文档库 最新最全的文档下载
当前位置:文档库 › 均匀带电细圆环的电场的一般分布

均匀带电细圆环的电场的一般分布

带电球体电场与电势的分布

带电球体电场与电势的分布 王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境....中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

一半径为的均匀带电圆环

习题 1. 一半径为a 的均匀带电圆环,电荷总量为q ,求:(1)圆环轴线上离环中心o 点为z 处的电场强度E 题1图 解:(1)如图所示,环上任一点电荷元dq 在P 点产生的场强为2 04R dq E d πε= 由 对称性可知,整个圆环在P 点产生的场强只有z 分量,即 ( ) 2 32202 04cos z a zdq R z R r dq E d E d z +== =πεπεθ 积分得到 ()() () () 2 322 02322 0232202 322042444z a qz a z a z dl z a z dq z a z E l z += += += +=?? πεππελλπεπε 2. 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何 ?

题2图 解:(1)如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为δπdr dq 2=由习题2.1的结果可知该回环在轴线上P 点处的场强为 ( ) () 2 322 2 322024z r rdr z z r zdq E d += += εδπε 则整个均匀带电圆面在轴线上P 点出产生的场强为 () ??? ? ??+-= += ? 2200 2 322 122z a z z r rdr z E a z εδεδ (2)若δ不变,当0→a 时,则0)11(20 =-=εδ z E ; 当∞→a ,则0 02)01(2εδ εδ=-=z E (3)若保持δπ2a q =不变,当0→a 时,此带电圆面可视为一点电荷。则 2 04z q E z πε= 。当∞→a 时,0→δ,则0=z E 。 3. 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。 解:导体在空间各点产生的电场为 )() 0(02 a r r r q E a r E r w >=<<=πε 故静电能量为 a q dr r r q dV E dV E D W V V πεππεεε8442121212 2 2 2 2 =?? ? ??= =?=???∞ 4. 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填

求均匀带电球体的场强分布

1.求均匀带电球体的场强分布。电势分布。已知球体半径为R ,带电量为q 。 解 : (运动学3册)例1—1 质点作平面曲线运动,已知m t y tm x 2 1,3-==, 求:(1)质点运动的轨道方程;(2)s t 3=地的位矢;(3)第2s 内的位移和平均速度;(4)s t 2=时的速度和加速度;(5)时刻t 的切向加速度和法向加速度:(6)s t 2=时质点所在处轨道的曲率半径。 解:(1)由运动方程消去t ,得轨道方程为: 9 12 x y -= (2)s t 3=时的位矢j i j y i x r 89)3()3()33(-=+=,大小为

m r 126481|)3(|≈+=,方向由)3(r 与x 轴的夹角'?-==3841) 3() 3(arctan x y a 表示。 (3)第2s 内的位移为j i j y y i x x r 33)]1()2([)]1()2([-=-+-=?,大小m r 2399||=+=?,方向与与x 轴成?-=??=45arctan x y a ,平均速度v 的大小不能用v 表示,但它的y x ,分量可表示为t y v t x v y x ??= ??= ,。 (4)由,,23当时tj i j dt dy i dt dx v -=+= ,43)2(j i v -= 大小'?-=-=?=+= -853)3 4 arctan( ,5169)2(1a s m v 方向为。 j dt dv a 2-== 即a 为恒矢量,.,21 轴负方向沿y s m a a y -?-== (5)由质点在t 时刻的速度22249t v v v y x +=+= ,得切向加速度 2494t t dt dv a +==τ,法向加速度2 2 2496t a a a n +=-=τ。 注意: ||dt dv dt dv ≠,因为dt dv 表示速度大小随时间的变化率,而||dt dv 表示速度对时间变化率的模,切向加速度τa 是质点的(总)加速度a 的一部分,即切向分量,其物理意义是描述速度大小的变化;法向加速度n a 则描述速度方向的变化。 (6)由s t v a n 2,2 == ρ 时所求的曲率半径为 m a v n 8.202 .125)2(|)2(|2===ρ

