文档库 最新最全的文档下载
当前位置:文档库 › 地表水水质自动监测系统建设与运行技术要求

地表水水质自动监测系统建设与运行技术要求

地表水水质自动监测系统建设与运行技术要求
地表水水质自动监测系统建设与运行技术要求

小型式站房及采排水技术要求

1、小型式站房基本要求:

小型式站房属于一体化站房,具有用地面积更小,安装方便等特点。在用地面积不具备固定式站房同时也无法建立40㎡的简易站房时可考虑小型式站房。小型式站房需满足水质自动监测系统所需主体建筑物和外部配套设施要求,外部配套设施是指引入清洁水、通电、通讯和通路,以及周边土地的平整、绿化等。

1.1、站房结构技术要求

(1)小型式站房由外箱体、内部金工件及附件装配组成。

(2)具有密闭性能、防水防冲击性能,整体防护等级达到IP54以上。

(3)具有耐腐蚀性能:外表面喷塑或喷涂专用防锈漆。

(4)内部进行隔热保温处理。夹层采用防火隔热的岩棉。

(5)预留给、排水口,方便监测水样和自来水供给及站房废水排放。

(6)外壳材料采用2mm热浸锌板或者不锈钢板。

(7)表面处理:热浸锌板需要脱脂、除锈、防锈磷化(或镀锌)、喷塑。

(8)机柜承重不低于600Kg。

(9)阻燃:符合现行国家标准《电工电子产品着火危险试验试验方法扩散型和预混合型火焰试验方法》(GB/T 5169.7)实验A要求。

(10)绝缘电阻:接地装置与箱体金工件之间的绝缘电阻不小于2×104M/500V(直流电)。

(11)耐电压:接地装置与箱体金工件之间的耐电压小于3000V(直流电)/min。

(12)机械强度:各表面承受垂直压力大于980N,门打开后最外端承受垂直压力大于200N。

(13)具有前门及后门,前后均可维护,具备防盗功能。

(14)配置集成空调,自动调节内部温度,满足系统及仪表对温度的要求。

(15)站房的供电具有太阳能供电功能。

2、采水单元建设要求

2.1、采水通用要求

2.1.1、采水点位要求

根据断面的功能确定其水质代表性,监测的结果能代表监测水体的水质状况和变化趋势。监测断面一般选择在水质分布均匀,流速稳定的平直河段,距上游入河

口或排污口的距离不少于1Km,选择在原有的常规监测断面上,以保证监测数据

的连续性。

为了减少采水点位局限性对水质自动监测结果的影响,保证采水设施的安全和维护的方便,采水口位置应满足以下条件:

1)采水点水质与该断面平均水质的误差不得大于10%,在不影响航道运

行的前提下采水点尽量靠近主航道。

2)取水口位置一般应设在河流凸岸(冲刷岸),不能设在河流(湖库)的

漫滩处,避开湍流和容易造成淤积的部位,丰、枯水期离河岸的距离不

得小于10m。

3)为了保证水力交换良好,河流取水口不能设在死水区、缓流区、回流区。

4)取水点与站房的距离一般不应超出100 m。

5)枯水季节采水点水深不小于0.5m,采水点大流速应低于3m/s,有利于

采水设施的建设和运行。

2.1.2、采水技术要求

采水单元的功能是在任何情况下确保将采样点的水样引至至站房仪器间内,并满足配水单元和分析仪器的需要。采水单元一般包括采水构筑物、采水泵、采水管道、清洗配套装置和保温配套装置。

采水单元应结合现场水文、地质条件确定合适的采水方式,符合《地表水和污水监测技术规范》(HJ/T 91),保证运行的稳定性、水样的代表性、维护的方便性。

1)采水单元一般包括采水构筑物、采水泵、采水管道,清洗配套装置、防

堵塞装置和保温配套装置。

2)采样装置的吸水口应设在水下0.5~1 m范围内,并能够随水位变化适时

调整位置,同时与水体底部保持足够的距离,防止底质淤泥对采样水质

的影响。做到既能保证采集到具有代表性的水样,又能保证采样单元能

连续正常运行。

3)采水系统应具备双泵/双管路轮换功能,配置双泵/双管路采水,一备

一用;可进行自动或手动切换,满足实时不间断监测的要求。

4)采水管道应具备防冻与保温功能,采水管道配置防冻保温装置,以减少

坏境温度等因素对水样造成的影响。

5)采水管道材质应有足够的强度,可以承受内压,且使用年限长、性能可

靠、具有极好的化学稳定性,不与水样中被测物产生物理和化学反应,

避免污染水样。

6)采水管道应具有防意外堵塞和方便泥沙沉积后的清洗功能,其管路采用

可拆卸式,并装有活接头,易于拆卸和清洗。

7)采水管道应有除藻和反清洗设备,可以通入清洗水进行自动反冲洗。通

过自动阀门切换可以将清洗水和高压振荡空气送至采样头,以消除采样

头单向输水运行形成的淤积,以防藻类生长、聚集和泥沙沉积。

8)采水单元不能明显影响样品监测项目的测试结果。排水点须设在样品水

的采水点下游20m以上的位置。

2.1.3、采水设备要求

采水泵

1)水泵选择的基本原则一般选用清水潜水泵;当检测水体浊度过大时,应

选择污水潜水泵。当取水头位置与站房的高差小于8m或平面距离小于

80m一般选用离心泵或自吸泵,否者选用潜水泵。应综合考虑采水单元

采水泵的选择,需满足水质监测系统运行所需水量、水压,根据现场采

水距离、水位落差配置相应功率的采水泵。

2)采水泵功能要求输水压力要求:压力设计要充分考虑现场的采水距离和

扬程落差,应保障水样顺利输送到站房内,还要留有一定的余量,同时

采样管的水压不低于0.5 Mpa

输水量要求:根据系统正常上水的要求,泵的供水量宜为1~4 t/h。

性能特点:选用的材质应适应使用环境需要,应具备防腐、防漏等性能。

采水管道

采水管道材质应有足够的强度,可以承受内压和外载荷,具有极好的化学稳定性、重量轻、耐磨耗和耐油性强。

1)采水管路设计采水单元采用双泵双管路配置设计(潜水泵或离心泵),

一用一备,满足实时不间断监测要求,并在控制单元中设置自动诊断泵故障及自动切换泵工作功能。采水管路配有管道清洗、防堵塞、反冲洗等设施,并在取水管道设有压力监控装置,控制单元通过该装置实时监控采水单元的运行状态。

2)采水管路清洗设计采水管路清洗设计应具有管道反冲洗和自动排空管

道功能,采水完成后系统自动排空管道并清洗,清洗过程不对环境造成污染。除藻装置可以定期,自动或手动操作,配合清洗水和压缩空气,通过控制总管路及配水管路的电动阀门,可分别对外部采水管路和内部配水进行反冲洗,以防止管路堵塞,并达到对管路的除藻作用。

3))管路铺设为保证水管、线管等管路施工操作方便,开挖宽度不小于0.5

m,深度一般不小于0.5 m,冰冻地区开挖深度应满足当地防冻深度需求,管路预埋在开挖渠内靠站房并高于河涌一侧,且中间渠内无U字形地平。采水管、线预埋件从站房布设至采水点岸边,采用两组镀锌钢管(管径DN100,厚度3.5 mm及以上)作为保护套管,对部分深度不满足要求的,管路两头终端进出接头处采用防冻材料保护,同时管道上层做好防误挖保护(如砖块、预制块)。管路铺设后应保证水路通畅无泄漏,电路接头安全可靠并做防水处理,采用细土缓慢回填至管路上方并轻度夯实;回填后对管路工辅设处做好工警示,防止其他工误挖,保证管路使用安全。

