文档库 最新最全的文档下载
当前位置:文档库 › 模糊控制课程设计

模糊控制课程设计

模糊控制课程设计
模糊控制课程设计

模糊控制

学院:电气工程学院

班级: 09级自动化3班姓名:赵明

学号:

任课教师:刁晨

单倒置摆控制系统的状态空间设计

一.设计题目

1.介绍

单倒置摆系统的原理图,如图1所示。设摆的长度为L、质量为m,用铰链安装在质量为M的小车上。小车有一台直流电动机拖动,在水平方向对小车施加控制力u,相对参考系产生位移z。若不给小车施加控制力,则倒置摆会向左或向右倾倒,因此,它是一个不稳定系统。控制的目的是,当倒置摆无论出现向左或向右倾倒时,通过控制直流电动机,使小车在水平方向运动,将倒置摆保持在垂直位置上。

2.用途

倒立摆系统以其自身的不稳定性为系统的平衡提出了难题,也因此成为自动控制实验中验证控制算法优劣的极好的实验装置。单倒立摆的系统结构、数学模型以及系统的稳定性和可控性,对倒立摆进行了成功的控制,并在MATLAB 中获得了良好的仿真效果。倒立摆控制理论将在半导体及精密仪器加工、机器人技术、伺服控制领域、导弹拦截控制系统、航空器对接技术等方面具有广阔的开发利用前景。

3.意义

倒立摆是一种典型的快速、多变量、非线性、绝对不稳定系统. 人们试图寻找同的控制方法以实现对倒立摆的控制,以便检验或说明该方法对严重非线性和绝对不稳定系统的控制能力。同时,由于摩擦力的存在,该系统具有一定的不确定性。对这样一个复杂系统的研究在理论上将涉及系统控制中的许多关键问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等都可以以它为例进行研究。

二.被控对象的模型

为简化问题,工程上往往忽略一些次要因素。这里,忽略摆杆质量、执行电动机惯性以及摆轴、轮轴、轮与接触面之间的摩擦及风力。设小车瞬时位置为z,倒置摆出现的偏角为θ,则摆心瞬时位置为(z+lsinθ)。在控制力u的作用下,小车及摆均产生加速运动,根据

牛顿第二定律,在水平直线运动方向的惯性力应与控制力u 平衡,则有

u l z dt

d m dt z d M =++)θsin (22

22 即

u θsin θml - θcos θ)(2

=++??

??

?ml z m M (1)

由于绕摆轴旋转运动的惯性力矩与重力矩平衡,因而有 m glsin θθcos )]θsin ([22

=+l l z dt

d m 即

θθθθθθθsin cos sin cos cos 2

2

g l l z =-+?

?

??

?

(2)

式(1)、式(2)两个方程都是非线性方程,需作线性化处理。由于控制的目的是保持倒置摆直立,因此,在施加合适u 的条件下,可认为θ、?

θ均接近零,此时sin θ≈θ,cos θ≈1,且可忽略θθ

?2

项,于是有

u ml z m M =++?

??

?θ)(

(3) θθg l z =+?

??

?

(4)

联立求解式(3) 、式(4),可得

u M M mg z 1

+-

=?

?θ (5) u Ml

g Ml m M 1

)(-+-=??θθ

(6)

消去中间变量θ,可得输入变量为u 、输出变量为z 的系统微分方程为 u Ml

g u M z Ml g m M z

-=+-????1)()

4(

(7)

在此问题中,设上述两变量的论域为

221≤≤-x 和s rad x s rad 552≤≤-,则设计步骤为

第1步。首先,对1x 在其论域上建立三个隶属度函数,即如图 1所示的正值(P )、零(Z )和负值(N )。然后,对2x 在其论域上亦建立3个隶属度函数,即图2所示的正值(P )、零(Z )和负值(N )。

x的分区

图2-3 输入

1

x的分区

图2-4输入

2

第2步。为划分控制空间(输出),对()k u在其论域上建立5个隶属度函数,()24

u,如图3(注意,图上划分为7段,但此问题中只用了5段)。

-k

24≤

图2-5输出u 的分区

第3步。用表1所示的3*3规则表的格式建立9条规则(即使我们可能不需要这么多)。本系统中为使倒立摆系统稳定,将用到θ和dt d θ。表中的输出即为控制作用u(t)。

