文档库 最新最全的文档下载
当前位置:文档库 › 槽台学说

槽台学说

槽台学说
槽台学说

槽台学说

一、槽台学说发展演化

槽台学说是一百多年以前在欧美建立起来的大地构造学说,该说是由美国J.Hall (1859)和J.D.Dana(1983)以及奥国E.Suess(1875)等提出并发展而成的。对地质学各个方面都有重要影响,形成了一套对地壳形成,演化系统完整的经典性理论。

槽台学说主要从地壳组成的观点研究大地构造,强调对组成地壳的沉积岩、岩浆岩、变质岩的性质、分布及发展历史研究。

人们经过长期对大陆的不断观察和对比,发现有两类性质不同的地区:地槽和地台。槽台学说有二个主要论点:(1)地壳构造单元有二,即地槽区和地台区,前者属(强烈)活动区,后者属(相对)稳定区;后者是由前者转化而来的。(2)地壳的演化历程有二个阶段,即地槽阶段和地台阶段。

地壳运动主要受垂直运动控制,地壳此升彼降造成振荡运动,而水平运动则是派生的或次要的。驱动力主要是地球物质的重力分异作用。物质上升造成隆起,下降则造成凹陷。主要的构造单元有地槽和地台两类,地台是由地槽演化而来的。

地槽区是地壳活动强烈的地带,地槽发展初期以不匀速的下沉为主,接受巨厚沉积。并有基性岩浆活动,沉积物以陆源碎屑为主;随着下沉的幅度增大,沉积物由粗变细,乃至出现碳酸盐类沉积。后期受强烈挤压抬升,沉积物由细变粗,产生强烈褶皱和断裂。地槽经过强烈隆升运动后。活动性减弱。长期剥蚀夷平后逐渐转化为地台。①地槽具有两重性质:早期主要表现为地壳上形成深坳陷,这种深坳陷可以被沉积物所补偿,从而形成被巨厚沉积物所占据的沉降带,也可以不被沉积物所补偿,形成深海盆地;晚期强烈褶皱上升形成巨大的山系②时间上指古生代以来曾经有过强烈活动的地带;③地槽主要位于大陆边缘,少数位于两个大陆之间。

地台区是地壳较稳定的区域,升降速度和幅度较小,构造变动和岩浆活动也较弱。由于其前身是由地槽转化而来,故下部为紧密褶皱和变质基底;上部沉积了较薄的盖层,常形成宽阔的褶皱,构造形态较地槽区简单。沉积盖层被剥蚀而露出古老的褶皱基底时则称为地盾。地台是地壳上相对稳定的、具有明显双层结构的地区。下构造层由巨厚的、强烈褶皱的变质岩和岩浆岩组成的复杂岩系,称为结晶基底或褶皱基底,代表地壳处于强烈活动的发展过程,实际上就是地槽阶段的产物;上构造层由未变质的、产状平缓和厚度较小的沉积岩层组成,称为沉积盖层,代表地壳处于相对稳定的发展过程,是地台发展阶段的产物;褶皱基底和沉积盖层之间被区域角度不整合面隔开,标志着他们是完全不同的两个大地构造发展阶段的产物。划分地台的重要依据之一是由活动向稳定转化的时间。通常,把寒武纪以前结束活动转化为稳定的地区统称为地台;把古生代以来结束活动转化为稳定的地区,按其转化的时间划分为各个时期的褶皱带。

构造运动具有强弱交替的周期性和阶段性。稳定期构造运动较和缓,主要表现为缓慢升降运动、活动期构造运动和岩浆活动等都较频繁,主要表现为强烈褶皱和隆起,形成巨大的山系,故也称造山运动。构造运动的周期性决定地壳发展具有阶段性。地球上发生的比较强烈和影响范围较广的构造运动称为构造运动期或造山运动幂。

二、槽台学说的基本特征

地槽和地台是:地壳上两个地壳活动性质及强烈程度不同的构造单元,具有明显不同的特征。这些特征既是:认识地槽和地台的标志,也是划分地槽和地台的重要依据

地槽的主要特征

⑴地槽通常出现在大陆边缘地带,并沿大陆边缘延伸,一般都具有狭长的形态,呈带状分布。规模很大,长度达近千km到几千km、宽度达近百km到几百km。

⑵发展中的地槽,与现代大陆边缘的地貌特征一致,既可以形成宽阔的大陆架—大陆坡—大陆基,也可出现很窄的大陆架,起伏显著的大陆边缘

⑶地槽往往表现为长条状的坳陷,有一定的方向性,在地槽发育阶段沉积物以海相沉积为主

⑷地槽发展晚期,剧烈的构造变动使地槽中的岩层发生褶皱和断裂,形成十分复杂的构造

⑸广泛的、强烈的岩浆活动也是地槽的重要标志。

(6)往往可以发现有成对的变质带出现

⑺地槽有丰富的矿产,

地台的主要特征

⑴地台一般具面状展布的几何形态,大多数呈不规则圆形、菱形、多边形等外形

⑵世界上主要的地台,在地形上大多形成平原和高原

⑶地台盖层的沉积组合是在相对稳定的构造环境中形成的

⑷典型的地台岩浆活动较微弱,

⑸地台盖层构造变形比较微弱

三、槽台学说的发展

地槽的发展

(1)沉降阶段

①下降初期:沉积物主要是相邻大陆地区剥蚀、搬运来的陆源碎屑物质,

②下降后期:海侵范围扩大,在广阔的浅海里

(2)上升阶段

①上升初期:地槽处于升降交替的阶段,地壳运动较活跃,诱发的浊流较发育,形成复理石沉积组合,继之形成上部陆源碎屑沉积组合。

②上升后期:各中央隆起之间形成若干山前坳陷,其中往往有残留海水,四周被山地阻隔而与外海隔绝,因强烈的蒸发作用而形成含膏盐沉积组合

地台的发展阶段

①早期阶段:差异升降较明显,内部构造有一定程度的分异。

②中期阶段:地台整体沉降,内部沉降微弱,沉积厚度小且稳定,岩相稳定

③晚期阶段:地台整体上隆,发生海退,内部可出现断块差异升降

四、槽台学说不足及地洼学说

然而,当它运用于解决世界上一些像中国东部那样的地壳发展史更为复杂的地区时,却遇到了困难。以中国东部地区为例,按照地槽地台说,其现阶段的大地构造性质为地台区。所谓“中国地台”之名,由来已久,人们深信不疑,直到今日仍有不少人沿用。实际资料表明,这一地区在中生代中期以前,确曾先后不一地经历过地槽及地台二个阶段。但自中生代