4)管路材质要求根据现场具体情况建设适应当地条件的采水管路使用三

型聚丙烯或硬聚氯乙烯材质,耐用、耐热、耐压、环保。

保温、防冻、防压、防淤、防藻要求

1)保温要求可根据保温层材料、保护层材料及不同条件和要求,选择不同

的隔热结构。保温结构具有足够的机械强度以防止压力损坏,结构简单、施工方便、易于维修、拥有良好的防水性能等特点。

2)防冻要求采水管路布设分为地面段和埋地段。地面段管路通过外层敷设

伴热带和保温棉实现保温和防冻功能;埋地段管路通过将管路敷设于当地冻土层以下,对管路起到防冻作用;也可采用深埋和排空方式。在采水管道经过水面冰冻层的一段,应安装电加热保温层,并有良好的防水性能。

3)防压要求过路段管路应将管路敷设于预留的管线地沟内,上部设置水泥

盖板防止人为踩踏;埋地管路置于镀锌钢管内。

4)防淤、防藻要求确保采水管道铺设平滑并具有一定坡度,尽可能减少弯

头数量,避免管道内部存水。在系统设计时,设置反冲洗装置,以防止淤泥沉积和藻类聚集。

2.1.4、安全措施

在航道上建设采水构建筑物应能长期稳定安全运行,可通过在采水构筑物周围设置红色浮球防护圈。并设置航标灯以实现安全保护功能。浮球及取水部件既要减少影响航运。又能保护自身安全,特别是采水单元,应设置防撞和防盗措施,具体可在浮球顶端设置标准航标灯,并安装视频监控装置,实时监视取水口状态。

2.2、采水单元设施的基本类型和特点

在采水单元设施建设中,应因地制宜采取不同的采水方式。根据不同采水方式的结构特点可分为栈桥式采水、浮筒/船/浮标式采水、悬臂式采水、浮桥式采水、拉索式采水等。

2.2.1、栈桥式采水

栈桥式采水装置尽可能设置在与河堤平齐位置,由采水导杆、采水浮筒、采水管线、升降电机、钢索和水泵组合成采水装置,采水装置铺设河道位置既不能影响航道又能保障采水正常,示意图如下所示:

图2.2.1 栈桥式采水参考示意图

1)栈桥为钢结构或混泥土结构,栈桥建设尤其是基础建设需要牢固可靠,支

撑立柱间距不超过5m,保证能防止50年一遇的洪水;

2)护栏高度不低于1.2m,护栏为DN50钢管;

3)栈桥宽度1m以上,桥面采用防滑钢板或做防滑处理;

4)栈桥在堤岸的一端若距地面较高,应设计为台阶并加装扶手与护栏连接,

方便工作人员上下;

5)护栏临堤岸一端设计安装向护栏内方向开启的活动门,并加锁防止外人擅

自进入;

6)栈桥前端加装警示灯,在栈桥醒目位置设有“注意安全”和“非工作人员不

得入内”等警示标志。

浮筒式采水装置尽可能设置在与站房平齐位置,由采水浮筒、采水管线、船锚、钢索和水泵组合成采水装置。浮筒上方安装有警示标志,采水装置铺设河道位置既不能影响航道又能保障采水正常,示意图如下所示:

图2.2.2 浮筒式采水参考示意图

浮筒采用不锈钢骨架,玻璃钢表面材质制造,浮筒上有2个根据潜水泵直径和深度设计的圆柱空间,水泵维护时可以打开防盗锁轻易地将水泵取出,而不必移动浮筒,采水安装平台两边各设圆柱导轨,插入水中,采水浮筒可沿导轨上下浮动,无论水位如何变化,采水浮筒均保证采水深度始终保持在水面以下0.5~1.0 m,保证在汛期和枯水期能正常工作而不会损坏,设有必要的保温防冻防腐防淤,防撞及防盗措施。并对采水设备及设施进行必要的固定。

悬臂式采水装置由采水浮标、采水导杆、采水管线水泥墩子、钢索和水泵组合而成,采水浮筒和采水导杆通过钢索连接保证采水装置不会因水流速而被冲走,示意图如下所示:

图2.2.3悬臂式采水参考示意图

采水导杆采用镀锌钢管,一端连接河岸浇筑混凝土墩子,连接方式采用万向连接器连接,保证悬臂能随水位变化而转动,左右采用钢索牵引,另一端连接采水浮标,潜水泵在浮标下随水位上下浮动,保持取水在水下0.5~1m的位置。

浮标上方安装有警示标志,采水装置铺设河道位置既不能影响航道又能保障采水正常。

浮桥式采水装置由基础柱、钢索、浮桥、采水浮筒采水管线和采水泵进行组合而成。采水浮桥采用高分子量高密度聚乙烯材料制作的六边水上浮筒拼接而成,每平方米的100%负载浮力可达350 kg以上,示意图如下所示:

图2.2.4 浮桥式采水参考示意图

浮桥随水位变化上下自由浮动。采水浮桥上安装警示标志,浮桥采水装置建设河道位置既不能影响航道又能保降采水正常。

2.2.5、拉索式采水

此取水方式可用于取水点所在地河岸陡峭、水流较急的无通航断面,示意图如下所示:

图2.2.5 拉索式采水参考示意图

综合考虑了现场常规取水困难,水流湍急,水位常年变化较大、取水设施不易安装等特点,通过在河岸两岸浇筑基础立柱,两个立柱之间架设钢索,安装滑轮导索,滑轮导索一端连接牵引电机,另一端连接采水浮筒,潜水泵在浮筒内随水位上下浮动,保持取水在水下0.5~1 m的位置,采水浮筒通过牵引电机,沿着钢索在采水断面的移动,能实现对整个断面任何采水点进行采样,保证了取水点的取水可能性。这样的采水方式,有效隔离了杂草等干扰因素。潜水泵配备过滤罩,避免了

被颗粒物和水中生物进入阻碍泵体叶片运转等问题;潜水泵同时中间进水的设计,也避免了於塞。

2.3、采水方式选择

多种类型采水方式的选择

3、排水技术要求

站房的总排水必须排入水站采水点的下游,排水点与采水点间的距离应大于20 m。各类试剂废水按照危险废物管理要求,单独收集、存放和储运,并统一处置。

站房内的采样回水汇入排水总管道,并经外排水管道排入相应排水点,排水总管径不小于DN150,以保证排水畅通,并注意配备防冻措施。排水管出水口高于河水最高洪水水位的,设在采水点下游。站房生活污水纳入城市污水管网送污水处理厂处理,或经污水处理设施处理达标后排放,排放点应设在采水点下游。

特殊区域因地理环境等因素不能直排的可建设防渗漏渗井。

地表水水质自动监测站站房采排水单元运行维护

1、站房运行维护

1.1、总体要求

地表水自动监测站站房运行维护包括例行维护、保养检修与维护记录等。

1.2、维护要求

1.2.1、例行维护

例行维护包括站房基础设施检查、配套设施检查。运维维护主要是定期对水站站房及配套设施进行巡检检查,巡检检查频次不得低于每周一次,并记录巡检检查

情况。每次对水站巡检检查时进行以下工作:

检查站房基础设施,检查站房设施完整性及状况(周边环境、站房主体、门窗密闭、站房外观、供电线路、光纤线路、供水设施情况等)。

检查站房配套设施情况,主要包括:安防设备、照明设施、消防系统、室内设备供电单元,室内温控单元、室内外监控单元、化验设施、生活设施等。

1.2.2、保养检修

根据地表水水质自动站站房外部环境状况,在规定的时间对站房基础设施进行预防性的检查、维修。站房保养检修工作不能够影响到水质自动站正常运行。水质

自动站站房保养检修根据情况每年不低于一次进行检修。主要工作如下:

