及硬件调试 (9) 5 心得体会 (10) 参考文献 (11)

AM调制与解调的设计与实现

课题三 AM 调制与解调的设计与实现 一、 本课题的目的 本课程设计课题主要研究模拟系统AM 调制与解调的设计和实现方法。通过完成本课题的设计,拟主要达到以下几个目的: 1.掌握模拟系统AM 调制与解调的原理,了解FDM 频分复用工作原理及实现方法。 2.掌握模拟系统AM 调制与解调的设计方法; 3.掌握应用MA TLAB 分析系统时域、频域特性的方法,进一步锻炼应用Matlab 进行编程仿真的能力; 4.熟悉基于Simulink 的动态建模和仿真的步骤和过程; 二、 课题任务 设计一个模拟系统,实现AM 调制与解调。要求通过硬件实验掌握AM 的工作原理,根据给定的技术指标通过程序设计实现系统仿真。 硬件部分:基于信号与系统实验箱,使用信号源单元和FDM 频分复用模块进行实验。 软件仿真设计:采用Matlab 语言设计,采用两种方式进行仿真,即直接采用Matlab 语言编程的静态仿真方式和采用Simulink 进行动态建模和仿真的方式。 三、主要设备和软件 1. 信号与系统实验箱,一台(含FDM 频分复用模块(DYT3000-70)、同步信号源模块(DYT3000-57)) 2. PC 机,一台 3. 20MHz 双踪示波器,一台 4. MATLAB6.5以上版本软件,一套 5. USB2090数据采集卡,一块 三、 实验原理: AM 调制解调的原理 1.所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号, 解调则是相反的过程,即从已调制信号中恢复出原信号。 模拟调制方式是载频信号的幅度、频率或相位随着欲传输的模拟输入基带信号的变化而相应发生变化的调制方式,包括:幅度调制(AM )、频率调制(FM )、相位调制(PM )三种。 这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。 幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其它参数不变。是使高频载波的振幅载有传输信息的调制方式。 振幅调制分为三种方式:普通调幅方式(AM )、抑制载波的双边带调制(DSB-SC )和单边带调制(SSB )。所得的已调信号分别称为调幅波信号、双边带信号和单边带信号。 设载波信号为)cos()(t V t v c m o c ω=,c c f πω2=,调制信号为)cos()(t V t v m Ω=ΩΩ,则输出调幅电压为 )2cos())cos(()(0θπα+Ω+=t f t m V t v c a m o (1-1) 式中α是输入信号偏移,当1=α,为普通调幅波,当0=α时,为抑制载波的双边带调制波。θ是初始相位(设0=θ),a m 为调制指数(或称为调幅度,1≤a m )。

(完整版)振幅调制与解调习题及其解答

振幅调制与解调练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 C 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、对于同步检波器,同步电压与载波信号的关系是 C A 、同频不同相 B 、同相不同频 C 、同频同相 D 、不同频不同相 3、如图是 电路的原理方框图。图中t t U u c m i Ω=cos cos ω;t u c ωcos 0= ( C ) A. 调幅 B. 混频 C. 同步检波 D. 鉴相 4、在波形上它的包络与调制信号形状完全相同的是 ( A ) A .AM B .DSB C .SSB D .VSB 5、惰性失真和负峰切割失真是下列哪种检波器特有的失真 ( B ) A .小信号平方律检波器 B .大信号包络检波器 C .同步检波器 6、调幅波解调电路中的滤波器应采用 。 ( B ) A .带通滤波器 B .低通滤波器 C .高通滤波器 D .带阻滤波器 7、某已调波的数学表达式为t t t u 6 3102cos )102cos 1(2)(??+=ππ,这是一个( A ) A .AM 波 B .FM 波 C .DSB 波 D .SSB 波 8、AM 调幅信号频谱含有 ( D ) A 、载频 B 、上边带 C 、下边带 D 、载频、上边带和下边带 9、单频调制的AM 波,若它的最大振幅为1V ,最小振幅为0.6V ,则它的调幅度为( B ) A .0.1 B .0.25 C .0.4 D .0.6 10、二极管平衡调幅电路的输出电流中,能抵消的频率分量是 ( A ) A .载波频率ωc 及ωc 的偶次谐波 B .载波频率ωc 及ωc 的奇次谐波 C .调制信号频率Ω D .调制信号频率Ω的偶次谐波 11、普通调幅信号中,能量主要集中在 上。 ( A ) A .载频分量 B .边带 C .上边带 D .下边带 12、同步检波时,必须在检波器输入端加入一个与发射载波 的参考信号。 ( C ) A .同频 B .同相 C .同幅度 D .同频同相 13、用双踪示波器观察到下图所示的调幅波,根据所给的数值,它的调幅度为 ( C )