中期以后,却出现了许多与地台特征不一致的新情况:地壳活动性转为十分强烈,发生造山运动,断裂、褶皱广布,使原来平整的地台构造层受到明显改造,出现反差强烈的构造—地貌起伏,高峻山脉与深浚盆地相间,形成盆岭格局。在造山运动进行中,还有广泛的岩浆活动和变质作用。由于盆岭的强烈地貌反差,便导致剥蚀与沉积作用盛行。如以“有色金属之家”的美称驰名于世的南岭所产的钨、锡、锑等矿床,即主要形成于此时。在盆地中,随着在沉积建造特征上各有特色的盆地堆积物的形成,便产生了油气、煤、盐类以及铀铜等沉积矿床。如大港、胜利、中原、江汉等,以及中国各个陆缘海大陆架上的许多新生代油田,即这种大地构造环境的产物。这一地区目前新构造运动仍很显著,地震带多见,有些地方如黑龙江省的五大连池等处,两百多年前仍有火山喷发的记录。所有这些现象,都不是地槽地台学说所能解释的。因为它们不是作为稳定区的地台区应有的特征,而显然是活动区的典型标志。这些困惑之点,阻碍着人们对于这一地区地壳演化史及现阶段大地构造性质的正确认识,也就难于据此有效地确定找矿方向,合理地利用改造自然环境,预防和消减灾害。

陈国达根据自己长期实地考察研究结果得知,这种构造区的特征无论与地台区还是地槽区都不相符合:一方面,它的强烈活动性与属于稳定区的地台区相对立;而另一方面,它虽然属于活动区,与地槽区相似,但在地壳结构,沉积、岩浆、变质诸建造和构造型相,以至地球物理、地球化学等各方面的特征,均与地槽区有别,表明它实际上属于不同的活动区类型。显然,这是一个新被认识的构造单元,是除地槽区及地台区以外的第三个已知构造单元,是在地壳演化中出现于后地台阶段的一种新型活动区。因其形成过程是地台活化,即它是地台区向活动区转化的产物,陈国达于1956年初提出时命名为(地台)活化区。后来,又鉴于这种活化区的最主要的构造—地貌标志特征是造山作用所形成的盆岭相间的格局,其中的山脉叫地穹,盆地叫地洼。故于1959年又称它为地洼区。

五、槽台学说的意义价值

100多年来,在鉴别一个地区的大地构造属性时,不是看作地槽区就是看作地台区,该说的优点和功绩在于阐明了地壳中人类最先认识的两个构造单元、它们的性质区别和历史生因关系,阐明了漫长的地壳演化史中两个最先认识的阶段及其代表的一段历程和部分规律,推动了当时地质学的发展并在指导找矿等生产实践中做出了许多贡献。

地质学发展简史(精简版)

地质发展简史 1.地质知识积累和地质学的萌芽时期(远古~1450) 岩石和矿物知识的积累 对地质作用的认识 对地球的启蒙认识 中世纪的地质学 2.地质学的奠基时期(1450~1750) 地质哲学思想的初步发展 对化石和地层的认识 岩石学、矿物学和矿床学的发展 3.地质学的形成时期(1750~1840) 地质考察旅行的兴起 水成论和火成论 地质学体系的形成 灾变论和均变论 4.地质学的发展时期(1840~1910) 地层学和古生物学 岩石学、矿物学和矿床学 动力地质学 地槽地台学说和全球地质构造的理论综合 5.20世纪地质学的发展(1910~) 地质学各分支学科的发展 大陆漂移说 地质学的新阶段及板块构造学说 地质学发展史是人类在生产和探索地球奥秘的过程中,逐步认识地球的组成和结构,地球及其生物界演变的规律,特别是地壳和岩石圈运动规律,并为人类合理开发、利用和保护矿产资源保护环境服务的历史。 人们对地球的认识源远流长。在曲折的历史发展过程中,原始朴素的地质知识逐渐形成了地质科学的知识体系。根据地质知识发展的程度,并参照其社会文化背景,可将地质学发展史划分为5个时期。①地质知识积累和地质学萌芽时期(远古~1450),以认识的直观和解释的猜测性为主要特征。②地质学奠基时期(1450~1750),其特征是随着自然科学的诞生,地质知识趋向系统化。对地质现象试作理性解释,并逐步建立了观察和推理方法。③地质学形成时期(1750~1840),一方面地质知识得到较全面的概括和总结,另一方面,人们将地质作用、过程和结果联系起来加以思考,给予解释。地质思想、理论和学说十分活跃,由此初步形成了地质学体系。④地质学发展时期(1840~1910),其特征是地质知识和理论的发展,逐步形成了综合分析方法,初步提出了全球性地质发展史的认识。 ⑤20世纪的地质学(1910~),这一时期特点是科学技术的发展使新的地质学说、地质学理论不断涌现,地质学分支学科之间日益相互渗透,地质学与地球科学的其他学科相互沟通,形成了全球性地质学体系。

渡槽设计

几种大型渡槽设计要点 张宁 摘要:本文通过作者参与设计的几种大中型渡槽的介绍,对在渡槽结构设计中需要注意的关键性问题进行了较为详尽的阐述。设计采用SAP84结构通用设计 软件进行结构设计。 关键词:渡槽上部结构下部结构止水裂缝 1.渡槽简介 渡槽是渠系建筑物中应用最广泛的交叉建筑物之一,随着农业、工业及生活用水的不断增长的需要,渡槽的输水流量由过去的几个立方米每秒发展到上百个立方米每秒。渡槽的结构型式主要有梁式、拱式、桁架式、斜拉式以及组合式等几大类。 下面就工程中设计的几种预应力混凝土渡槽的结构设计进行简要的阐述。 1. 引黄入晋水泉河渡槽 山西省万家寨引黄入晋工程,是中国最大的引水工程之一。一期工程中有沙峁东沟、沙峁西沟、水泉河及东小沟等四座渡槽设计,单槽流量48m3/s 。 渡槽于1995年~2000年间设计完成,其中最长的水泉河渡槽总长367.477m,最大跨度为25m的预应力混凝土槽身。 水泉河渡槽标准断面

2.东深供水渡槽 东深供水工程,全称东江——深圳供水工程,跨越中国广东省东莞市和深圳市境内,水源取自东江,是为香港供水的大型调水工程。东深供水线中的输水渡槽主要有旗岭渡槽和樟洋渡槽。渡槽设计流量达90m3/s。,于2000年~2003年间设计完成。 东深供水渡槽 3.银川市唐徕渠跨北塔湖大型渡槽 唐徠渠跨北塔湖渡槽工程位于宁夏回族自治区银川市唐徕渠K75+500桩号处,是唐徕渠跨北塔湖景观河道的永久水工输水建筑物,计流量80m3/s,加大流量90m3/s。