1)检查站房避雷设施情况,避雷设施根据情况进行防锈处理。每年进行一

次防雷检测。

2)检查站房屋顶防水情况,根据实际情况进行防水修缮。

3)检查站房主体结构情况。

4)检查站房仪器间排水槽情况。

5)检查水塔工作运行情况,并对水泵进行养护或者更换。

6)做好保养检修工作记录,重要的工作内容拍照留档。

1.3、记录

在自动站监测系统运行中,例行维护、保养检修等进行记录,保证涉及更新工作内容的记录完整、全面、准确。对出现的问题和处理描述需翔实、连续、有

结论或有处理的结果。

2、采排水单元运行维护

2.1、总体要求

地表水水质自动监测系站采排水单元运行维护包括例行维护、保养检修、故障检修、停机维护与维护记录等。

2.2、维护要求

2.2.1、例行维护

例行维护包括采样环境检查、采样设备检查、采样设施检查、管路线路检查、排水系统检查、供电检查等工作。定期对水站采排水单元进行例行巡检检查,其中例行巡检检查分为周、月、季进行,并填写相应维护记录。

月巡检每次对水站巡检检查时进行以下工作:

季巡检每次对水站巡检检查时进行以下工作:

2.2.2、保养检修

根据地表水水质自动站采排水设施及管线的环境状况,在规定的时间对采排水设施、管线、设备进行预防发生的检修。站房应配备足够的备品备件,在保养检修期间不能影响地表水水质自动站监测设备的运行,水质自动站采排水单元设施每年至少进行4次保养检修。

1)维护采水设施外观,栈桥设施的加固;悬臂式、浮桥式、拉索式日常保

养。

2)检修采样水泵工作状态,保养检修连接线路接口的防水工作、水泵与管

路接口固定。

3)保养维护地埋采样管路、采样线路维修井。保养维护架空采样实施固定

部件。

4)做好保养检修工作记录,重要的工作内容拍照留档。

2.2.3、故障检修

故障检修是指对出现故障的采排水单元进行针对性检查和维修。

1)根据采排水单元实际情况,制定常见故障的判断和检修的作业指导书。

2)对于能够诊断明确,且可通过更换备件解决的问题(如水泵损坏、泵管

破裂、管路堵塞、供电线路破损等问题),应及时更换及维修。

3)水质自动站应备有日常维修所使用的耗材和备件。

4)对要影响到水站监测数据的故障检修,应做好故障检修工作的汇报及维

修计划。

5)做好故障检修的工作记录,重要的工作内容拍照留档。

2.2.4、停机维护

短时间停机(停机时间小于24h),对采样水泵断电处理即可,再次运行时应检查采样单元运行情况。

长时间停机(连续停机时间超过24h):对系统控制柜内部采样水泵供电线路进行断电拆除,并排空配水单元水样。再次运行时应重新连接水泵供电线路,检查采样管路工作情况。

2.3、记录

在自动站监测系统运行中,对采排水单元例行巡检、检修维护、故障维护、停机维护等进行记录,保证涉及更新工作内容的记录完整、全面、准确。对出现的问题和处理描述需翔实、连续、有结论或有处理的结果。

表2 水质自动站站房运营检修维护记录站点名称:站点编号:

表4 水质自动站采样设施故障维修记录表站点名称:站点编号:

表5 地表水水质自动站采样系统误差比对记录表站点名称:站点编号:

表6 地表水水质自动站采水单元关键参数测试记录表站点名称:站点编号:

地表水水质自动监测站运行维护技术规范

1、适用范围

本规范规定了固定式、简易式、小型式、水上固定平台式和浮船式水质自动监测站(以下简称水站)运行维护、质量保证与质量控制措施和运行记录等技术要求。

本规范适用于固定式、简易式、小型式、水上固定平台式和浮船式水质自动监测站的质量保证与质量控制以及远程维护、现场维护、应急维护。本规范适用的监测参数为常规五参数、高锰酸盐指数、氨氮、总磷、总氮、叶绿素a、蓝绿藻密度等参数,其他参数可参照本规范。

2、规范性引用文件

本规范内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本规范。

GB 3838 地表水环境质量标准

GB/T 8170 数值修约规则与极限数值的表示和判定

HJ/T 91 地表水和污水监测技术规范

HJ/T 96 pH水质自动分析仪技术要求

HJ/T 97 电导率水质自动分析仪技术要求

HJ/T 98 浊度水质自动分析仪技术要求

HJ/T 99 溶解氧(DO)水质自动分析仪技术要求

HJ/T 100 高锰酸盐指数水质自动分析仪技术要求

HJ/T 101 氨氮水质自动分析仪技术要求

HJ/T 102 总氮水质自动分析仪技术要求

HJ/T 103 总磷水质自动分析仪技术要求

HJ/T 372 水质自动采样器技术要求及检测方法

HJ 915 地表水自动监测技术规范(试行)

地表水水质自动监测站站房及采水单元建设技术规范

《国家地表水环境质量监测网监测任务作业指导书》(试行)

3、术语和定义

下列术语和定义适用于本规范。

3.1、固定式水质自动监测站Stationary water quality automatic monitoring system

采用《地表水水质自动监测站站房与采水单元建设技术规范》的定义。

3.2、简易式水质自动监测站Simplified water quality automatic monitoring system

采用《地表水水质自动监测站站房与采水单元建设技术规范》的定义。

3.3、小型式水质自动监测站Small water quality automatic monitoring system

采用《地表水水质自动监测站站房与采水单元建设技术规范》的定义。

3.4、浮船式水质自动监测站Floating type automatic monitoring system

以舱式浮船为载体的水质自动监测系统。

3.5、跨度span

指适用于所处断面水质的测量范围,跨度值应根据监测项目的水质类别进行设置。

当监测项目的水质类别为I~Ⅱ类时,跨度值均采用II类水质标准限值的2.5倍;

为Ⅲ~劣V类时,跨度值为水质类别标准限值的2.5倍;当监测项目无水质标准限值时,跨度值为监测项目上一周的水质平均值的2.5倍

3.6、零点核查zero check

指水质自动分析仪测试跨度值0%~20%的标准溶液的示值误差。

3.7、跨度核查span check

指水质自动分析仪测试跨度值20%~80%的标准溶液的示值误差。

3.8、24小时零点漂移24 Hours zero drift

指水质自动分析仪以24小时为周期测试跨度值0%~20%的标准溶液,仪器指示值在24小时前后的变化,具体示例如下图3-1。

3.9、24小时跨度漂移24 Hours span drift

指水质自动分析仪以24小时为周期测试跨度值20%~80%的标准溶液,仪器指示值在24小时前后的变化,具体示例如下图3-1。

图3-1 24小时零点漂移和跨度漂移检测方法示例

3.10、集成干预检查Integrated interference test

指系统开水采水时在采水口处人工采集水样,沉淀30 min后取上清液摇匀待系统测试完毕后,直接经水质自动分析仪测试,与系统自动测定的结果进行比对,检查系统集成对水质的影响。

