文档库 最新最全的文档下载
当前位置:文档库 › 主板上电时序图

主板上电时序图

主板的上电时序及维修思路

一般 插上ATX电源后,先不要直接去将主板通电试机,而是要量测主板在待机状态下的一些重要工作条件是否是正常的。在这里我们要引入“Power Sequencing”——上电时序这个概念,主板对于上电的要求是很严格的,各种上电的必备条件都要有着先后的顺序,也就是我们所说的“Power Sequencing”,一项条件满足后才可以转到下一步,如果其中的某一个环节出现了故障,则整个上电过程不能继续下去,当然也就不能使主板上电了。 主板上最基本的Power Sequencing可以理解为这样一个过程,RTCRST#-VSB 待机电压-RTCRST#-SLP_S3#-PSON#,掌握了Power Sequencing的过程,我们就可以一步的来进行反查,找到没有正常执行的那一个步骤,并加以排除。下面具体介绍一下 整个Power Sequencing的详细过程: 1. 在未插上ATX电源之前,由主板上的电池产生VBAT电压和CMOS跳线上的RTCRST#来供给南桥,RCTRST#用来复位南桥内部的逻辑电路,因此我们应首先在未插上ATX电源之前量测电池是否有电,CMOS跳线上是否有 2.5V-3V的电压。 2. 检查晶振是否输出了 32.768KHz的频率给南桥(在nFORCE芯片组的主板上,还要量测25MHz的晶振是否起振) 3. 插上ATX电源之后,检查5VS B、3VS B、1.8VS

B、1.5VS B、1.2VSB等待机电压是否正常的转换出来(5VSB和3VSB的待机电压是每块主板上都必须要有的,其它待机电压则依据主板芯片组的不同而不同,具体请参照相关芯片组的DATASHEET中的介绍) 4. 检查RSMRST#信号是否为 3.3V的高电平,RSMRST#信号是用来通知南桥5VSB和3VSB待机电压正常的信号,这个信号如果为低,则南桥收到错误的信息,认为相应的待机电压没有OK,所以不会进行下一步的上电动作。RSMRST#可以在I/O 、集成网卡等元件上量测得到,除了量测RSMRST#信号的电压外,还要量测RSMRST#信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际维修中,多发的故障是I/O或网卡不良引起RMSRST#信号不正常。 5. 检查南桥是否发出了SUSCLK这个32KHz的频率。 6. 短接主板上的电源开关,发出一个PWBTN#信号给I/O,I/O收到此信号后,经过内部逻辑处理发出一个PWBTIN#给到南桥。 7. 南桥收到PWBTIN#信号后,发出SLP_S3#给I/O,I/O接到此信号后经过内部的逻辑处理发出PSON#信号给ATX电源,ATX电源接到低电平的PSON#信号后,开始工作,发出各路基本电压给主板上的各个元件,完成上电过程。 以上为INTEL芯片组的上电流程,VIA和SIS的上电过程有些不一样,其中去掉了I/O的那一部分,即触发主板电源开关后,直接送出PWBTN#给南桥,南桥转出SUSB#(即SLPS3#)信号给一个三极管的B极,这个三极管的C极接ATX电源的PSON引脚,E极接GND,SUSB#为高电平,此三极管的

电脑主板上电时序

+PWR_SRC +RTC_CELL ACAV_IN +5V_ALW2 +3.3V_ALW +15V_ALW MAIN_PWR_SW# SUS_ON +5V_SUS +3.3V_SUS +1.8V_SUS SUS_PWG ICH_RSMRST# SIO_PWRBTN# SIO_SLP_S5# SIO_SLP_S3# GFX_RUN_ON RUN_ON +0.9V_DDR_VTT +5V_RUN +3.3V_RUN +1.5V_RUN +1.05V_VCCP ICH_CL_RST0# ICH_CL_PWROK HWPG IMVP_VR_ON +VCC_CORE IMVP_PWRGD PWROK H_PWRGOOD CLK_PWRGD CLK_MCH_BCLK PLTRST# H_RESET# Error code Error type description 11:11Repair Code Bad parts ( 壞件 ) 11:12Repair Code Broken parts(損件, 破件) 11:13Repair Code Missing parts(缺件) 11:14Repair Code Wrong parts(錯件) 11:15Repair Code Excess parts ( 多件) 11:16Repair Code Shift(Misalign)(偏移) 1 / 1