表1模糊控制规则表

第4步。我们可用表1中规则导出该控制问题的模型。并用图解法来推导模糊运算。假设初始条件为

()

101=x 和 ()s r a d x 402-=

然后,我们在上例中取离散步长30≤≤k ,并用矩阵差分方程式导出模型的四部循环式。模型的每步循环式都会引出两个输入变量的隶属度函数,规则表产生控制作用u(k)的隶属度函数。我们将用重心法对控制作用的隶属度函数进行精确化,用递归差分方程解得新的

1x 和2x 值为开始,并作为下一步递归差分方程式的输入条件。

分别为1x 和2x 的初始条件。从模糊规则表(表1)有 If(1x =P)and(2x =Z),then(u=P) If(1x =P)and(2x =N),then(u=Z) If(1x =Z)and(2x =Z),then(u=Z) If(1x =Z)and(2x =N),then(u=N)

表示了控制变量u 的截尾模糊结果的并。利用重心法精确化计算后的控制值为u=-2。

在已知u=-2控制下,系统的状态变为

()()()3001211-=+=x x x ()()()()10001212-=-+=u x x x

依次类推,可以计算出下一步的控制输出u(1)。模糊控制器能够满足倒立摆的运动控制。

三、模糊控制器的建立

3.1在MTALAB 中的fuzzy 控制器的建立与封装

在命令窗口中输入:fuzzy 然后回车可得出如下图所示:

图3-1 模糊控制器设置界面然后对其各个变量进行设置其步骤如下图3-2:

对输入变量X1进行设置如下图3-3所示:

变量X2的设置如下图3-4所示:

输出量的设置图3-5所示:

模糊规则控制表的设置如下图3-6所示:

设置出来的效果图如图3-7(a),(b),(c)所示:

(a)

(b)

(c)

3.2 最终在MA TLAB中的搭建出来的框图如下:

图3-8 单级倒立摆在MTALAB中simulink仿真的框架图主要的状态空间模块的参数设置如下:

四、仿真结果以及分析

通过(fuzzy)模糊控制模块,可以和包含模糊控制器的fis文件联系起来,还可以随时改变输入输出论域,隶属度函数以及模糊规则。仿真结果如下图:图4-1和图4-2。

图4-1

分析如下:从图4-1仿真图中可以看出,仿真时间大概在1秒左右趋于平衡,但是图中曲线最终稳定在-2.3左右,而不是在0附近稳定,猜想曲线应该最终稳定于0附近。

图4-2

分析如下:图4-1从图4-2仿真图中可以看出,仿真时间大概也在1秒左右趋于平衡,图中曲线最终稳定在0.3左右,接近于0附近稳定,基本实现了仿真预期效果。

五、结语

通过以上仿真实践的过程可以看出,对于倒立摆一类的包含非线性以及不稳定因素的控制系统模型,采用模糊控制的方法具有很强的适应性以及理想的控制效果,在此基础上,选用恰当的隶属度函数也是实现优化控制的重要条件。

在实际应用中,由于模型往往具有更多的复杂因素以及一些不可预测的干扰因素,所以有时需要简历更复杂的模糊控制方案以及更加精确的隶属度函数,有时也需要采用神经网络的算法结构来解决这样的实际问题,这些方法互相配合从而形成了较为完备的智能控制方案系统。

参考文献:

[1]韩力群.智能控制理论及应用

[2]胡寿松.自动控制原理简明教程

[3]陶永华. 新型PID 控制及其应用[M] . 北京:机械工业出版社, 2003.

[4]孙红兵,李生权,王瑜. 基于RBF 网络二级倒立摆系统PID 控制[J ] . 微计算机信息,2007 (6) : 72 - 75.

[5]刘豹. 现代控制理论[M].北京:机械工业出版社,1992.

[4]陈桂明,等.应用Mat]ab建模与仿真[M].北京.科学出版社,2000.

[5]闻新,等模糊逻辑工具葙的分析与应用[M]北京,科学出版社.2000.