3.11、多点线性核查Multipoint linear verification

指水质自动分析仪以24h为周期测试跨度范围内4个点(含空白、低、中、高4个浓度)的标准溶液,根据测试结果进行线性拟合,用以判定数据可靠性的措施。

3.12、过程日志Process logs

指水站进行采配水、分析、清洗至流程结束整个监测过程的状态信息,应至少包括各步骤启动时间、工作状态、分析过程等信息。

3.13、维护区间Maintenance period

指仪器进入更换试剂、更换部件、人工校准等维护至满足质控要求的区间。

3.14、失控状态Out of control state

水站仪器设备维护期间及不满足质控要求的区间均属于失控状态。

3.15、无效数据Invalid data

指系统处于失控状态、中心平台未获取到等未通过审核的数据。

3.16、水质自动综合监管平台Comprehensive Monitoring platform for automatic

monitoring of water quality

对水质自动监测站进行数据采集、存储、远程控制,并具有运维管理、质控管理、数据综合应用等功能的软件系统。

4、运行维护基本要求

4.1、运维单位

运维单位负责整个水站的日常运行维护,应配备相应的运维车辆、运维船只、备用仪器、备品备件等,同时应具有水站监测项目的实验室分析能力。

4.2、运维人员

运维人员应持证上岗,具有相关的专业知识,能独立运行维护水站。

4.3、水站维护手册

运维单位应根据水站的仪器配置、仪器性能和系统配置情况,结合仪器设备使用说明书编制水站维护手册。

4.4、运维计划与运维报告

4.4.1、运维计划

每周制定下周运维计划,内容包括维护时间、维护人员、维护内容(试剂更换、耗材更换、仪器校准、部件清洗)等。

4.4.2、运维报告

每月第一周编制上月运维报告,内容包括维护水站名称、水站参数配置、维护人员、实际例行巡检日期、维护内容、维护情况等。

4.5、质控计划与质控报告

4.5.1、质控计划

每月最后一周应制定下月质控计划,内容包括水站名称、水站各监测项目标准溶液浓度、质控措施及计划质控时间等。

4.5.2、质控报告

每月第一周应编制上月质控报告,报告模板见附录C,内容包括水站名称、质控日期、维护人员、仪器配置、各监测项目标准溶液浓度、已实施的质控措施、质

控时间、质控技术指标要求、质控情况说明、校准措施、数据有效率等。

5、运行维护质量管理目标

5.1、系统运行及质控要求

常规五参数、叶绿素a、藻密度应按照每小时1次的频次进行监测,其他参数应按照4小时1次的频次进行水质监测,必要时可进行加密监测。

5.2、运行目标

通过对地表水水质自动监测站进行运行维护并采取必要的质控措施,保证水站监测数据质量,水站每个监测因子月数据有效率应≥80%。

6、质量保证与质量控制要求

6.1、质控措施技术要求

6.1.1、总体要求

1)当监测项目前一个月有20天以上在Ⅰ~Ⅱ类时,质控措施按照Ⅰ~Ⅱ类水体的

质控要求执行;否则质控措施按照Ⅲ~劣Ⅴ类水体的质控要求执行。

2)当水质类别发生变化后,应实施相应的质控措施;

3)每周核查跨度的适用性。

4)当监测项目浓度连续超出仪器当前跨度值时,应重新确定跨度,并进行标样核

查。当监测项目水质类别发生变化且未超出超出当前跨度值时,可继续使用当

前跨度。

5)每周进行的质控措施,与前一次间隔时间不得小于4d;每月开展的质控措施

应在每月15日之后进行。

6)所有维护及质控测试均应形成记录;

6.1.2、质控措施实施频次

水站按照表6.1.2规定的质控项目开展水质质控措施,实施频次应不低于下表规定。

表6.1.2 水质自动分析仪质控措施及频次

注:水质自动分析仪进行零点漂移核查时不允许屏蔽负值。

6.1.3、质控措施技术要求

6.1.3.1氨氮、高锰酸盐指数、总磷、总氮自动分析仪质控措施技术要求

表6.1.3.1 水质自动分析仪质控措施要求

6.1.3.2常规五参数质控措施实施要求

表6.1.3.2常规五参数质控措施实施要求

国家地表水环境质量监测网采测分离管理办法

国家地表水环境质量监测网采测分离管理办法 一、总则 第一条为规范国家地表水环境质量监测网采测分离管理,确保地表水环境质量监测数据真实准确,依据《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,以及国务院印发的《生态环境监测网络建设方案》和中共中央办公厅、国务院办公厅印发的《关于深化环境监测改革提高环境监测数据质量的意见》等文件,制定本办法。 第二条本办法所称采测分离,是指国家地表水环境质量监测中,按照国家考核、国家监测的原则,将样品采集和检测分析交由不同单位承担,实现样品采集与检测分析分离、水质监测与考核对象分离的监测模式。 水质自动监测站建成前,地表水采测分离监测数据是分析评价水环境质量状况及变化趋势、考核评估水污染防治成效、支撑环境执法的重要依据;水质自动监测站建成并正式运行后,以自动监测数据为主,地表水采测分离监测数据是自动监测数据的重要质控手段,也是自动监测数据的重要补充。 第三条本办法适用于国家地表水环境质量监测网采测分离监测的管理。 各省(区、市)对本行政区域内省级地表水环境质量采测分离监测可参照执行。 二、职责分工 第四条生态环境部负责国家地表水环境质量监测网采测分离的统一管理,制定采测分离管理制度,组织开展监督检查。中国环境监测总站受生态环境部委托,负责采测分离的组织实施,以标准化、规范化和信息化为重点,制定采测分离实施计划和质量保证、质量控制方案,对监测的全过程质量控制体系负责。 第五条省级生态环境主管部门负责本行政区内国家地表水环境质量监测网采测分离的协调保障;按照统一规范要求,组织设立和维护国家地表水环境质量监测断面(点位)断面桩;负责组织水质变化原因分析,并及时处理水质异常

水质在线监测仪站房建设要求与水质在线监测仪表技术要求(1)

水质在线监测仪站房建设要求及水质在线监测仪表技术要求

一、水质在线监测房规范建设要求及总排口建设要求 (5) 1、基本要求 (5) 2、站房建设规范 (5) 3、站房内供电要求 (8) 4、站房室内环境要求 (9) 5、监测房配套设备 (9) 6、监测站房配管、配线、铭牌标示 (10) 二、排放口规范要求 (11) 三、水质采样单元 (13) 四、保温与防冻 (15) 五、水质在线监测仪表技术要求 (16) (1)水质CODcr在线监测仪技术要求 (16) 1、基本功能要求 (16) 2.主要技术指标及技术参数 (17) (2)、氨氮在线监测仪技术要求 (18) 1、基本功能要求 (18) 2.主要技术指标及技术参数 (19) (3)、总磷在线监测仪技术要求 (20) 1、基本功能要求 (20) 2.主要技术指标及技术参数 (21)

(4)、PH在线监测仪技术要求 (22) 1.基本功能要求 (22) 2.主要技术指标及技术参数 (22) (5)、明渠流量计线监测仪技术要求 (23) 1.基本功能要求 (23) (6)、数据采集传输仪技术要求 (25) 1.基本功能要求 (25) 附件一、水质仪器检测数据通讯协议说明 (27) 附件二、前端监测设备与数据采集仪反控指令说明 (30)

前言 为了贯彻落实《国家重点监控企业污染源自动监测数据有效性审核办法》和《国家重点监控企业污染源自动监测设备监督考核规程》(环发〔2009〕88号)等有关规定,规范国家重点监控企业污染源自动监测设备监督考核合格管理办法。为了给水质分析仪提供一个合适的工作环境,按照水污染在线监测系统安装技术规范(试行)-HJ/T353-2007的要求,需要企业专门设置水质在线监测站房及配套设备。

水质自动监测系统方案说明

水质自动监测系统

二零一三年六月

目录 第一章概述 (2) 第二章水质自动监测站 (3) 2.1组成单元 (3) 2.2主要功能 (4) 第三章水质分析单元 (6) 3.1五参数分析仪 (6) 3.2 COD分析仪 (7) 3.3总磷、氨氮分析仪 (7) 第四章水质在线监测管理软件 (9) 第五章工程量清单 (12)