11:17Repair Code Floating (高翹 , 浮高 ) 11:18Repair Code Tombstone(墓碑) 11:19Repair Code Reverse (反向) 11:20Repair Code Up side down (反白) 11:21Repair Code Side up (側立) 11:22Repair Code Pin crush (跪腳) 11:23Repair Code Pin slant(腳歪斜) 11:24Repair Code Original parts NG(原材不良) 11:ZZ Repair Code Other parts fail (其它零件不良 ) 12:11Repair Code Solder bridge (短路) 12:12Repair Code Solder insufficient (錫不足) 12:13Repair Code Cold solder(冷焊) 12:14Repair Code Open solder(空焊) 12:15Repair Code Non-wetting(拒焊) 12:16Repair Code Wet - tin (沾錫) 12:17Repair Code Excess solder(錫覆蓋螺絲孔) 12:ZZ Repair Code Other solder fail (其它焊接不良) 13:11Repair Code PCB open issue ( PCB 開路 ) 13:12Repair Code PCB short issue ( PCB 短路 ) 13:13Repair Code PCB oxidize ( 氧化 ) 13:14Repair Code Solder mask on pad(綠漆 on pad) 13:ZZ Repair Code Other PCB fail ( 其它PCB不良 ) 14:11Repair Code Rework short (重工短路) 14:12Repair Code Rework open (重工開路) 14:13Repair Code BGA Chip Reheat Ok (BGA重工加熱OK) 14:ZZ Repair Code Other rework fail (其它重工不良) 15:11Repair Code Glue overflow(溢膠) 15:12Repair Code Error - test(NTF) ( 誤測 ) 15:13Repair Code Ass'y NG ( 組裝不良 ) 15:ZZ Repair Code Other operated fail (其它作業不良) (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

电脑主板不加电不上电的维修流程

电脑主板不加电不上电的维修流程 主板不上电的故障,在日常维修中比较常见,其实从我的维修经验上来说,不上电的故障是最好修的,只是大家在维修过程中没有掌握正确的维修流程,所以思路也就不正确,在这里向大家作一个关于主板不上电维修的流程的大致介绍,希望对大家维修此类主板时有所帮助! 一、外观的检测 拿到一块客户送修的主板,所先要向客户问明主板的具体故障现象,在没有问清楚故障现象的时候,最好不要通电检测,以防有不必要的麻烦,在询问客户的时间,我们就可以先对主板的外观作一个大致的检查。 1.检查主板上的主要元件有无烧伤的痕迹,重点观察南北桥、I/O、供电MOS管,如发现有明显的烧伤,则首先要将烧伤的部分给予更换。由于南桥的表面颜色较深,轻微的烧伤痕迹可能不太容易观察到,这种时候,我们可以把板子倾斜一定的角度,对着日光或灯光进行查看。在看有否烧伤的同时,还要闻一下主板上是否有刺激性的气味,这也是主板是否有烧伤的依据之一。 2.检查主板上PCB是否有断线、磕角、掉件等人为故障,如有此类故障,则首先进行补线、补件的工作。观察的主要方向是主板的边缘以及背面。 二、未插ATX电源前的量测 如果确定客户描述的故障是主板不上电,则首先要用万用表的二极管档量测主板上是否有短路的地方(其方法是将万用表打到二极管档位,红表笔接地黑表笔接欲测试点,我们可称其为量测对地阻值),千万不可直接上电,不然可能会导致短路的现象更加严重,引起其它元件的烧毁。 1.量测ATX电源上的3.3V、5V、5VSB、12V电压是否有对地短路现象,通常来说,其对地的阻值应在100以上,如果有在100以下的现象,则有可能处于短路状态(PS:新款的主板,3.3V电压对地的正常值阻可能在100左右,所以这个100的数值只可以作为参考性的数字,而非准确的指标,最好的方法是找一块同样的主板来进行对比量测)。如果有短路的情况,则根据短路的具体电压用更换法来排处短路的故障。