由于渡槽流量较大,且渡槽处连通河的旅游通航及景观的需要,渡槽选择3跨简支双向预应力双矩形并联槽结构,单跨长度为21m。横向过水面净宽为2x7.5m。每跨墙身纵向2道侧墙和1道中墙为主受力结构,边墙腹板厚度为40cm,并在外侧设有肋板,中墙腹板厚度为45cm,中墙和边墙设1860级钢绞线作为渡槽纵向预应力筋。为加快施工进度,渡槽边墙和中墙设计为预制吊装构件,吊装就位后再与底板和拉杆现浇成整体。底板采用预应力混凝土肋板结构,板厚0.2m,每隔2m设置1道肋条。下部结构采用钢筋混凝土实体槽墩及槽台,基础为双排钢筋混凝土钻孔灌注桩,桩径为1.2m。 唐徕渠渡槽在设计上采用了 4.河北段南水北调左岸排洪渡槽 2009年完成了南水北调中线一期六座左岸排水渡槽工程施工图设计,设计流量在50~180 m3/s,最大跨度24米,均为纵向有黏结单向后张拉预应力梁式渡槽。 5.南水北调澎河渡槽 2011年完成了南水北调中线工程澎河渡槽施工图设计,渡槽为涵洞式渡槽,设计输水流量320m3/s,加大流量为380 m3/s,校核水深6.503m,渡槽按1级建筑物进行设计,工程总长度202m。

渡槽课程设计--三峡大学版

不带横杆的矩形渡槽结构计算: 1. 槽身横向计算:沿纵向取单位长度1 m 槽身为脱离体进行计算,计算简图如图1所示。 图1.槽身横向计算简图 作用于所切取的单位长度脱离体上的荷载q 等于水重、人群荷载及槽身自重之和,除此之外,在脱离体两个侧面作用着剪力1Q 和2Q ,并由1Q 和2Q 的差值Q ?与竖向力q 保持平衡,即q Q Q Q =-=?21。 (1)人行道板计算 人行道板为一支承在侧墙上的悬臂板,计算跨长为mm a 100020012001=-=,承受的均布荷载1q 等于人群荷载加板的自重。人行道板承受的最大弯矩为: m kN a g q a q M k G k Q ?-=?+??-=+-=-= 3.11)5.21.0531.2(5.02 121212110)(γγ mm a 30=; =-=a h h 0100-30=70mm ; 0.0793*******.6103.111.226 20 =????==bh f KM c s α 468.085.00.0827211=<=--=b s ξαξ

20851300 708270.010009.6mm f h b f A y c s =???==ξ 为与侧墙钢筋协调,实配B 025@8,20201mm A =。 (2)侧墙计算 侧墙中最大计算弯矩的截面是侧墙的截面1,该处的水深为2.8m,另外为了截断部分由截面1延伸向上的竖向钢筋,距墙底1.0m 处再选取一计算截面2计算。 在工程实践中,侧墙近似的按受弯构件设计(略去轴向力影响)。侧墙底端的最大弯矩为(弯矩符号以槽壁外侧受拉为正): 截面1配筋: m kN a q H M ?-=+???-=+-=39.73.111.02.8106 12161321131)()(γ mm a 30=;=-=a h h 0300-30=270mm ;mm b 0100=; 0.056727010009.61039.71.026 20 =????==bh f KM c s α 468.085.00.0584211=<=--=b s ξαξ 20504300 2700584.010009.6mm f h b f A y c s =???==ξ 取用B 125@10,2628mm A s =。 截面2配筋: m kN a q H M ?-=+-??-=+'-=12.833.1112.8106 12161321132))(()(γ mm a 30=;=-=a h h 0300-30=270mm ;mm b 0100=; 0.018327010009.61012.831.026 20 =????==bh f KM c s α 468.085.00.0185211=<=--=b s ξαξ 20160300 2700185.010009.6mm f h b f A y c s =???==ξ 取用B 025@8,20201mm A =。 抗裂校核: 计算截面取在拖承(0.2x0.2)顶边截面3处,校核水深=H 2.8-0.2=2.6m 则:

渡槽结构计算书

目录 1. 工程概况.............................................. 错误!未定义书签。2.槽身纵向内力计算及配筋计算............................ 错误!未定义书签。 (1)荷载计算..........................................错误!未定义书签。 (2)内力计算..........................................错误!未定义书签。 (3)正截面的配筋计算..................................错误!未定义书签。 (4)斜截面强度计算....................................错误!未定义书签。 (5)槽身纵向抗裂验算..................................错误!未定义书签。3.槽身横向内力计算及配筋计算............................ 错误!未定义书签。 (1)底板的结构计算....................................错误!未定义书签。 (2)渡槽上顶边及悬挑部分的结构计算 ....................错误!未定义书签。 (3)侧墙的结构计算....................................错误!未定义书签。 (4)基地正应力验算....................................错误!未定义书签。

1. 工程概况 重建渡槽带桥,原渡槽后溢洪道断面下挖,以满足校核标准泄洪要求。目前,东方红干渠已整修改造完毕,东方红干渠设计成果显示,该渡槽上游侧渠底设计高程为165.50m,下游侧渠底设计高程为165.40m。本次设计将现状渡槽拆除,按照上述干渠设计底高程,结合溢洪道现状布置及底宽,在原渡槽位重建渡槽带桥,上部桥梁按照四级道路标准,荷载标准为公路-Ⅱ级折减,建筑材料均采用钢筋砼,桥面总宽5m。 现状渡槽拆除后,为满足东方红干渠的过流要求及溢洪道交通要求,需重建跨溢洪道渡槽带桥。新建渡槽带桥轴线布置于溢洪道桩号0+,同现状渡槽桩号,下底面高程为165.20m,满足校核水位+0.5m超高要求,桥面高程167.40m,设计为现浇结合预制混凝土结构,根据溢洪道设计断面,确定渡槽带桥总长51m,8.5m×6跨。上部结构设计如下:渡槽过水断面尺寸为×1.6m,同干渠尺寸,采用C25钢筋砼,底及侧壁厚20cm,顶壁厚30cm,筒型结构,顶部两侧壁水平挑出1.25m,并在顺行车方向每隔2m设置一加劲肋,维持悬挑板侧向稳定,桥面总宽5m,路面净宽4.4m,设计荷载标准为公路-Ⅱ级折减,两侧设预制C20钢筋砼栏杆,基础宽0.5m。下部结构设计如下:下部采用C30钢筋混凝土双柱排架结构,并设置横梁, 由于地基为砂岩,基础采用人工挖孔端承桩,尺寸为×1.2m,基础深入岩层弱风化层1.0m,盖梁尺寸为4××1.2m。 2.槽身纵向内力计算及配筋计算 根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按

渡槽

内容摘要 本次设计作为农水专业本科生的毕业设计,主要目的在于运用所学的有关专业课,专业基础知识及基础课等的理论;了解并初步掌握水利工程的设计内容,设计方法和设计步骤;熟悉水利工程的设计规范;提高编写设计说明书和各种计算及制图的能力。 根据设计任务书,说明书分为四章。第一章,基本资料。第二章,整体布置,确定渡槽的线路和槽身总长度,进行水利计算,确定槽底纵坡以及进出口高程。第三章,槽身结构设计,确定槽身的横断面尺寸,进行槽身纵横断面内力计算及结构计算。第四章,支承结构设计,确定支承结构的尺寸,进行支承结构的结构计算,渡槽基础的结构计算及渡槽整体稳定性计算。