第一章概述 水质自动监测系统是以在线自动分析仪器为核心,运用现代自动监测技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统。系统完全实现水样的自动采集和预处理,水质分析仪器的连续自动运行,对监测数据能自动采集和存储,能提供远程传输接口及控制接口。 水质自动监测系统能做到实时、连续监测和远程监控,能够及时掌握主要流域重点断面和水源水体水质状况,预警预报重大流域性水质污染事故,在发生重大水污染时掌控水源水质状况,做到防范、解决突发水污染事故的目的。同时还可以在发生源水水质污染时及时通报政府相关部门,启动相应应急预案,确保城市供水安全。

第二章水质自动监测站 水质自动监测站由取水单元、水样预处理及配水单元、分析监测单元、现场系统控 制单元、通信单元、辅助单元和监测中心管理系统组成。系统工作以在线自动监控仪表为核心,取水、预处理工程为辅助,数据采集传输和远程监控为最终目的 2.1组成单元 取水单元:负责完成水样采集和输送的功能,分别有浮船式、滑杆式、悬臂式等。 水样预处理及配水单元:负责完成水样的一级、二级预处理和将水或气导入到相应的管路,以达到水样输送和清洗的目的。水样预处理采用旋转式固液分离器和全自动自清洗型过滤器的方式,是江河瑞通公司专为在线水质自动监测站设计制造的,由旋转式固液分离器、过滤芯等组成,主要应用于含沙量比较大的地表水区域。目前,该产品在松辽流域、海河流域、淮河流域应用广泛,使用效果得到了用户的肯定。 分析监测单元:由监测分析仪表组成,完成系统水样监测分析任务。目前主要监测的参数有温度、电导率、溶解氧、pH浊度、总磷、总氮、氨氮、叶绿素a、蓝绿藻、有机物、重金属、综合毒性、微生物等。

水质自动监测系统综述

水环境质量自动监测技术的发展(2004-4-23) 水质污染自动监测系统(WPMS)是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、 自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 WPMS可尽早发现水质的异常变化,为防止下游水质污染迅速做出预警预报,及时追踪污染源,从而为管理决策服 务。 1 国内外现状 1.1 国外发展概述 水质自动监测在国外起步较早。1959年美国开始对俄亥俄河进行水质自动监测;1960年纽约州环保局开始 着手对本州的水系建立自动监测系统;1966年安装了第一个水质监测自动电化学监测器;1973年全国水质监测 系统分为12个自动监测网,每个自动监测网由4—15个自动监测站组成;1975年在全国各州共有13000个监测 站建成为水质自动监测网。在这些流域和各州(地区)分布设置的监测网中,由150个站组成联邦水质监测站网 ——即国家水质监测网(NWMS)。 日本1967年开始考虑在公共水域设立水质自动监测器;1971年以后,由环境厅支持,开始在东京、大阪等 地建立水质自动监测系统;到1992年3月,已在34个都道府县和政令市设置了

169个水质自动监测站。除此之外 ,建设省在全国一级河流的主要水域也设置了130个水质自动监测站。 英国泰晤士河是世界上水环境污染史最长的河流,至19世纪末河道鱼虾绝迹。1974年成立泰晤士水务管理 局(TWA),取代了原来200多管水机构。为了加强水环境监测,1975年建成泰晤士河流域自动水环境监测系统。 该系统由一个数据处理中心(监控中心站)和250个子站组成。 欧美及日本等国在20世纪70年代已有便携式水质监测仪出售,但属于瞬时测定仪。连续多参数水质测定仪 是在80年代才开始使用的。在监测设备方面,广泛应用现代尖端的微电子技术、嵌入式微控制器技术,并做到 智能化的数据采集、分析和运算,水质监测完全实现了自动化。目前,世界上已建成的WPMS类型较多,既有全 自动联机系统,也有半自动脱机系统,例如澳大利亚GREENSPAN公司,德国GIMAT 公司,美国的ISOC、HYDROLAB 等公司,日本日立制作所和卡斯米国际株式会社等都生产有技术成熟的在线水质自动监测系统,但大部分是以监 测水质污染的综合指标为基础的,包括水温、混浊度、pH值、电导率、溶解氧、化学需氧量、生化需氧量、总需 氧量和总有机碳等。 单项污染物浓度自动监测系统还处于研究试验阶段,挪威科技大学(NTNU)开发出了重金属连续远程监控

地表水水质自动监测系统集成项目招标要求

地表水水质自动监测系统集成项目招标要求 评分标准 1、在测量池、沉沙池、过滤装置等关键配水环节有较好的技术方案加3分; 2、有水质自动监测系统集成相关软件著作权的每项加1分,最多加2分; 3、有水质自动监测系统集成相关专利的,每项发明专利加3分,实用新型专利加2分,最多加5分; 一、系统总体要求 1、应适应项目的实际情况,针对每个站点,提供合理、完整的方案。整体方案和技术应符合国家地表水监测相关要求。应根据不同的水站提供满足水站室外采水要求的设计方案。 2、提供的方案要求系统性能稳定,监测数据可靠,代表性强,运行费用低,维护工作量小。系统应具有一定的先进性、安全性和扩展性。 3、应提供原装、全新的、符合国家及用户提出的有关质量标准的设备,其性能应达到或优于参考指标表中所列技术指标。 4、系统的自动化程度高,可实现全范围的远程监控以及诊断,响应及时、控制准确、预警可靠;日常运维实现信息化管理。

的各项参数,系统具有良好的扩展性。 6、现场和监控中心数据传输应符合相关环保部门规定的自动监测监控数据传输规约。 二、水质自动监测系统集成技术要求 1、设计目标 1.1、应适应项目的实际情况,提供合理、完整的方案。整体方案和技术应符合国家地表水监测相关要求。 1.2、提供的方案要求系统性能稳定,运行费用低,维护工作量小,维护方便,易局部更换。 1.3、提供所需要的辅助设备,包括UPS不间断供电电源、三级防雷等。 1.4、系统应具有抗电磁干扰能力,同时需配备稳定的电力供应系统。 1.5、系统工艺流程简捷,组成精简,力求使系统设备的投资尽量合理。 1.6、管线布置通畅合理,管材选择确保系统能长期有效运行。 1.7、系统的自动化程度高,可实现远程监控;管路、沉沙池、五参数池、采样杯等应具备有效的自动清洗功能并易于手工拆洗。 1.8、系统中关键部件应使用优质知名产品。

水质自动在线监测站项目设备安装方案

水质自动在线监测站项目 设 备 安 装 方 案 编制单位: 一、目的 本方案叙述了在线监测系统的技术要求、实施步骤及有关的防护措施。 二、适用范围 本方案适用于广西壮族自治区水源地在线监测系统的安装。 三、执行的标准规范与施工依据 《自动化仪表工程施工及验收规范》GB50093-2002

《系统设计方案》 四、系统描述 自治区水源地水质自动监测系统的建立,可以获得24小时连续的在线监测数据,并实时将监测数据通过无线网进入自治区水环境监测中心,实现中心对自动监测站的远程监控,以有利于全面、科学、真实地反映该水质情况,为广西重要城市饮用水水源地对水质实时监控提供水质监督手段。 水源地水质自动监测系统主要有采样单元、配水单元、监测单元、控制单元和数据传输单元组成。主要安装内容包括:浮球和水泵投放固定、采样管路敷设、系统机柜安装、设备安装、电气线路连接。 此次安装环境分两种,一种是靠近水源地的空旷地带,采用室外机柜,前期需要浇筑水泥底座;另一种是安装在站房里,采用室内机柜。安装方式基本相同,根据各个现场条件做细微变动。 五、安装条件 项目中6个水源地。6个点均实现了市电接入、移动网络信号覆盖、交通道路畅通、防盗防破坏等基本条件,室外机柜底座浇筑已完成,系统设备已运抵现场,现场环境适宜。 六、人员、设备、机具、材料 浮球和水泵投放固定需要2人,采样管路敷设需要4人,系统机柜安装需要4人、设备安装需要2人、电气线路连接需要2人。安装人员必须具有丰富的安装经验。 机柜安装需要的机具、材料:冲击钻,膨胀螺栓,螺丝刀,活动扳手,水平尺,万用表等 七、施工步骤