[6]张志涌. 精通MATLAB [M ]. (第三版). 北京:北京航空航天大学出版社, 2000.

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

在线推理法模糊控制器实验报告

在线推理式模糊逻辑控制器设计实验报告 学院:电力学院 专业:自动化 学号: 姓名: 时间:2013年11月16日

一、实验目的 利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的在线推理方法的基本原理及实现过程。 二、实验要求 以matlab模糊工具箱中提供的一个水位模糊控制系统仿真的实例,定义语言变量的语言值,设置隶属度函数,根据提供的规则建立模糊逻辑控制器。最后启动仿真,观察水位变化曲线。 三、实验步骤 叙述在线推理模糊控制的仿真的主要步骤。 1)在matlab命令窗口输入:sltank,打开水位控制系统的simulink仿真模型图,如图; 2)在matlab的命令窗口中,输入指令:fuzzy,便打开了模糊推理系统编辑器(FIS Editor),如图;

3)利用FIS Editor编辑器的Edit/Add variable/input菜单,添加一条输入语言变量,并将两个输入语言和一个输出语言变量的名称分别定义为:level;rate;valve。其中,level代表水位(三个语言值:低,高,正好),rate代表变化率(三个语言值:正,不变,负),valve代表阀门(五个语言变量:不变,迅速打开,迅速关闭,缓慢打开,缓慢关闭); 4)①利用FIS Editor编辑器的Edit/membership function菜单,打开隶属度函数编辑器,如下图,将输入语言变量level的取值范围(range)和显示范围(display range)设置为[-1,1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分别设置为:high,[0.3 -1];okay [0.3 0];low [0.3 1]。其中high 、okay、low分别代表水位高、正好、低; ②将输入语言变量rate的取值范围(range)和显示范围(display range) 设置为[-0.1,0.1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而 所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

模糊控制规则表生成程序

模糊控制规则表生成程序 %偏差E的赋值表 E=[1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0]; %偏差变换率EC的赋值表 Ec=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0]; %输出U的赋值表 u=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0

温度模糊控制实验

温度模糊控制实验(选学) 一、实验目的 1.认识Labview 虚拟仪器在测控电路的应用; 2.通过实验,改变P 的参数,观察对整个温度测控系统的影响; 3.进一步认识固态继电器和温度变送器,了解其工作原理; 4.了解什么是模糊控制理论。 二、预习要点 1.了解模糊控制理论的由来及应用; 2.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度还是通过固态继电器的导通关断来实现加热过程的,控制周期即是一个 加热和冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值 的时固态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度 预设值时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通 时间是1/2T)维持温度(假设导通时间是1/4T)。 本实验暂时用的是模糊控制原理中的的比例控制钟摆无限接近的控制理论, 所以温度预设值不能超过(最大温度+实验开始前温度)/2,例如实验开始前温度为25 度,最大为100 度,那么预设最大为62.5 度,当然这样可能几天温度才能被控制好,所以建议温度不超过实验开始温度5 度,同时我们在将来的升级中 会用更好的模糊理论代替现有的较差的控制理论,这里还要指出好的模糊控制理 论在一定程度上比好的PID 控制还要稳定,做的好的模糊控制是经验与理论的最 完美结合。 四、实验项目 用模糊PID 控制水箱温度。 五、实验仪器 ZCK-II 型智能化测控系统。

六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常; 2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2(图见第三章)中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 12 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,也可以单 击冷却中左边的开关按钮进入加热程序,观察温度上升曲线及电流表和电压表变 化,确认传感器正常工作后点击程序结束,等待返回主界面图标出现即可返回温 度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。本 程序界面基本和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温 度计测量加热箱内水温,并用传感器标定控制图标完成精确标定。标定完成后加 热水箱到30 摄氏左右时程序结束,等待返回主界面图标出现即可返回温度控制主界面进入下一步实验; 12.在温度系统控制主界面中,单击模糊PID 系统图标,进入模糊PID 温度控制系统程序。点击控制参数图标,进入控制参数设定界面,按照参数表4 中的小 组1 给定的预设参数填写。确定返回后点击采集参数图标按照参数表4 中的小组