Abstract This design is a graduation project of undergraduation. Its main aim is to apply what have been learned in class, such as specialized courses, specialized basic courses, basic courses and so on, to initially master the content of design, the methods of design, the steps of design of the irrigation project; to have an intimate knowledge of the design standard of the irrigation project; to raise the capacity to compile the design exposition and the capacity of calculation and drawing. According to the task, the design exposition is made up of four chapters. Chapter one is the basic material. Chapter two is assignment on the whole, in which the aqueduct line and total length are decided, and make the hydraulic design to decide the slope of bottom and the altitude of exit and entrance. Chapter three is the structure design of aqueduct body, in which the cross section of aqueduct body is decided, and calculate the internal force and the structure of cross section and vertical section. Chapter four is the structure design of support structure, in which the dimensions of support structure are decided, and calculate the internal force and structure of support structure , and calculate the structure of aqueduct foundations, and check the stability of aqueduct on the whole.

第4章-历史大地构造学

幻灯片1 Chapter 4 Historical tectonics 第四章历史大地构造学 4.1 Methodology of historical tectonics 历史大地构造及其分析方法 4.2 What are a platform & geosyncline 地槽、地台的概念 4.3 Outline of plate tectonics 板块构造简介 4.4 How to reconstruct a paleoplate 古板块的恢复方法 4.5 Tectonic province, cycle & stage 大地构造分区、旋回和阶段 幻灯片2 第四章历史大地构造学 第一节历史大地构造及分析方法 地层发育的控制因素:大地构造控制着地层的发育。 一、历史构造分析:通过对不同地区、不同时期地层进行综合研究,确定其构造发展状态和过程,划分构造演化阶段和大地构造分区,恢复不同地区、不同块体之间的相互关系及演化过程即为历史构造分析。 推断地层形成的大地构造环境、性质和演化 幻灯片3 第一节历史大地构造及分析方法

研究岩石的新老关系及确定地质年代 根据岩石特征及所含化石确定沉积环境、再造古地理、古气候 研究地壳发展演化规律 地层的发育和岩相变化严格地受到了大地构造的控制; 只有搞清楚了大地构造分区,才能更好地掌握地层分布规律 幻灯片4 二、构造性质/Tectonic characters 全球构造性质分类 1、稳定-stable: 地震、火山活动少,地貌反差强度低 2、活动-active: 地震、火山活动频繁,地貌反差强度高 3、过渡-transitional: 介于二者之间

U型渡槽结构计算书

一、基本资料 1.1工程等别 根据《水利水电工程等级划分及洪水标准》(SL252-2000)、《灌溉与排水工程设计规范》(GB50288-99)和《村镇供水工程技术规范》(SL687—2014)的规定,工程设计引水流量为3.9m3/s,供水对象为一般,确定本项目为Ⅳ等小(1)型工程。主要建筑物等级为4等,次要建筑物等级为5等,临时建筑物等级为5等。 渡槽过水流量≤5m3/s,故渡槽等级均为5级。 1.2设计流量及上下游渠道水力要素 正常设计流量1.83m3/s,加大流量2.29 m3/s。 1.3渡槽长度 槽身长725m,进出口总水头损失0.5m。 1.4地震烈度 工程区位于安陆市北部的洑水镇、接官乡和赵鹏镇三个乡镇,属构造剥蚀丘岗地貌。根据国家标准1:400万《中国地震动参数区划图》(GB18306-2001),工程区地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35s,相应的地震基本烈度小于Ⅵ度,建筑物不设防。 1.5水文气象资料 安陆市属亚热带季风气候区,春秋短,冬夏长,四季分明,兼有南北气候特点。年最高气温40.5℃,最低气温-15.3℃,多年平均气温15.9℃。年日照时数1920—2440h,日照率49%,居邻近各县(市)之冠。太阳总辐射年平均112千卡/cm2,年际变化不大,4-10月辐射量占全年的71.43%。10℃以上积温为4486—4908℃。多年平均无霜期246d。 境内多年平均降雨量1117mm,年降雨量很不稳定,最多年份可达1772.6mm (1954年),最少年份只有652.9 mm(1978年),降水量年内分配很不均匀,4-10月份平均降雨量占全年降雨量的85%以上,多年平均蒸发量1587.3mm,由于降水量年际和年内间变化大,导致洪涝旱灾发生频繁。

槽台学说与板块构造的简介和比较

槽台学说与板块构造 图标

槽台学说和板块构造学说的发展历程,两者的主要观点以及对他们两者的评价、比较和作者对板块构造学说的未来的预测。 关键词: 槽台学说,板块构造,比较,评价,预测 ABSTRACT The development course of the theory of channel and plate tectonics, the main viewpoints of the two theories and their evaluation, comparison and the future prediction of plate tectonics theory. Key words: Trough theory, plate tectonics, comparison, evaluation, prediction

槽台学说与板块构造............................................................. 错误!未定义书签。槽台学说与板块构造的比较.. (1) 1. 槽台学说 (1) 1.1 槽台学说概述 (1) 1.2 槽台学说的提出 (1) 1.3 地槽说的主要观点 (2) 1.4 槽台说的评价 (2) 2. 板块构造 (4) 2.1 板块构造概述 (4) 2.2 板块构造的提出 (4) 2.3 构造运动学说的主要观点 (5) 2.4 构造运动学说的评价 (6) 1.1.