八、作业要点 安装前的工作 货物开箱,根据货物清单,清点货物,检查货物情况,包括货物外观、合格证、标识、随机资料、附件等,有缺货、货物损坏及时记录并报告。 检查现场情况是否符合安装条件,包括基座浇筑是否完成且基座面是否平整,预埋件是否正确,浮球投放和管路敷设时现场水文情况良好,机具、材料是否准备齐全、到位。 管路敷设 确定管路敷设方式,可根据现场条件分别采用钢丝软管+采样管或钢管+采样管的方式,如果现场是不规则的土坡岸,采用采样管外套钢丝软管的方式,如果现场是规则的水泥坡面,则采用采样管外套镀锌钢管的方式。 套管,将2根采样管和2根电缆线套进钢丝软管。 挖沟,在土坡上挖沟,深度在左右,将钢丝管埋进沟里,如果是陡峭的土坡,还必须先固定钢丝管再,埋管。注意两端应预留相应长度采样管和电线。 浮球固定与投放 材料准备,浮球、水泵,锚,钢丝绳、丝扣、水泵接头和工具等。 水泵固定,将水泵固定在浮球上,水泵表面光滑,固定时截一段采样管套在其表面,然后用M6*30内六角螺丝固定。 接管,将水泵接头用活动扳手安装到水泵出水口,套上采样管(采样管切口要平整),另一根采样管备用,绑在浮球支架上。 机柜安装 基座面检查,基座面平整,基座面积略大于机柜底面积,基座周围一米内无其他障碍物,以免影响机柜开关门。

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

地表水水质自动监测系统简介

地表水水质自动监测系统简介 随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1、地表水水质自动监测系统的选址: 地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 2、地表水水质自动监测系统建设需考虑: 必须保证电力供应、通讯畅通、自来水供应。 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 周围环境的交通便利。 站点建设费用较大,在选址是考虑长期使用性。 3、地表水水质自动监测系统基本功能: 仪器基本参数和监测数据的贮存、断电保护和自动恢复 时间设置功能、设定监测频次。

水质自动监测系统操作规程

水质自动监测系统操作规程 1.系统工作条件要求: 1.2室内环境条件:注意防潮、防尘、温度5—35?、湿度〈85%; 1.3供 电:220V、380V、50Hz(?10%), 仪器供电需经稳压电源,数据采集器、工控机需经UPS供电; 1.4仪器间禁止吸烟。 2.系统开机操作步骤: 2.1检查整个系统的配电、配水管路、各仪器和供气(空压机)是否正常; 2.2 查看所用试剂种类和试剂量是否符合仪器运转要求; 2.3打开控制器电源开关,给系统供水,然后分别接通各仪器电源,观察各仪器工作状态是否正常,其中: 2.3.1蓝星LXW-0型COD快速分析仪、Aqualab多参数分析仪、ANT-? TOC分析仪开机后即进入测量状态,检查各项参数设置是否适当,确认并修正; 2.3.2 7976五参数测量仪、SERES 2000 COD分析仪,开机后即进入测量状态,检查各项参数设置是否适当,确认并修正; 2.3.3 8232氨氮分析仪开机后进入标定状态,可令其停止标定(按Cal键),待仪器工作状态稳定后(测量室温度为35?时)再标定。检查各项参数设置是否适当,确认并修正; 2.3.4 SERES 2000 TOC分析仪开机后进入预热状态,5-20分钟后(因停机时间长短而不同)仪器进入工作状态。检查各项参数设置是否适当,确认并修正。 2.4打开工控机及调制解调器电源开关,通过移动电话或中心站拨通子站电话确认拨号线路工作正常; 2.5待仪器工作状态稳定后,进行仪器标定。 3.系统关机操作步骤:

3.1 Aqualab多参数分析仪、ANT-? TOC分析仪、SERES 2000 COD分析仪最好 不在测量期间停机; 3.2切断各仪器电源,清洗管路及电极,取出各蠕动泵泵管,清洗过滤装置, 关断采样泵电源; 3.3 pH电极应浸泡在中性缓冲液中; 3.4氨气敏电极短期保存浸泡在0.1M NHCL溶液中,长期保存应将电极拆开洗 4 their own conditions to develop the correct road, the maximum to avoid investment risk, gain profit.(three) vigorously promote the brand. To establish brand awareness, awareness of the use of brand, brand value, brand acquisition performance, enhance the competitive strength. Concentrated manpower, careful planning, packaging and publicity of a number of unique, market influence and coverage of the brand, the implementation of key breakthroughs, to enhance the competitive strength, walking business road the competition of alienation and characteristics, the pursuit of stability and development of the market.(four) to promote the integration of resources. To further broaden their horizons, effective integration of resources within the group, the city resources, other industries and regional resources, mutual trust, mutual benefit, seeking win-win principle, in the framework of national policies and regulations, strict inspection and argumentation, legal consultation, examination and approval procedures, strict regulation of economic activities, attract injection the social investment to the industry group, to achieve leveraging the development, ensure that the value of

江苏省水质自动监测预警系统建设规范

附件: 江苏省水质自动监测预警系统建设规范 (试行) 为加强我省水环境自动监测预警系统统一治理,更好为水环境爱护服务,实现水质自动监测预警系统建设的标准化、规范化和系统化,特制定本规范。规范分为水质自动站房建设规范、水质自动站仪器配置规范和水质自动监测预警系统联网及数据交换协议规范三个部分。 第一部分站房建设规范 本部分适用于江苏省域内省建地表水质自动监测预警站的建设及其治理。 1、站房总体要求:采纳砖混结构,为永久性建筑。站房建为1~2层建筑物,一层楼内面积布局按站房各功能区面积要求设计。站房采纳高雅的格调,红瓦粉墙,围栏采纳铸铁栅栏,墙边种常青植物,标志、标牌、取水口警示牌醒目。与室外高压电线保持一定的安全距离。 2、标志:站房廊檐醒目位置设立0.5~1.0米高度绿色横幅,标示中国环保标志(底衬白色,标志绿色),标志后中文、英文同时标示“江苏省环境地表水水质自动监测站”,横幅大

小可依照建筑物调整。具体参考附图。 3、标牌:站房统一使用铜制标牌,标牌上用黑色字体分不标注: 江苏省环境地表水质自动监测 ×××站 自动站编号:×× 监控河流:×× 来水区域:×× 监测项目:××、××、××…… 经纬度:××、×× 治理单位:××市(县、区)××××(单位) 4、取水口警示牌:白底红字,书写“环境监测设施取水口”,标牌为60cm×40cm。 5、征地面积:600~6000 平方米,不包括出入通道。 6、建筑面积:许多于150平方米。除能安装全部监测仪器外,还应留有存放辅助设备、质控室和工作人员活动、休息的空间。建议将站房分为实验区和办公区,按功能区相对集中布设房间。各间使用面积范围如下: ◆仪器间:30~36 m2 ◆采配水间:10~12 m2 ◆监控间:10~12 m2 ◆质控间:10~15 m2 ◆值班间:12~15 m2 ◆维修间:10~12 m2

地表水水质自动监测系统介绍

地表水水质自动监测系统介绍 一、地表水水质自动监测系统意义及现状 实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个;(2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 二、地表水质自动监测站仪器配置与运行方式

水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心。 为充分发挥已建成的100个国家地表水质自动监测站的实时监视 和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。