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

模糊控制器的设计知识讲解

模糊控制器的设计 一、 PID 控制器的设计 我们选定的被控对象的开环传递函数为3 27 ()(1)(3)G s s s = ++,采用经典 的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。 首先,我们搭建simulink 模型,如图1。 图1simulink 仿真模型 由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。调节时间较短,同时超调量很小。响应曲线如图2所示。 图2 PID 控制响应曲线

将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。可以看出,PID 控制器的调节作用已经相当好。 二、 模糊控制器的设计 1、模糊控制器的结构为: 图3 模糊控制器的结构 2、控制参数模糊化 控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。首先对他们进行模糊化处理。 量化因子的计算max min ** max min x x k x x -= - 比例因子的计算**max min max min u u k u u -=- 其中,*max x ,* min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。*max u ,* min u 为控制输出信号实际变化范围的最大最小 值,max u ,min u 输出信号论域的最大最小值。 相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。分别表示负大、负中、负小、零、正小、正中、正大。 3、确定各模糊变量的隶属函数类型 语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。

模糊控制程序实例学习资料

5.2.2.6 模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图5.10所示,采用喷水减温进行控制。设计单输入模糊控制器,观察定值扰动和内部扰动的控制效果。 R = 图5.10 单回路模糊控制系统 按表5-2确定模糊变量E 、U 的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m 所示,仿真结果如图5.11所示。 设温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,选择e 、u 的等级量论域为 {3,2,1,0,1,2,3}E U ==---+++ 量化因子2) 5.1(5.13 2=--?= K 。 选择模糊词集为{NB,NS,ZO,PS,PB },根据人的控制经验,确定等级量E ,U 的隶属函数曲线如图5-8 所示。根据隶属函数曲线可以得到模糊变量E 、U 的赋值表如表5-3所示。 图5-8 E ,U 的隶属函数曲线 -3 -2 -1 1 2 3

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E 为O ,说明温度接近希望值,喷水阀保持不动; 若误差E 为正,说明温度低于希望值,应该减少喷水; 若误差E 为负,说明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E 负大,则U 正大; 若E 负小,则U 正小; 若E 为零,则U 为零; 若E 正小,则U 负小; 若E 正大,则U 负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=ZO then U=ZO if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表5-4 模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域E 到控制量论域U 的模糊关系R 。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R : ()()()()() E U E U E U E U E U R E U NB PB NS PS ZO ZO PS NS PB NB - - =?=?????U U U U 计算模糊关系矩阵R 的子程序如F_Relation_1.m 所示。 %模糊关系计算子程序F_Relation_1.c function [R,mfe,mfu,ne,nu,Me]=F_Relation_1 %#############################输入模糊变量赋值表(表5-3)############################ ne=7;%等级量e 的个数 nu=7;%等级量u 的个数 Me=[0 0 0 0 0 0.5 1;0 0 0 0 1 0.5 0;0 0 0.5 1 0.5 0 0; 0 0.5 1 0 0 0 0;1 0.5 0 0 0 0 0]; Mu=Me; %##定义模糊变量及其语言值 1=PB,2=PS,3=O,4=NS,5=NB ,并输入模糊控制规则表(表5-4)## mfc=5;%模糊变量E 的语言值个数,控制规则表列数

LabVIEW的模糊控制系统设计(DOC 8页)

LabVIEW的模糊控制系统设计(DOC 8页)

基于LabVIEW的模糊控制系统设计 摘要 本文以LabVIEW为开发环境进行设计模糊控制器,将设计出的模糊控制器应用到温度控制系统中,实现了在有干扰作用的情况下对烤箱温度的控制,取得较好的控制效果。 关键词:虚拟仪器模糊控制热电偶Abstract This paper is design issue is the use of LabVIEW fuzzy control, through the design of fuzzy control procedures to control the plant (oven) temperature. Finally, it comes ture control the temperature of oven even if there has disturb. Keywords: 1引言 虚拟仪器(LabVIEW),就是在以通用计算机为核心的硬件平台上,由用户设计定义虚拟面板,测控功能由软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统的控制面板,以多种形式表达输出结果,利用计算机强大的软件功能实现数据的运算、分析、处理和保存,利用I/O接口设备完成信号采集、测量与控制。 模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。因为引入了人类的逻辑思维方式,使得模糊控制器具有一定的自适应控制能力,有很强的鲁棒性和稳定性,因而特别适用于没有精确数学模型的实际系统。 本文将模糊控制的基本思想应用到基于虚拟仪器的温度控制系统中。通过热电偶测量烤箱实际温度,与给定值比较。当测量温度与设定温度之间存在较大的偏差(e≥6℃)时,定时器产生占空比较大的脉冲序列,全力加热。当系统温度与设定温度之间偏差小于6摄氏度,采用模糊控制算法。模糊控制器根据误差和误差变化率,经过模糊推理输出脉冲序列的占空比的大小,经过固态继电器控制烤箱电源得通断,从而实现对烤箱温度的控制。 2系统组成