计算均匀带电圆环的电势与电场

计算均匀带电圆环的电势与电场 邱荒逸 江阴职业技术学院基础部(江苏江阴214431) 摘要:尝试一种计算均匀带电圆环电势与电场的方法。 关键词:带电圆环 电势 电场 计算 Calculating the Electric Potential and Electric Field Strength of Homogeneous Circular Band with Electricity Qiu Huangyi (Jiangyin Polytechnic College, Jiangyin Jiangsu 214431, China ) Abstract: tries a method to calculate the electric potential and electric field strength of homogeneous circular band with electricity. Key words: circular band with electricity; electric potential; electric field strength; calculation 1. 引言 求均匀带电圆环在空间的电势与电场 [1-3,5] 方法有很多,本文与文献[4]相对应,尝试两种 不同的近似方法,确定如图1所示,均匀带电 q 、半径a 的圆环,在远处P 点的电势、电场。 2.均匀带电圆环的电势 考虑到电荷分布的对称性,采用图示柱坐标系,在均匀带电圆环的远处,即a r >>的各 点,电势可写成[5] +++=),(),(),(),()2()1()0(φ?φ?φ?φ?r r r r (1-1) )0(?、)1(?、)2(?,分别对应零、一、二级近似。其中r q r 0)0(4),(πεφ?= ,),()1(φ?r 为电偶极 矩在远处的电势,而此圆环的电偶极矩本身为零,故0),()1(=φ?r , 图1均匀带电圆环、场点P 及坐标系 y

均匀带电球面和载流柱面上场强的计算

均匀带电球面和载流柱面上场强的计算 摘要:对于均匀带电球面上一点的电场强度和无限 长均匀载流柱面上一点的磁感强度问题,无法采用教材中常用的静电场高斯定理和磁场安培环路定理求解,该文分别用电场和磁场叠加原理进行了求解,得到了该问题的具体表达式。 关键词:均匀带电球面均匀载流柱面高斯定理安培 环路定理叠加原理 中图分类号:O411 文献标识码:A 文章编号:1674-098X (2016)02(c)-0159-02 在求解均匀带电球面上电场强度分布时,一般都是通过静电场的高斯定理求解,但是对于理想的均匀带电球面来讲,这种方法只能求出球面内部和外部的电场强度分布,而对于球面上一点的场强,由于无法确定高斯面内电荷分布而无法利用高斯定理求解,对两边取极限的方法也无法求出,有些教材只指出在球面上场强值不连续或有一突变[1,2],但并 没给出具体值。同样,在求解无限长均匀载流柱面磁感应强度分布时,一般都是磁场安培环路定理求解,而对柱面上一点的磁感应强度,这种方法也同样由于无法确定环路包围的电流强度大小而无法求解,该文对这两个问题分别采用场叠加原理进行了计算。

1 均匀带电球面上一点的电场强度 图1为一半径为的均匀带电球面,带电量为,根据电场的高斯定理,可求得球面内外的电场强度分布为[3]:该结论并没有给出球面上任一点(即)处的电场强度,原因在于对理想的均匀带电球面,利用高斯定理求解该位置处电场强度时,无法确定高斯面内包围的电荷量。该问题可通过叠加原理进行求解。为求球面上任一点点的电场强度,建立图示的坐标系,并将球面分割为无数多个半径不同的无限窄的环带,在坐标处、取高度为的环带如图1所示,环带面元面积为: 所带电量为: 根据带电圆环轴线上一点的场强公式可得所取环带在 点的电场强度大小。 由于各环带在点产生的电场强度方向均沿轴正方向,所以整个球面在点产生的电场强度为: 利用几何关系及可得点总场强: 与球面内外场强分布比较可知,该处场强发生了一突变。 2 无限长均匀载流柱面上一点的磁感强度 图1所示示为一半径为、电流沿轴向均匀分布的无限长圆柱面的截面图,总电流强度为,根据磁场的安培环路定理,可得柱面内外的磁感强度分布为[3]: 为求柱面上任一点点的电场强度,建立图1所示的坐标

带电球体电场与电势的分布

带电球体电场与电势的 分布 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

带电球体电场与电势的分布 王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境.... 中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

带电球体电场与电势的分布

王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境....中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