槽台学说与板块构造的比较 随着时代的变迁,曾经在地质学界只手遮天的槽台学说逐渐没落,板块构造迅速崛起,让人不得不感叹就连学术都是沧海桑田般,然而就算在这个日新月异的时代,槽台学说依然有着他无法被板块构造替代的优势。在查阅这两个学说诸多的资料之后,通过比较可以一窥两者的特点。 1. 槽台学说 1.1 槽台学说概述 槽台学说:地壳运动主要受垂直运动控制,地壳此升彼降造成振荡运动,而水平运动则是派生的或次要的。驱动力主要是地球物质的重力分异作用。物质上升造成隆起,下降则造成凹陷。主要的构造单元有地槽和地台两类,地台是由地槽演化而来的。 地槽区是地壳活动强烈的地带,地槽发展初期以不匀速的下沉为主,接受巨厚沉积。并有基性岩浆活动,沉积物以陆源碎屑为主;随着下沉的幅度增大,沉积物由粗变细,乃至出现碳酸盐类沉积。后期受强烈挤压抬升,沉积物由细变粗,产生强烈褶皱和断裂。地槽经过强烈隆升运动后。活动性减弱。长期剥蚀夷平后逐渐转化为地台。 地台区是地壳较稳定的区域,升降速度和幅度较小,构造变动和岩浆活动也较弱。由于其前身是由地槽转化而来,故下部为紧密褶皱和变质基底;上部沉积了较薄的盖层,常形成宽阔的褶皱,构造形态较地槽区简单。沉积盖层被剥蚀而露出古老的褶皱基底时则称为地盾。 构造运动具有强弱交替的周期性和阶段性。稳定期构造运动较和缓,主要表现为缓慢升降运动、活动期构造运动和岩浆活动等都较频繁,主要表现为强烈褶皱和隆起,形成巨大的山系,故也称造山运动。构造运动的周期性决定地壳发展具有阶段性。地球上发生的比较强烈和影响范围较广的构造运动称为构造运动期或造山运动幂。 它主要从地壳运动的历史观点出发,按地壳的物质组成和建造及其表现形式划分大地构造单元(主要是大陆部分),故又称为地史学派。人们经过长期的观察和对比,发现了两类地质不同的地区:地槽:地层厚度巨大,岩层强烈褶皱,成狭长带状分布的山脉,它曾经是地壳强烈活动区。地台:地层厚度较小,岩层褶皱平缓,甚至近乎水平,地势平缓的广大地区,它是地壳相对稳定的地区。地槽地台是地壳的基本构造单元,具有不同的活动性质和强烈程度,它们在地史演化中经历了不同的发展阶段。 1.2 槽台学说的提出 1842 年,罗杰斯兄弟提出阿巴拉契亚山脉上升的原因是“被挤入地下的瓦斯突然地逸出”。故阿巴拉契亚山脉是地槽的发源地。1859 年,霍尔根据古生代地层的岩性,厚度和强烈褶皱情况及其与邻侧的北美部中部平原的对比,认为阿巴拉起亚山是地球上一个特殊的沉积岩区,它会转化为造山带。地槽的概念首先是在1873 年,丹纳在讨论地球收缩和山脉成因时,提出了地槽的概念. 地台说的提出:1885 年,奥地利地质学家休斯

渡槽箱形梁结构计算书(11.18)

渡槽箱形梁结构计算书(11.18)

一、槽身纵向内力计算及配筋计算 根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按梁理论计算。槽身纵向按正常过水高程计算(本渡槽设计水位高程取60cm)。 图1—1 槽身横断面型式(单位:mm) 1、荷载计算 根据设计拟定,渡槽的设计标准为5级,使用年限50年所以渡槽的安全级别Ⅲ级, 则安全系数为γ =0.9(DL-T 5057 -2009规范),C30混凝土重度为γ=25kN/m3(根据水工混凝土结构设计规范DL-T 5057-2009:6.1.7条),正常运行期为持久状况,其设计状况 系数为ψ=1.0,荷载分项系数为:永久荷载分项系数γ G =1.05,可变荷载分项系数γ Q =1.20 (《水工建筑物荷载设计规范》(DL 5057 -1997规范)),结构系数为γ d =1.2(DL-T 5057 -2009规范)。 纵向计算中的荷载一般按匀布荷载考虑,包括槽身重力(栏杆等小量集中荷载也换算为匀布的)、槽中水体的重力及人群荷载。其中槽身自重、水重为永久荷载,而人群荷载 为可变荷载。 (1)槽身自重: 标准值:G 1k =γ ψγ(V 1 +2V 2 +V 3 )=0.9×1×25×(0.15× 2.3+0.7×0.25×2+1.4×0.2)=21.94(kN/m) 设计值:G 1=γ G ×g 1k =1.05×21.94=23.04(kN/m)

(a )面板自重 设计值:g 1=γG γ0ψγV 1=1.05×0.9×1×25×(0.15×2.3)=8.15(kN/m ) (b )腹板自重 设计值:g 2=γG γ0ψγ2V 2=1.05×0.9×1×25×(0.25×0.7)×2=8.27(kN/m ) (c )底板自重 设计值:g 3=γG γ0ψγV 3=1.05×0.9×1×25×(1.4×0.2)=6.62(kN/m ) (2)水重:标准值:G 2k =γ0ψγV 4=0.9×9.81×1×(0.6×0.9)=4.77(kN/m ) 设计值:G 2=γG ×g 2k =1.05×4.77=5.01(kN/m ) (3)栏杆荷载: 本设计采用大理石栏杆,大理石的容重γ1=28kN/m3,缘石采用C30 混凝土预制,C25混凝土重度为γ=25kN/m 3 。 标准值:G 3k =γ0ψγ1V 5+γ0ψγV 6=0.9×1×28×2×{(0.5×0.16×0.16×5÷ 10)+0.8×0.16}+0.9×1×25×2×(0.16×0.3)=8.92(kN/m ) 设计值: G 3=γG ×g 2k =1.05×8.92=9.37(kN/m ) 根据《城市桥梁设计荷载标准》(CJJ77-98) 规范要求:桥上人行道 栏杆时,作用在栏杆扶手上的活载,竖向荷载采用1.2kN/m ;水平向外 荷载采用1.0kN/m 。两者分别考虑,不得同时作用。 标准值: Q 栏杆竖向=1.2(kN/m ) 设计值: Q 1=1.2×1.2=1.44(kN/m ) (4)人群荷载: 根据《城市桥梁设计荷载标准》(CJJ77-98) 规范要求:梁、桁、拱及其他大跨结构的人群荷载w ,可按下列公式计算,且ω值在任何情况下不得小于2.4kPa 。 当跨径或加载长度l <20m 时:

渡槽结构计算书

目录(

1. 工程概况 重建渡槽带桥,原渡槽后溢洪道断面下挖,以满足校核标准泄洪要求。目前,东方红干渠已整修改造完毕,东方红干渠设计成果显示,该渡槽上游侧渠底设计高程为165.50m,下游侧渠底设计高程为165.40m。本次设计将现状渡槽拆除,按照上述干渠设计底高程,结合溢洪道现状布置及底宽,在原渡槽位重建渡槽带桥,上部桥梁按照四级道路标准,荷载标准为公路-Ⅱ级折减,建筑材料均采用钢筋砼,桥面总宽5m。 现状渡槽拆除后,为满足东方红干渠的过流要求及溢洪道交通要求,需重建跨溢洪道渡槽带桥。新建渡槽带桥轴线布置于溢洪道桩号0+,同现状渡槽桩号,下底面高程为165.20m,满足校核水位+0.5m 超高要求,桥面高程167.40m,设计为现浇结合预制混凝土结构,根据溢洪道设计断面,确定渡槽带桥总长51m,8.5m×6跨。上部结构设计如下:渡槽过水断面尺寸为×1.6m,同干渠尺寸,采用C25钢筋砼,底及侧壁厚20cm,顶壁厚30cm,筒型结构,顶部两侧壁水平挑出1.25m,并在顺行车方向每隔2m设置一加劲肋,维持悬挑板侧向稳定,桥面总宽5m,路面净宽4.4m,设计荷载标准为公路-Ⅱ级折减,两侧设预制C20钢筋砼栏杆,基础宽0.5m。下部结构设计如下:下部采用C30钢筋混凝土双柱排架结构,并设置横梁, 由于地基为砂岩,基础采用人工挖孔端承桩,尺寸为×1.2m,基础深入岩层弱风化层1.0m,盖梁尺寸为4××1.2m。 2.槽身纵向内力计算及配筋计算