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

模糊控制算法c程序

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include <> #include"" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=,a1=,a2=,a3= */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

模糊实验报告洪帅

控制理论与控制工程 《智能控制基础》 课程实验报告 专业:控制理论和控制工程 班级:双控研2016 姓名:洪帅 任课教师:马兆敏 2016年12 月4 日

第一部分:模糊控制 实验一模糊控制的理论基础实验 实验目的: 1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘 2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响 3 模糊矩阵合成仿真程序的学习 4 模糊推理仿真程序 实验内容 (1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。 1隶属函数编程 试验结果如图1-1 图1-1隶属度函数曲线 (2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。 仿真曲线见图1-2,

图1-2隶属度函数曲线 2 典型隶属函数仿真程序 学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。 M=1 M=3 M=3 M=4

M=5 M=6 图1-3 M在1、2、3、4、5、6时的图形 2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下, (1)完成思考题P81 2-5,并对比手算结果。完成思考题P81 2-4,并对比手算结果。 (2)2-5: (1)Matlab结果如下 ① ② ③ P81 2-5手算结果:

P=? ? ? ? ? ? 7.0 2.0 9.0 6.0 Q=? ? ? ? ? ? 4.0 1.0 7.0 5.0 R=? ? ? ? ? ? 7.0 7.0 3.0 2.0 S=? ? ? ? ? ? 5.0 6.0 2.0 1.0 (P Q) R=? ? ? ? ? ? 4.0 4.0 6.0 6.0 (PUQ) S=? ? ? ? ? ? 5.0 6.0 5.0 6.0 (P S)U(Q S)=? ? ? ? ? ? 5.0 6.0 5.0 6.0 总结:手算结果和MATLAB运行结果一致。 (2) (2)思考题P81 2-4 Matlab运行结果如下: P81 2-4题手算结果如下: () 30 20 10 4.0 1 10 4.0 20 30 + + + + - + - + - = e ZE μ () 30 20 3.0 10 1 3.0 10 20 30 + + + + - + - + - = e PS μ ()() 30 20 10 4.0 3.0 10 20 30 + + + + - + - + - = ?e e PS ZE μ μ ()() 30 20 3.0 10 1 1 10 4.0 20 30 + + + + - + - + - = ?e e PS ZE μ μ 总结:手算结果和MATLAB运行结果一致。 4 模糊推理仿真程序:学习P47 例2-16,仿真程序如下。(1)完成思考题2-9,并对比手算结果。 Matlab结果如下

模糊控制程序设计报告

模糊控制程序设计报告 自研112班 麻世博 2201100387 题目:已知被控对象为0.51()101 s G s e s ?=+。假设系统给定为阶跃值r =30,采样时间为0.5s ,系统的初始值r(0)=0。试分别设计: (1)常规的PID 控制器; (2)常规的模糊控制器; 分别对上述2种控制器进行Matlab 仿真,并比较控制效果 解答: 1 常规PID 控制器的设计与SIMULINK 仿真 如图1所示,使用SIMULINK 工具对已知系统的PID 控制系统进行仿真。 图1 PID 控制系统的SIMULIK 仿真 其中PID 控制器为离散型,采样时间T=0.5s ,参数P=14,I=3,D=0。阶跃信号幅值为30,被控对象传递函数为0.51()101 s G s e s ?=+。 该系统的阶跃响应如图2。