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

振幅调制与解调电路思考题与习题填空题1调制是用4

第四章振幅调制与解调电路 思考题与习题 一、填空题 4 -1调制是用。 4-2调幅过程是把调制信号的频谱从低频搬移到载频的两侧,即产生了新的频谱分量,所以必须采用才能实现。 4-3在抑制载波的双边带信号的基础上,产生单边带信号的方法有和。4-4、大信号检波器的失真可分为、、和。 4-5、大信号包络检波器主要用于信号的解调。 4-6 同步检波器主要用于和信号的解调。 二思考题 4-1为什么调制必须利用电子器件的非线性特性才能实现?它和小信号放大在本质上有什么不同? 4-2.写出图思4-2所示各信号的时域表达式,画出这些信号的频谱图及形成这些信号的方框图,并分别说明它们能形成什么方式的振幅调制。

图思4-2 4-3振幅检波器一般有哪几部分组成?各部分作用如何?

4-4下列各电路能否进行振幅检波?图中RC为正常值,二极管为折线特性。 图思4-4 三、习题 4-1 设某一广播电台的信号电压u(t)=20(1+0.3cos6280t)cos6.33×106t(mV),问此电台的载波频率是多少?调制信号频率是多少? 4-2 有一单频调幅波,载波功率为100W,求当m a=1与m a=0.3时的总功率、边总功率和每一边频的功率。

4-3在负载R L=100某发射机的输出信号u(t)=4(1+0.5cos t)cos c t(V),求总功率、边频功率和每一边频的功率。 4-4 二极管环形调制电路如图题4-4所示,设四个二极管的伏安特性完全一致,均自原点出点些率为g d的直线。调制信号uΩ(t)=UΩm cosΩt,载波电压u c(t)如图所示的对称方波,重复周期为T c=2π/ωc,并且有U cm>Uωm,试求输出电流的频谱分量。 图题4-4 4-5.画出如下调幅波的频谱,计算其带宽B和在100Ω负载上的载波功率P c,边带功率P SB和总功率P av。。 (1)i=200(1+0.3cosπ×200t)cos2π×107t(mA) (2)u=0.lcos628×103t+0.lcos634.6×l03t(V) (3) 图题6.3-5所示的调幅波。

AM调制与解调

课程设计 班级: 姓名: 学号: 指导教师: 成绩: 电子与信息工程学院 信息与通信工程系

摘要 振幅调制信号的解调过程称为同步检波。有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。同步检波法是加一个与载波同频同相的恢复载波信号。外加载波信号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。 本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。给出了基于Multisim软件的解调和解调仿真结果。 关键字:同步检波;AM;Multisim;调制

目录 1 MC1496芯片设计 (2) 1.1MC1496内部结构及基本性能 (2) 2 信号调制的一般方法 (3) 2.1模拟调制 (3) 2.2数字调制 (3) 2.3脉冲调制 (3) 3 振幅调制 (4) 3.1基本原理 (4) 3.2AM调制与仿真实现 (4) 3.3DSB调制与仿真实现 (6) 4解调 (7) 4.1同步检波器原理框图 (7) 4.2同步检波解调电路图 (9) 4.3分析解调过程 (9) 4.4解调仿真结果 (10) 4.4.1 AM解调与仿真实现 (10) 4.4.2 DSB解调与仿真实现 (11) 5 小结与体会 (12) 6附录:总电路图 (12)