根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按梁理论计算。槽身纵向一般按满槽水。 图2—1 槽身横断面型式(单位:mm) (1)荷载计算 根据规划方案中拟定,渡槽的设计标准为4级,所以渡槽的安全级别Ⅲ级,则安全系数为γ =,混凝土重度为γ=25kN/m3,正常运行期为持久状况,其设计状况系数为ψ=,荷载分项系数为:永久荷载分项 系数γ G =,可变荷载分项系数γ Q =,结构系数为γ d =。 纵向计算中的荷载一般按匀布荷载考虑,包括槽身重力(栏杆等小量集中荷载也换算为匀布的)、槽中水体的重力、车道荷载及人群荷载。其中槽身自重、水重为永久荷载,而车道荷载、人群荷载为可变荷载。 槽身自重: 标准值:g 1k =γ ψγV 1 =×25××5+×2×2+×+×+×+×+×2+× 2)=(kN/m) 设计值: g 1=γ G。 g 1k =×=(kN/m) 水重:标准值: g 2k =γ ψγV 2 =××(×)=(kN/m)

渡槽设计计算书

一、设计基本资料 1.1工程综合说明 根据丰田灌区渠系规划,在灌区输水干渠上需建造一座跨越小禹河的渡槽,由左岸向右岸输水。渡槽槽址及渡槽轴线已由规划选定(见渡槽槽址地形图)。渡槽按4级建筑物设计。 1.2气候条件 槽址地区位于大禹乡境内,植被良好。夏季最高气温36℃,冬季最低气温-32℃,最大冻层深度1.7m。地区最大风力为9级,相应风速v = 24 m / s。 1.3水文条件 根据水文实测及调查,槽址处小禹河平时基流量在0.2—0.4 m3/S之间,有时断流。洪水多发生在每年7、8月份;春汛一般发生在每年3月上旬,但流量不大。经水文计算,槽址处设计洪水位为1242.41m,相应流量 Q = 698 m3/S;最高洪水位为1243.83m,相应流量 Q = 1075 m3/S。据调查,洪水中漂浮物多为树木、牲畜,最大不超过400 kg。在春汛中无流冰发生。 槽址处小禹河两岸表层为壤土分布;表层以下及河床为砂卵石分布(见渡槽轴线断面图)。地基基本承载力壤土为34 t / m2;砂卵石为43 t / m2。 1.4工程所需材料要求 在建材方面,距槽址50km大禹镇有县办水泥厂一座,水泥质量合格,可满足渡槽建造水泥需要;槽址附近有大量砂石骨料分布,质量符合混凝土拌制需要,运距均在5km以内;槽址东北禹王山有石料可供开采,运距350km。 1.5上、下游渠道资料 根据灌区渠系规划,渡槽上下游渠道坡降均为1/5000。渠道底宽按设计流量计算2.7 m,边坡1:1.5,采用混凝土板衬砌。渠道设计流量6立方米每秒, 加大流量7.5立方米每秒。渠道堤顶超高0.5m。 根据灌区渠系规划,上游渠口(左岸)水面高程加大流量时为1251.04m。下游渠口(右岸)水面高程加大流量时为1250.54m。渠口位置见渡槽槽址地形图。

矩形渡槽设计计算说明书

工程名称: 哈密市五堡镇五堡大桥渡槽工程 设计阶段:施工阶段 渡槽计算书 计算: 日期:2015.09.01 哈密托实水利水电勘测设计有限责任公司 2015.09.01

1 基本资料 五堡大桥渡槽定为4级建筑物,设计流量Q =1.2m3/s ,加大流量Q m=1.56m3/s。, 设 渡槽总长25.6m,进口与上游改建梯形现浇砼渠道连接,出口与下游改建矩形现浇砼渠道连接。 2 渡槽选型与布置 2.1 结构型式选择 梁式渡槽的槽身是直接搁置于槽墩或槽架之上的。为适应温度变化及地基不均匀沉陷等原因而引起的变形,必须设置变形缝将槽身分为独立工作的若干节,并将槽身与进出口建筑物分开。变形缝之间的每一节槽身沿纵向是两个支点所以既起输水作用又起纵向梁作用。根据支点位置的不同,梁式渡槽有简支梁式双悬臂梁式和单悬臂梁式三种型式。 单悬臂梁式一般只在双悬臂梁式向简支梁式过渡或与进出口建筑物连接时使用。 简支梁式槽身施工吊装方便,接缝止水构造简单,但跨中弯矩较大,底板受拉对抗裂防渗不利。简支梁式槽身常用的跨度为8-15m。本设计采用简支梁式槽身,跨度取为12.8m。梁式渡槽的槽身采用钢筋混凝土结构。 2.2 总体布置 渡槽的位置选择是选定渡槽的中心线及槽身起止点的位置。本设计的渡槽的中心线已选定。具体选择时可以从以下几方面考虑: (1)槽址应尽量选在地质良好、地形有利和便于施工的地方,以便缩短槽身长度、减少工程量、降低墩架高度; (2)槽轴线最好成一直线,进口和出口避免急转弯,否则将恶化水流条件,影响正常输水; (3)跨越河流的渡槽,槽轴线应与河道水流方向尽量成正交,槽址应位于河床及岸坡稳定、水流顺直的地段,避免位于河流转弯处; 2.3 结构布置 根据渠系规划确定,选用钢筋混凝土简支梁式渡槽进行输水,槽身采用带拉杆的矩形槽,支承结构采用单排架型式,两立柱之间设横梁,基础采用整体板式基础支撑排架。渡槽全长25.6m,采用等跨布置方案,一跨长度为12.8m。进出口均用混凝土建造。