图2 PID控制系统的输出 该控制系统上升时间T r=1.5s,调节时间T s=8s,超调量σ%=70%,没有稳态误差。 该系统中PID控制器的输出曲线如图3。 图3 PID控制器的输出曲线 输出最大值为465,最小值为-208。 2 模糊控制器的设计 在本文中,我通过MATLAB提供的模糊逻辑工具箱(Fuzzy Logic Toolbox)编辑隶属函数、控制规则,设计了一个双输入单输出的模糊控制器,如下图所示。

图4 模糊控制器概览 2.1 隶属度函数的确立。 选择偏差E和偏差变化率EC作为控制器的输入,控制量U为输出。取E、EC和U的模糊子集为{NB, NM, NS, ZO, PS, PM, PL} ,它们的论域为{-3, -2, -1, 0, 1, 2, 3}。在 MATLAB的命令窗口输入命令Fuzzy,进入模糊逻辑编辑窗口。取输入量E、EC的隶属函数为高斯型(gaussmf),输出U的隶属函数为三角形(trimf),如下图所示。 图5 输入模糊变量E的隶属度函数

基于MATLAB的模糊控制系统设计

实验一基于MATLAB的模糊控制系统设计 1.1实验内容 (1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统; (2)飞机下降速度模糊推理系统设计; (3)水箱液位模糊控制系统设计及仿真运行。 1.2实验步骤 1小费模糊推理系统设计 (1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。 (2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。 (3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。 通过增加隶属度函数来进行模糊空间划分。 输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10]; 输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10]; 输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。

(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则: ①if (service is poor) or (food is rancid) then (tip is cheap) ②if (service is good) then (tip is average) ③if (service is excellent) or (food is delicious) then (tip is generous) 三条规则的权重均为 1.

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

模糊控制系统设计及实现

物理与电子工程学院 《人工智能》 课程设计报告 课题名称模糊控制系统的设计与实现专业自动化 班级 2班 学生姓名梁检满 学号 指导教师崔明月 成绩 2014年6月18日

模糊控制系统的设计与实现 摘要 自然界与人类社会有关系的系统绝大部分是模糊系统,这类系统的数学模型不能由经典的物理定律和数学描述来建立。本文在模糊控制理论基础上设计模糊温控系统,利用专家经验建立模糊系统控制规则库,由规则库得到相应的控制决策,并分析系统隶属度函数,利用matlab与simulink结合进行仿真。仿真结果表明,该系统的各项性能指标良好,具有一定的自适应性。模糊控制算法不但简单实用,而且响应速度快,超调量小,控制效果良好。 关键词:模糊逻辑;隶属度函数;模糊控制; 控制算法

1引言 在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。随着社会及科技的发展,现代工程实践对系统的控制要求也在不断地提高,但对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,随着人类生产、生活对控制的精细需求,传统的控制理论已渐渐不能满足工艺要求。虽然于是工程师利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了,因此便尝试着以模糊数学来处理这些控制问题。 “模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。模糊并非是将这个世界变得模糊,而是让世界进入一个更现实的层次。“模糊”比“清晰”所拥有的信息量更大,内涵更丰富,更符合客观世界。“模糊控制理论”是由美国学者加利福尼亚大学著名教授L. A. Zadeh于1965年首先提出,至今已有50多年的历史。模糊控制是用模糊数学的知识模仿人脑的思维方式,对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制,它是用语言规则描述知识和经验的方法,结合先进的计算机技术,通过模糊推理进行判决的一种高级控制策略。它含有人工智能所包括的推理、学习和联想三大要素;它不是采用纯数学建模的方法,而是将相关专家的知识和思维、学习与推理、联想和决策过程,有计算机来实现辨识和建模并进行控制。因此,它无疑是属于智能控制范畴,而且发展至今已发展成为人工智能领域中的一个重要分支。其理论发展之迅速,应用领域之广泛,控制效果之显著,实为世人关注。 在工业生产过程中,温度控制是重要环节,控制精度直接影响系统的运行和产品质量。在传统的温度控制方法中,一般采取双向可控硅装置,并结合简单控制算法(如PID算法),使温度控制

相关文档
相关文档 最新文档