带电圆环

带电圆环 河南省信阳高级中学陈庆威2013.10.23 1.如图所示,一个半径为R的绝缘球壳上均匀带有+Q的电荷,另一个电荷量为+q的电荷放在球心O上,由于对称性,点电荷受力为0.现在球壳上挖去半径为r(r?R)的一个小圆孔,则此时置于球心的点电荷所受的力的大小为 ___(已知静电力恒量为k) 2.如图所示,带有正电荷量Q的细铜圆环竖直固定放置,一带正电荷量q的粒子从很远处沿水平轴线飞来并到达圆心O.不计粒子的重力.关于粒子的上述过程,下列说法中正确的是() A.粒子先做加速运动后做减速运动 B.粒子的电势能先增大,后减小 C.粒子的加速度先增大,后减小 D.粒子的动能与电势能之和先减小,后增大 解:A、圆环带正电,电场线从圆环出发到无穷远终止,带正电的粒子q 所受的电场力方向与其运动方向相反,所以粒子一直做减速运动.故A 错误. B、电场力对粒子q做负功,电势能一直增大.故B错误. C、无穷远场强为零,O点场强也为零,即可从无穷远到O点,场强先增大后减小,粒子所受的电场力先增大后减小,所以其加速度先增大,后减小.故C正确. D、根据能量守恒得知:粒子的动能与电势能之和保持不变.故D错误.

故选C 3.(2011?上海)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A.顺时针加速旋转 B.顺时针减速旋转 C.逆时针加速旋转 D.逆时针减速旋转 解:分析A选项,当带正电的绝缘圆环a顺时针加速旋转时,相当于顺时针方向电流,并且在增大,根据右手定则,其内(金属圆环a内)有垂直纸面向里的磁场,其外(金属圆环b处)有垂直纸面向外的磁场,并且磁场的磁感应强度在增大,金属圆环b包围的面积内的磁场的总磁感应强度是垂直纸面向里(因为向里的比向外的磁通量多,向里的是全部,向外的是部分)而且增大,根据楞次定律,b中产生的感应电流的磁场垂直纸面向外,磁场对电流的作用力向外,所以b中产生逆时针方向的感应电流,根据左手定则,磁场对电流的作用力向外,所以具有扩张趋势,所以A错误; 同样的方法可判断B选项正确,而C选项,b中产生顺时针方向的感应电流,但具有扩张趋势;而D选项,b中产生逆时针方向的感应电流,但具有收缩趋势,所以C、D都不正确.所以本题选B. 故选B. 4.在竖直平面内固定一半径为R的金属细圆环,质量为m的金属小球(视为质点)通过长为L的绝缘细线悬挂在圆环的最高点.当圆环、小球都带有相同的电荷量Q(未知)时,发现小球在垂直圆环平面的对称轴上处于平衡状态,如图所示.已知静电力常量为k.则下列说法中正确的是()

均匀带电球体表面电场强度的计算 论文

摘要 因此均匀带电球体表面电场强度使用高斯定理不能获得,因为高斯定理是一个几何表面,表面电荷也利用几何模型,当高斯分割和表面电荷,表面电荷不能被视为一个几何面,与普通物理的电磁学教材在讨论均匀表面电荷产生的电场强度分布不计算表面电场。本文介绍了叠加原理,点电荷球形均匀一个任意点的磁场强度值,表面磁场强度为球形面很近球形点电场强度平均值,并从外地叠加原理的两种方法求出了均匀带电球面电场强度值。 关键词: 带点球面;电场强度;叠加原理;电荷面密度;高斯定理;突变 I

Abstract pick due to uniform charged sphere surface electric field intensity using Gauss theorem cannot be obtained, because Gauss's theorem is a geometric surface, surface charge is also using the geometric model, when Gauss segmentation and surface charge, surface charge cannot be regarded as a geometric surface, and general physics electromagnetics teaching materials in the discussion of uniform charged surface electric field intensity produced by distribution are not calculated spherical electric field intensity of. This paper introduces the principle of superposition of point charge and spherical uniform with an arbitrary point of the field strength value, the surface field strength for spherical sides very near spherical point field strength average value, and from the field superposition principle by two kinds of method to seek out the uniformly charged spherical surface electric field strength value. Keywords: with spherical; electric field intensity; superposition principle; surface charge density; Gauss theorem; mutation II

相关文档
相关文档 最新文档