大地构造学讲解

吉林大学 读书报告 大地构造学与区域大地构造学理论及关系 2016年 6 月

大地构造学(Tectonics或Geotectonics)是研究岩石圈组成、结构、运动(包括变形和变位)及演化的一门综合性很强的地质学分支学科。一般说来,大地构造学应该是一门研究整个地球的组成、结构、运动和演化的学科,但是受技术手段和研究方法的局限,要实现这个目标,还要经过很漫长的道路,目前正在努力之中。目前,大地构造学是以地质学方法为主来进行研究的,因此还不能真正研究整个岩石圈,更不用说整个地球,实际上重点研究的是大陆地壳表层几千米之内区域的组成、结构、运动和历史演化。近年来,随着地球物理学和地球化学方法的引入,大地构造学正在逐渐扩展其研究的深度、广度与时间尺度。 研究地壳形成演化基本动力的大地构造学分支统称为地球动力学(Geodynamics),由于地球动力学是各种学说的立论基础,因而成为当今地质学中最热门的话题。地球动力总的来讲可归结为五大系统:重力、膨胀收缩与脉动、地幔分异与对流、地球自转与星际作用等,它们又可细分为若干个不同的学派或假说,而且新的学说仍在不断涌现。 由于历史的局限,不同学者观察分析手段的不同,分析问题方法的不同,先后提出了以不同地球动力作为自己立论基础的大地构造假说,如地槽地台学、地质力学、板块构造学、地幔柱构造学等,其中在地学领域影响最为深远的是地槽地台假说(槽台说)和板块构造假说。槽台说是在长期的大陆地质研究基础上提出来的假说,20世纪60年代以前在地学界占有绝对的统治地位,因此被称为经典大地构造理论,深刻影响了地质学的各个领域;板块构造学是在海洋地质研究基础上提出来的假说,它把地幔对流作为动力来源,主要研究板块间的分裂、漂移、俯冲、碰撞等过程,是20世纪60年代以来占主导地位的大地构造学理论。值得一提的是,地幔柱构造学是针对板块构造说在大陆构造应用中存在的问题的基础上提出来的,创导者认为地幔柱构造学是不同于板块构造学的一种新的全球构造学说,它既能解决大陆构造的问题也能解决大洋构造的问题。 就大地构造学的理论体系而言,国内外常见的有四种类型,分别以区域大地构造学、构造模式、构造解析方法和构造演化历史为主线(万天丰,2004): ⑴以区域大地构造学为主线,区域大地构造学是大地构造学的基础,大地构造学的确也是在区域大地构造学研究基础上发展起来的,我国早年的大地构造学几乎都附属在区域大地构造学之中,例如,北京地质学院区域地质教研室(1963)出版的《中国区域地质》和杨森楠、杨巍然(1985)编写的《中国区域大地构造学》教科书实际上都是以区域大地构造学为基础来讨论大地构造学的;程裕淇院士(1994)主编的《中国区域地质概论》更是在系统总结中国区域大地构造资料的基础上,阐明对于中国大地构造的认识;最近,车自成等(2002)编著的《中国及其邻区区域大地构造学》也是以地块的区划研究作为主线的。以区域大地构造为主线的体系,对于了解各地区的特征比较有利,但是对于中国大陆宏观的总体特征,就可能稍嫌薄弱。 ⑵以构造模式为主线,李四光先生创导的地质力学,在讨论中国大地构造时,就是以构造模式为主线,他称之为“构造体系”,即按构造线的组合特征和地质体所受作用力的类型不同,来建立构造模式,如山字型、多字型、旋卷构造、棋盘格式构造、入字型构造等。20世纪30年代,李四光(1926、1947、1962)就提出了上述构造体系,是世界上第一批从构造变

渡槽设计

第25卷第2期人民黄河Vol.25,No.2 2003年2月YELLOW RIVER Feb.,2003 =水利水电工程> 南水北调中线穿黄工程渡槽设计研究 吴长征,张治平,阎红梅 (黄河水利委员会勘测规划设计研究院,河南郑州450003) 摘要:根据南水北调中线穿黄河段的地形地质条件、黄河的洪水泥沙特性和穿黄工程规模大、技术复杂的特点,进行了多种方案的研究比较,推荐采用三向预应力矩形薄腹梁渡槽,下部结构为柱式墩、混凝土灌注桩基础。经过较全面的计算分析研究,渡槽能够满足各种可能条件下的施工和安全运行要求。 关键词:设计;渡槽;穿黄工程;南水北调中线工程 中图分类号:TV672文献标识码:B文章编号:1000-1379(2003)02-0042-02 1工程概况 南水北调中线工程从丹江口水库陶岔渠首引水,横跨长江、淮河、黄河、海河四大流域,终点到北京团城湖,线路总长1267km。渠首引水流量500~630m3/s,年调水量120亿~140亿m3。主要供京、津、冀、豫4省(市)京广铁路沿线地区城市生活、工业和环境用水。中线穿黄渡槽是中线调水线路中规模最大、技术最复杂的交叉建筑物。该工程位于郑州黄河京广铁桥以西30k m处的孤柏嘴河段,南岸在孤柏嘴上游约2km,北岸位于河南温县陈家沟村西。渡槽设计流量440m3/s,加大设计流量500m3/s。渡槽工程自南岸起点至北岸终点全长19.3km,涉及的主要建筑物有跨黄河渡槽,进口节制闸、退水闸,出口检修闸,南、北岸连接渠道,新、老蟒河交叉建筑物等。跨黄河渡槽长度为3.5km,靠南岸山湾布置。 目前穿黄渡槽的初步设计工作已基本完成,除设计报告外,还提出了近30个专题科研报告。先后组织了多次有水利、交通、科研院所和高校等专家学者参加的技术咨询会和座谈会,对渡槽设计中的关键技术问题进行研究咨询。本文重点介绍穿黄渡槽方案的设计研究情况。 2穿黄渡槽设计 2.1设计标准和依据 中线工程属特大型跨流域调水工程,工程等级为大(?)型。穿黄渡槽是中线工程上最关键的交叉建筑物,建筑物级别为一级。根据5防洪标准6(GB50201-94),考虑中线穿黄工程的重要性和黄河洪水泥沙的复杂性,经论证确定穿黄渡槽设计洪水标准为300年一遇,校核洪水标准为1000年一遇。 穿黄渡槽设计地震加速度概率取基准期50年内超越概率的5%。 2.2地质条件 根据对孤柏嘴河段多条穿黄线路的比较,考虑穿黄工程对黄河河势的影响及工程布置等因素,选定李村)陈家沟线作为穿黄渡槽线路。该处黄河河床宽度9.9km,河槽高程98~100 m,滩地高程102~103m。南岸邙山顶面高程约180m,北岸青风岭岗地高程约112m。黄河北岸滩地上有新、老蟒河,河槽宽分别为40~50m及10~20m。 河床覆盖层主要为第四系全新统冲积层(alQ4)、上更新统冲积层(alQ3)和中更新统冲洪积层(al+plQ2)。下伏基岩为上第三系(N)黏土岩、砂岩等。 Q4地层主要分布于河床及漫滩,岩性为砂壤土、壤土、粉砂、细砂、中砂等,总厚度7~37m。该层与下部Q2地层间断续分布有一层厚度为0.5~5m的泥砾层。 Q3地层主要分布于邙山、青风岭一带及北岸漫滩Q4地层之下。在南岸邙山一带,该层厚55~70m,为黄土状粉质壤土,含少量钙质结核。在北岸青风岭一带,该层厚达90~100m,其上部10~20m为黄土状粉质壤土,下部主要为细砂、中砂及砂砾石层。 Q2地层主要分布于南岸邙山及河槽上部覆盖层之下,其顶面高程及层厚均变化较大。在渡槽起点附近顶面高程为110m 左右,厚约70m,岩性以粉质壤土为主夹6~7层粉质黏土。该层中普遍含有粒径1~8cm的钙质结核。 第三系地层(N),沿渡槽轴线顶面高程变化较大,河床下埋深40~60m。主要为河湖相沉积的黏土岩、砂岩等,固结成岩程度低,属软岩。 工程区地震基本烈度为7度。穿黄渡槽设计地震基准期50年内超越概率5%的基岩水平加速度峰值为0.158 。 2.3渡槽结构形式研究 在穿黄渡槽设计中,根据已有工程资料和近几年水电、桥梁工程中运用的新技术、新工艺,拟定了十几种不同结构类型、不同材料、不同断面形式、不同跨度的渡槽方案。经过初步计 收稿日期:2002-10-16 作者简介:吴长征(1958-),男,河南柘城人,高级工程师。