地表水水质自动监测站

近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况。 水站的选址: 水质自动监测站所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 站房建设需考虑的因素有: 1 必须保证电力供应、通讯畅通、自来水供应。 2 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 3 周围环境的交通便利。 4 站点建设费用较大,在选址是考虑长期使用性。 监测因子: 水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮等 水站分类: 1 分心小屋式水质自动监测站 分析小屋式水质自动监测站,站房材质多为彩钢板或不锈钢板,表现做喷塑或烤漆处理,具备完善的供水、供电、防雷、接地、密封、保暖、网络通讯以及视频监控功能,仪表多采用壁挂方式安装,适用于用占地面积有限、地理情况复杂、项目建设周期较短、有移址或调整监测点位需求的水站建设。 监测指标: 水温、PH、溶解氧、电导率、浊度、COD、BOD、TOC、DOC、硝酸盐、亚硝酸盐、H2S、TSS、UV254、NO2-N、BTX、色度、指纹图和光谱报警、氨氮、叶绿素a、蓝绿藻、磷酸盐、盐度、氯化物、氟化物等 配备仪器: 分析小屋式全光谱水质自动监测法内部结构图 系统特点:

1.管路设计精细、科学 2.测量池、预处理均为专利设计 3.建议应用全光谱测量技术 4.维护量小、运行稳定 5.占地小,施工周期短,可移址 6.适宜于高温、低温环境下水站运行要求 7.实时在线,即插即测 8.无需试剂,无二次污染 9.自动清洗,降低维护 10..一套系统,多种参数 11.全光谱指纹图,智能报警 12.安装便捷,适应各种应用条件 13.3D指纹图能够分析紫外及可见光的吸收全光谱,从而能额外提供水质变化的整体信息 14.设备运行及记录管理、质量控制,实时数据有效性和事件甄别及预报警。 2 集装箱式水质自动监测站 集装箱式水质自动监测站,是基于标准化集装箱进行集成成安装的一套完整的水质在线监测系统,将监测系统所有组成单元安装于标准的集装箱内,形成一种规格化、标准化的集成模式,便于系统的快速生产、现场快速安装调试,并在需要时可方便起吊、移址。 监测指标: 水温、PH、溶解氧、电导率、浊度、COD、BOD、TOC、DOC、硝酸盐、亚硝酸盐、H2S、TSS、UV254、NO2-N、BTX、色度、指纹图和光谱报警、氨氮、总磷、总氮、高锰酸盐指数、重金属、叶绿素a、蓝绿藻、磷酸盐、盐度、氯化物、氟化物等 “西安世园会”水质安全保障项目浐河水质自动监测站浐河水质自动监测站采样平台 配备仪器: 集装箱式传统分析方法水质自动监测站

水污染源在线监测系统验收技术要求规范HJT354--2007

水污染源在线监测系统验收技术规 HJ/T 354-2007 1 适用围 1.1 本标准规定了水污染源在线监测系统的验收方法和验收技术指标。 1.2 本标准适用于已安装于水污染源的化学需氧量(CODCr)在线自动监测仪、总有机碳(TOC)水 质自动分析仪、紫外(UV)吸收水质自动在线监测仪、pH 水质自动分析仪、氨氮水质自动分析仪、总 磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器、数据采集传输仪等仪器的 验收监测。 2 规性引用文件 本标准容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 6920 水质 pH值的测定玻璃电极法 GB 7479 水质铵的测定纳氏试剂比色法 GB 7481 水质铵的测定水酸分光光度法 GB 11893 水质总磷的测定钼酸铵分光光度法 GB 11914 水质化学需氧量的测定重铬酸盐法 GB 50093-2002 自动化仪表工程施工及验收规 GB 50168-92 电气装置安装工程电缆线路施工及验收规 HBC 6-2001 环境保护产品认定技术要求化学需氧量(CODCr)在线自动监测仪HJ/T 15-1996 超声波明渠污水流量计 HJ/T 70 高氯废水化学需氧量的测定氯气校正法 HJ/T 96-2003 pH水质自动分析仪技术要求 HJ/T 101-2003 氨氮水质自动分析仪技术要求 HJ/T 103-2003 总磷水质自动分析仪技术要求 HJ/T 104-2003 总有机碳(TOC)水质自动分析仪技术要求 HJ/T 191-2005 紫外(UV)吸收水质自动在线监测仪技术要求 HJ/T 212-2005 污染源在线自动监控(监测)系统数据传输标准 JB/T 9248-1999 电磁流量计 ZBY 120 工业自动化仪表工作条件温度、湿度和大气压力 3 术语和定义 下列术语和定义适用于本标准。 3.1 水污染源在线监测仪器 指在污染源现场安装的用于监控、监测污染物排放的化学需氧量(CODCr)在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV)吸收水质自动在线监测仪、pH水质自动分析仪、氨氮水质自动分析仪、总磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器和数据采集 传输仪等仪器、仪表。

小型水文水质自动监测站技术方案范文

小型水文水质自动监测站技术方案 1. 概述 水文水质监测是为国家合理开发利用和保护水土资源提供系统水文水质资料的一项重要的基础工作,是水生态、水资源、水安全科学管理和保护的基础。水质监测的目的是及时、准确、全面地反映水环境质量现状及发展趋势,为水环境监测、管理、规划、污染防治、生态预警等提供科学依据。 水文水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术、GIS 技术以及相关的专用分析软件和通信网络所组成的一个综合性的在线自动监测系统。水质在线自动监测系统是一套把多项监测指标的分析仪表组合在一起,从采样、分析到记录、整理数据(包括远程数据)、中心遥测组成的系统,结合相应的监控及分析软件,实现实时在线自动监测,满足运行可靠稳定,维护量少的要求,并实现无人值守。 一套完整的大型大型水质在线自动监测系统,由于其系统复杂,建设成本高,建设周期长,运营维护成本高等原因。进行大面积的布点建设存在较大的困难。 随着国际上水质技术的发展,多参数高集成的设备已经得到了广泛的认可。利用国外先进的高集成的一体化多参数水质监测仪,配合我公司数据采集遥测系统及通用水环境水资源管理监控平台软件,可以非常方便的实现地表水、地下水、水源水、饮用水、排放口、海洋等不同水体的水质自动在线监测,有效的实时监测水质的变化情况,为水生态、水环境、水安全的有效管理提供可靠的分析和监控。 监测的指标主要包括包括水位、流量、水温、溶解氧、pH 、电导、盐度、浊度、蓝绿藻,氨氮离子等多种参数。所监测的各类指标可通过有线或无线传输方式传送到监控中心,也可在监测现场实时读取数据。 2. 技术方案 2.1 系统组成: 系统主要包括Nimbus 气泡水位计、SLD 超声波多普勒流量计、Hydrolab 多参数水质分析仪、数据采集遥测系统、供电系统、监控管理软件等几部分组成。

水质自动在线监测站项目设备安装方案完整版

水质自动在线监测站项目设备安装方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水质自动在线监测站项目 设 备 安 装 方 案 编制单位: 一、目的 本方案叙述了在线监测系统的技术要求、实施步骤及有关的防护措施。 二、适用范围 本方案适用于广西壮族自治区水源地在线监测系统的安装。