(8)g 玩转Linux下的Modem

玩转Linux下的Modem Modem可谓Linux下最难搞定的设备之一,它是我们使用Linux时许多失望和喜悦的源泉。本文介绍Modem相关的各种问题,比如端口、中断、PnP以及Modem 检测、网络配置,等等。 端口与Modem类型 计算机有许多连接其内部和外部世界的接口,部分接口是专用的,例如键盘接口只能连接键盘而不能连接任何其他设备,连鼠标也不能。 连接外部设备的多用途接口称为“端口”(Port)。大多数PC机都带有两个串行端口和一个并行端口。串行端口用一条线路串行传送数据,每次传送一个数据位,接收后再组合成字节。并行端口使用八条线路每次并行传送8个数据位。大多数家用打印机都连接到PC的并行端口。 Modem是一种通过电话线路传送数字信息的设备。我们知道,电话系统原本只为传送语音信息而设计,Modem技术突破了这一局限,它能够调制(modulate)数字信息,把数字信息转换成可以通过电话线路发送的模拟信号。在接收端,模拟信号重新被转换成数字信号(即解调,demodulate)。Modem这个词就是从modulator-demodulator缩写得到。 Modem发明于串行口广泛应用的时代。那时的Modem都是独立在计算机外的设备,通过电缆连接到串行口。今天我们仍可以见到这种外置的Modem,但更多的是插入主板的Modem卡,即内置Modem。由于大多数计算机都带有二个串行口,内置Modem通常增加第三个端口。 外置Modem的设置一般都相当简单,只需接好串行口和Modem之间的电缆、接上电话线、开启电源,大多数外置Modem就能直接开始工作。 内置Modem刚出现时,它的板子上总是带有所有通信所需的电路元件,并提供设置地址和IRQ的跳线。硬件厂商总是在寻求降低成本的途径。随着PC功能越来越好,Modem厂商开始用软件来替代部分电路元件,这些Modem称为软Modem 或Winmodem。软Modem价格低廉,它用设备驱动程序来完成原来必须由Modem 卡电路元件完成的部分任务。 软Modem的问题在于它的驱动程序是为Windows而不是为Linux编写的。虽然不存在什么特别的原因使得这种驱动程序的Linux版本无法编写,不过这最终

AM调制与相干解调系统仿真

AM调制与相干解调系统仿真 摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM 调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。 关键词Simulink;仿真;AM调制;相干解调 1 引言 本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。Simulink是建立在MATLAB基础上的动态系统仿真工具。利用MATLAB工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。 1.1课程设计目的 设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能【1】。 1.2课程设计的要求

2FSK的调制与解调器的设计与实现

编号: 毕业设计说明书 题目:2FSK调制与解调器的 设计与实现 学院:信息与通信学院 专业:电子信息工程 姓名:闫朝明 学号: 1100220429 指导教师单位:信息与通信学院 姓名:田克纯 职称:教授 实验研究 2015 年 5 月 20 日

调制解调器在通信系统中的有着重要的地位,系统的性能很大程度上取决于它的好坏。二进制频率调制在数据通信的发展历史上,是一种较早使用的通信方式,这种调制解调方式的抗噪声干扰性能强大,抗衰落性能较强,实现起来有非常容易,由于这些优点,被广泛的应用于中低速数据传输系统中,所以一直以来都是学校数字信号调制教学的重点内容。但学生实验室中的2FSK调制与解调器采用整体电路的方式进行设计,电路板体积较大且灵活性较差。而此次毕业设计,按照各部分电路的不同功能,将2FSK 调制与解调系统中的电路进行模块化,每个模块都设计出参数各异的小模块电路。关于信号的调制,有两种常用的方法,分别是直接调制和间接调制,其中间接调制则采用频移键控方法,直接调频则采用压控振荡法。信号的解调总体也可以分为两种方式,相关解调和非相干解调。在本次毕业设计当中,非相干解调使用了过零检测法,相干解调则采用了锁相解调法。使得用户在使用时,可根据需求,选择相应的模块进行拼接,从而完成不同方式、参数的2FSK调制解调器,这比传统的2FSK调制与解调器更加灵活和实用,也能使学生的动手能力得到很好的锻炼。 关键词:2FSK;模块化;频移键控;压控振荡法;锁相解调;过零检测法

Modem has an important role in the communication system, the performance of the system is good or bad depends largely on it. Binary frequency modulation in the history of the development of data communications, is a means of communication used earlier, such a strong anti-noise modulation and demodulation performance, strong anti-fading performance, very easy to implement, because of these advantages, is widely used in low-speed data transmission system, it has been focused on digital signal modulation content of school teaching. However, the student lab 2FSK modulation and demodulation circuit device by way of the overall design, the circuit board larger and less flexible. And the graduation project, in accordance with the different functions of each part of the circuit, the 2FSK modulation and demodulation circuit modular system, each module design small modular circuit parameters different. About modulated signal, there are two commonly used methods, namely direct and indirect modulation modulation, in which the indirect modulation frequency shift keying method is used, the direct voltage controlled oscillator frequency modulation method is used. Demodulated overall signal can also be divided into two ways, coherent demodulation and non-coherent demodulation. In this graduation designs, non-coherent demodulation using zero-crossing detection method, coherent demodulation is using a phase-locked demodulation. Enables users to use, according to the needs, select the appropriate module stitching to complete different way, parameters 2FSK modem, which is more flexible and practical than traditional 2FSK modulation and demodulation device, but also enable students to develop practical skills good exercise. Key words:2FSK; frequency shift keying; VCO; demodulation; zero crossing detection method

相关文档
相关文档 最新文档