大地构造学知识点总结

《大地构造学》知识点总结 第一章绪论 一、大地构造学的研究对象、内容、方法、意义 研究对象:大地构造学,是研究地球过程的综合学科。 研究内容:①区域或全球尺度的地壳与岩石圈构造变形特征及圈层相互作用,如:大洋-大陆相互作用、地球内部圈层相互作用、造山带与盆地的形成过程等;②构造变形与岩浆作用-沉积作用-变质作用的相互关系;③地壳与岩石圈的形成与演化过程;④地球表面海-陆的形成与演变方式及过程;⑤地球深部作用过程及其机制。 研究方法:大地构造学研究方法需要综合利用地质学其他学科以及地球物理探测、地球化学的研究手段与研究成果。 研究意义:大地构造学研究可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释。 二、固体地球构造的主要研究方法 主要包括固体构造几何学与构造运动学的研究。 固体地球的构造几何学:主要研究地球的组成成分及结构。方法有:①研究暴露在地表的中、下层地壳乃至地幔顶部剖面,通过地质、地物、地化综合研究,揭示地壳深部物质组成、结构构造、物理性质、岩石矿物及元素的物化行为、温压条件、地热增温率、有关元素及矿物成分的聚散规律;②研究火山喷发携带到地表的深源包裹体,揭示深部物质与构造特征;③人工超深钻探直接取样(目前为止涉及最深深度12km);④地震探测:分为天然地震探测和人工地震探测,利用地震波的折射与反射可揭示地球深部构造特征。 固体地球构造运动学:主要研究地质历史时期的大地构造运动学与现今固体地球表面的构造运动。地质历史时期的大地构造运动学可以利用古地理学(岩相、生物、构造)、古气候分区、地球物理学与古地磁学进行研究;现今固体地球表面的构造运动可以利用空间对地的观测与分析技术。 三、大地构造学研究意义 理论意义:可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释; 实际应用意义:①大型成矿集中区(矿集区)等成矿构造背景、资源规划;②大规模破坏性地震产生于形成的地质构造背景与稳定性评价;③绝大对数大型、灾难性地震都发生在活动板块边缘带(区)上,或与板块相互作用有关的次级活动构造单元边界区域。 第二章固体地球主要构造特征 一、地球表面基本面貌:海陆分布、高程分布及其意义 海陆分布特征:陆地面积占%;海水覆盖面积%; 高程分布特征:陆地主要分布在海平面以上数百米高程范围,大洋的主体分布在海平面以下5km的高程上;

渡槽知识

大型多纵梁式钢筋混凝土渡槽结构受力试验研究 一、渡槽原型概况 南水北调中线工程河南段双洎河渡槽为南水北调工程总干渠跨越河南省新郑市境内双洎河的交叉建筑物,担负着双洎河以北地区南水北调的输水供水任务。其中有郑州、新乡、安阳、邯郸、石家庄、北京、天津等大中城市的生活、工业用水以及沿干渠两侧河南、河北的农业用水,控制灌溉耕地面积3142万亩,负担分水口门61处,年平均输水100多亿立方米。该工程全长895m,槽身总长600m,设计流量490m3/s,加大流量540m3/s,其规模仅次于穿黄工程。由于其地质呈岩性不均且多层分布的状况,渡槽槽身为单跨简支结构。钢筋混凝土多纵梁结构是在总结借鉴我国钢筋混凝土矩形断面渡槽建设经验基础上[1],结合双洎河渡槽工程特点进行改进设计,通过综合技术经济比较后选取的设计方案之一。由于渡槽结构规模的显著增大,使得渡槽纵横向各承载构件之间受力的复杂性增加,需要重新研究认识其中的作用规律,以充分发挥结构的整体受力特性。因此,在原型设计的基础上,进行了仿真模型试验研究。 渡槽原型如图1所示,其单跨跨度为20.0m,宽度为23.4m,高度为10.8m;过水断面宽度为19.0m,设计水深为6.77m,校核水深为7.27m。沿纵向设宽度1.0m、高3.0m(含槽底板厚0.5m)的8根主梁,沿横向设宽度1.0m、高2.5m(含槽底板厚0.5m)的6根次梁,与横梁相应设6条竖肋与侧墙板形成竖向梁板结构。根据设计要求,混凝土强度等级为C30,以二级配骨料配制;受力主筋采用II级热轧钢筋,分布钢筋采用I级热轧钢筋。 图1渡槽原型外观及纵横断面立体图

二、渡槽模型设计与制作 模型试验的任务是:(1)研究纵向主梁的受力性能,确定在不同受力阶段各梁的承载作用及各支座反力的分布规律;(2)研究横梁的受力性能及其对纵向主梁受力性能的影响;(3)研究渡槽结构整体受力极限状态及超载安全系数;(4)确定渡槽结构抗裂设计的控制截面及裂缝发生发展规律。 2.1模型比尺与材料选择 根据仿真模型相似理论[2],能够反映原型受力全过程的模型材料与原型材料的应力应变关系应具有全过程相似性,比较简单的材料模拟就是采用与原型同样的材料进行模型制作。考虑渡槽原型的断面尺寸、模型成型的可行性、测试结果的精确性并兼顾试验设备能力等各方面因素,确定模型比尺为1:5,模型混凝土的级配和强度等级与原型相同,采用现浇成型,浇筑顺序与原型相同。模型钢筋总截面面积按模型比尺取为原型的1/25,采用与原型相同的表面变形钢筋,通过钢筋根数和直径的调整,使模型与原型钢筋的分散程度相近。受力钢筋按其合力作用点位置不变配置。分布钢筋按粘结相似原则配置,使模型与原型钢筋的d/c(d 为钢筋直径,c为混凝土保护层厚度)相同[3]。模型跨度为4.0m, 其横断面尺寸如图2所示。 图2渡槽模型横断面(尺寸单位:cm) 2.2加载系统 在正常运行状况下,渡槽主要承受结构自重和水荷载作用。

相关文档