三、执行的标准规范与施工依据 《自动化仪表工程施工及验收规范》GB50093-2002 《系统设计方案》 四、系统描述 自治区水源地水质自动监测系统的建立,可以获得24小时连续的在线监测数据,并实时将监测数据通过无线网进入自治区水环境监测中心,实现中心对自动监测站的远程监控,以有利于全面、科学、真实地反映该水质情况,为广西重要城市饮用水水源地对水质实时监控提供水质监督手段。 水源地水质自动监测系统主要有采样单元、配水单元、监测单元、控制单元和数据传输单元组成。主要安装内容包括:浮球和水泵投放固定、采样管路敷设、系统机柜安装、设备安装、电气线路连接。 此次安装环境分两种,一种是靠近水源地的空旷地带,采用室外机柜,前期需要浇筑水泥底座;另一种是安装在站房里,采用室内机柜。安装方式基本相同,根据各个现场条件做细微变动。 五、安装条件 项目中6个水源地。6个点均实现了市电接入、移动网络信号覆盖、交通道路畅通、防盗防破坏等基本条件,室外机柜底座浇筑已完成,系统设备已运抵现场,现场环境适宜。 六、人员、设备、机具、材料 浮球和水泵投放固定需要2人,采样管路敷设需要4人,系统机柜安装需要4人、设备安装需要2人、电气线路连接需要2人。安装人员必须具有丰富的安装经验。 机柜安装需要的机具、材料:冲击钻,膨胀螺栓,螺丝刀,活动扳手,水平尺,万用表等

排放口水质在线监测监测系统建设方案

目录 一、项目内容 (1) 二、设计方案 (1) 2.1 设计基本原则 (1) 2.2 污水排放口建设 (1) 2.3 监测房建设 (2) 三、设备选型 (5) 3.1工作原理 (5) 3.2 仪器的主要特点 (6) 3.3 COD在线分析仪的性能指标(HBCOD-1) (7) 3.4 供货范围 (9) 3.5 日常维护及易损件说明 (10) 四、设备报价 (11) 五、设备安装、调试和培训 (12) 六、售后服务 (12) 6.1 产品质量 (12) 6.2 维修响应 (13) 6.3 保修范围 (13) 6.4 系统培训 (13) 七、日常运行维护 (14) 八、上海地区部分客户名单 (15)

九、江苏、浙江地区部分客户名单 (16)

一、项目内容 COD在线监测仪能全面、及时、准确核定废水中COD的排放量。贵单位污水排放口在线监控系统安装的监测仪器为:化学需氧量分析仪(COD)。 二、设计方案 2.1 设计基本原则 本着实用、稳定、可靠、易于掌握、操作、管理、维护的原则,配备符合国家标准和国家环保行业标准的仪器仪表,并留有充分的可扩展空间,以满足环保形势发展的要求。确保技术先进、运行稳定可靠、经济实用,以较高的性能价格比构建环境监测系统,使资金的产出投入比达到最大值。能以较低的成本、较少的人员投入来维持系统运转,提供高效能与高效益。 2.2 污水排放口建设 污水排放口要遵循便于采集样品、便于监测计量、便于日常监督管理的原则,根据出水排放口具体情况进行规范化设计建设并建立统一标志牌。排放口尽量与监测房靠近,如果排放口距离站房较远(超过15米),建议加装采样桶和水泵。为了方便仪器维护及安全保障,排口应加装安全阶梯及护拦,设置防跌落警示牌。

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

国家地表水自动检测站运行管理办法

国家地表水自动监测站运行管理办法 第一章总则 第一条为了加强地表水自动监测站(以下简称水站)的管理,确保水站长期稳定运行,及时准确地发布水质自动监测数据,发挥水站的实时监控和预警监视作用,按照统一领导、明确职责、密切配合的原则制订本办法。 第二条本办法规定了水站的职责分工、资产管理、站点变动、运行维护、数据管理与上报、质量管理、维护维修、责任追究等方面的管理要求。 第三条本办法适用于国家环保总局(以下简称总局)投资建设的水站的运行管理。地方投资建设的水站的运行管理可参照此办法。 第二章职责分工 第四条水站的业务管理工作由中国环境监测总站(以下简称总站)负责,日常运行维护工作由地方环境监测站(以下简称托管站)负责,水站的故障维修和风险保障委托社会专业服务机构负责。各有关省、自治区、直辖市环境监测中心(站)负责协助总站对辖区内的水站进行监督管理。具体职责分工详见附件一。 第五条水站的运行维护原则上地市级环境监测站承担。采取自愿托管的原则,由总站委托,按年度签署委托协议。 第六条负责水站维修工作的专业服务机构按政府采购相关要求确定。总站与其按年度签定维护维修与风险保障合同,报总局审批执行。 第三章运行和质量管理 第七条托管站要设立水站的运行管理部门,明确专职人员,建立水站运行管理规章制度。 第八条每个水站配备的技术人员必须具有环境监测和相关专业知识,必须参加总站组织的技术培训。总站根据《国家地表水质自动监测站技术人员持证上岗考核制度》(详见附件二)对水站技术人员进行业务考核,通过后持证上岗。 第九条水站运行维护技术人员如有变动,须通知总站,并提供替代人员资料,以便安排培训考核工作。 第十条托管站对水站应实施“日监视、周巡检”的日常运行管理制度。即每个工作日须有专人实时监视,发现数据异常应及时处理。每日至少一次采集并存取数据,每周至少一次到现场检查维护,记录远程监视及维护维修结果备查。具体实施细则详见附件三。 第十一条托管站对水站应实施“周检查、月比对”质量管理制度。即每周一次标准溶液检查测试,每月一次实际水样的实验室比对测试,结果按规定上报。 第十二条托管站对上报数据的质量负责。如果在线监测仪器运行出现故障或监测数据质量不符合要求,应采用实验室分析数据。具体实施细则详见附件四。 第十三条总站、省(自治区、直辖市)站将实施现场质量管理检查与现场质控考核,定期或不定期发放密码质控样进行考核。

水污染源在线监测系统安装技术规范

水污染源在线监测系统安装技术规范 1适用范围 1.1本标准规定了水污染源在线监测系统中仪器设备的主要技术指标和安装技术要求,监测站房建设的技术要求,仪器设备的调试和试运行技术要求。 1.2本标准适用于安装于水污染源的化学需氧量(CODCr )水质在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV )吸收水质自动在线监测仪、氨氮水质自动分析仪、总磷水质自动分析仪、pH水质自动分析仪、温度计、流量计、水质自动采样器、数据采集传输仪的设备选型、安装、调试、试运行和监测站房的建设。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 11914 水质化学需氧量的测定重铬酸盐法 GB 50093 自动化仪表工程施工及验收规范 GB 50168 电气装置安装工程电缆线路施工及验收规范 HBC 6-2001 环境保护产品认定技术要求化学需氧量(CODCr )水质在线自动监测仪 HJ/T 15 超声波明渠污水流量计 HJ/T 70 高氯废水化学需氧量的测定氯气校正法 HJ/T 96-2003pH水质自动分析仪技术要求 HJ/T 101-2003 氨氮水质自动分析仪技术要求 HJ/T 103-2003 总磷水质自动分析仪技术要求 HJ/T 104-2003 总有机碳(TOC)水质自动分析仪技术要求 HJ/T 191-2005 紫外(UV )吸收水质自动在线监测仪技术要求 HJ/T 212污染源在线自动监控(监测)系统数据传输标准 JB/T 9248 电磁流量计 ZBY 120 工业自动化仪表工作条件温度、湿度和大气压力 3术语和定义 下列术语和定义适用于本标准。 3.1水污染源在线监测仪器 指在污染源现场安装的用于监控、监测污染物排放的化学需氧量(CODCr )在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV )吸收水质自动在线监测仪、pH水质自动分析仪、氨氮水质自动分析仪、总磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器和数据采集传输仪等仪器、仪表。 3.2水污染源在线监测系统 本标准所称的水污染源在线监测系统由水污染源在线监测站房和水污染源在线监测仪器组成。 3.3超声波明渠污水流量计 用于测量明渠出流及不充满管道的各类污水流量的设备,采用超声波发射波和反射波的时间差测量标准化计量堰(槽)内的水位,通过变送器用ISO流量标准计算法换算成流量。 3.4电磁流量计

相关文档
相关文档 最新文档