主板上电时序自己总结

主板上电时序自己总结 在这里以ASUS的915主板来描述一下INTEL主板的上电及工作时序: 1、当ATX Power送出±12V, +3.3V, ±5V数组Main Power电压后,其它工作电压如+VTT_CPU,+1.5V, +2.5V_DAC,+ 5V_Dual,+3V_Dual,+1.8V_Dual也将随后全部送出. 2、当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD信号[High]给CPU;ICS;VRM; CPU用VTT_PWRGD信号确认VTT_CPU稳定在Spec之内,OK后CPU会发出VID[0:5]. VRM收到VTT_PWRGD后会根据VID组合送出Vcore. 3、在VCORE正常发出后,Processor Voltage Regulator即送出VRMPWRGD信号给南桥ICH6,以通知南桥此时VCORE已经正常发出. 在VTT_PWRGD正常发出后, 此信号还通知给Clock Generator(ICS);以通知Clock Generator 在可以正常发出所有Clock. 4、当提供给的南桥工作电压及Clock都OK后,由南桥发出PLTRST#及PCIRST#给各个Device. The ICH6 drives PLTRST# inactive a minimum of 1 ms after both PWROK and VRMPWRGD are driven high. 翻译:ICH6驱动PLTRST# 为无效的至少1毫秒,在PWROK和VRMPWRGD 被置为高电平以后。 这里我的理解为在PWROK和VRMPWGRD 发出后,至少1MS,ICH6才会发出PLTRST# 给北桥和SIO复位。 PLTRST# 与PCIRST#区别如下: PLTRST# : Platform (翻译:平台指的是北桥+CPU)Reset PCIRST#: PCI Reset PLTRST# connected to all component that previously need PCIRST#,except PCI slots and devices. PCIRST# is connected to PCI Devices and slots without resetting system. PLTRST# is higher than PCIRST#. 在北桥NB接收到南桥送出的PLTRST#大约1ms后,北桥送出CPURST#给CPU,以通知CPU可以开始执行第一个指令动作.(不过要北桥送出CPURST#的前提是在北桥的各个工作电压&Clock都OK的情况下); 下面是一个时序图,按照顺序,对应上述文字。对里面的英文描述不明白的,请在后面跟帖。 注:本时序不能涵盖所有INTEL板,可以作为参考,此时序基本相同,只是产生的方式不同,如MSI里面,很多信号是由MS的专用芯片发出。如MS-5,嘿嘿,这个就要问老杨了。。还要感谢ASUS老莫提供参考资料。希望大家静下心来,好好阅读,你会发现,会有很多收获!

Intel主板上电时序

时序是指主板在开机过程中电压及信号先后开启的顺序。上电时序反映的是主板工作的内在规律,是区分故障部位的重要手段,是使维修工作事半功倍的前提。 按下开机按键,启动就开始了。启动过程分为硬启动和软启动两步。硬启动就是指给主板加电,产生各级芯片必须的时钟信号和复位信号的过程;而软启动部分就是指BIOS的POST自检过程,通过POST自检程序检测电脑的配置和能否正常工作,产生各种总线信号,形成硬件配置信息。无论是台式机还是笔记本均先硬启动而后再软启动。 下面以神舟945PL天尊板为例,讲解主板的上电时序。 第一步: 未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。 晶体(Crystal)提供32.768KHz频率给南桥。 第二步: 插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL。 SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。 南桥正常送出待机时钟SUSCLK (32KHZ)。 第三步: 按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。

SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。 SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。 当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V, +3.3V,±5V数组主要电压. 一般当电源送出的+3.3Vand +5V正常后,SIO(IT8712K)的95脚ATXPG信号由5V通过R450和R472两个8.2K的电阻分压提供侦测信号。 Super IO侦测到5V电压正常后,即送出PWROK给南北桥,通知南北桥此时ATX Main Power 送出OK。 当ATX Power送出±12V, +3.3V,±5V数组Main Power电压后,其它工作电压如+1.8V,+1.5V,1.05V,MCH1.2V,2.5V,2.5V-DAC,+ 5VAVDD,VTT-DDR0.9V等也将随后全部送出。 当+VTT_GMCH送给CPU后,CPU会送出VTT_OL,控制产生VTT-PWRGD信号[High]给CPU,VRM芯片; CPU用VTT_PWRGD信号会发出VID[0:5]。 VRM芯片收到VTT_PWRGD后会根据VID组合送出Vcore. 在VCORE正常发出后,VCORE芯片即送出VRMGD信号给南桥ICH7,以通知南桥此时VCORE已经正常发出。 在VCORE正常发出后,此信号还通知给时钟芯片,以通知时钟芯片可以正常发出所有Clock.当提供给的南桥工作电压及Clock都OK后,由南桥发出PFMRST#给SIO的37脚,PCIRST#给PCI槽和网芯;SIO收到PFMRST#信号后,然后由SIO 的31脚输出PCIERST#、33脚输出IDERST#、34脚输出PFMRST1到BIOS和北桥。

AMD_NV芯片组上电时序详细解说

AMD NV芯片组上电时序详细解说 上电部分 NV芯片组,待机条件有三个:3VSB,25M晶振,PWRGD_SB。 ★3VSB桥里面叫+3.3V_PLL_DUAL,图纸第25页。 ★3VSB由三端稳压器1117产生,1117产生的+3.3V_TBY和+3.3V_DUAL两个电压其实就是同1个电压,只不过+3.3V_DUAL多了CT37这个电容滤波而已!+3.3VDUAL还给PCI槽A14(这个可以用打阻值卡来查)及其它地方供电或提供上拉,图纸第46页。 ★桥得到3VSB后,25M晶振开始起振,晶振电压1.5V左右,两脚要有压差。最可靠的还是使用示波器来查看波形,图纸第24页。 ★PWRGD_SB是用来复位桥内部ACPI控制逻辑和寄存器的,相当于INTEL芯片组的RSMRST#,它必须是高电平!这里由紫5伏经过两个开关管同相产生,如果+3.3V_STBY 没有出来,它也不会得到高电平。图纸40页。

★至此桥的待机条件已查完,下面看看它的触发电路,从开关开始查,图纸第42页。开关16脚经过R333电阻接地,15脚信号名字叫PWRBTN*。 ★PWRBTN*由R305电阻提供上拉连到IO(IT8716FCX)75脚,未触发开关之前为5伏。触发开关后,IO75脚得到低电平跳变,此时IO本身供电正常,则从72脚发出低电平跳变到桥。图纸34页。跳变电压我们都用示波器来测量。 ★桥待机条件满足,然后收到IO发过来的低电平跳变,将依次置高 SLP_S5#,SLP_S4#,SLP_S3#。其中SLP_S3#一路返回IO71脚,IO收到SLP_S3#高电平后,76脚由高电平变为低电平去拉低电源绿线完成上电,图纸34页。

电脑上电时序

台式主板上电时序 1.装入主板电池后首先送出RTCRST#(3V的复位信号)给南桥, 2.南桥边的晶振提供32.768KHZ频率给南桥 3.I/O芯片检测电源是否正常提供+5VSB电压 4.+5VSB电压正常转换出+3VSB 5.I/O发出RSMRST#信号通知南桥+5VSB已经准备好了 6.南桥正常送出SUSCLK(32KHZ) 7.当用户按下电源按钮后,将送出PWRBTN#给I/O和南桥 8.I/O收到后发出PWRBTN#信号给南桥 9.南桥送出SLP_S3#和SLP_S4#给I/O 10.I/O发出PS_ON#(低电平)给主机电源 11.当电源接收到PSON#(由高电平向低电平跳变),电源开关立即送出+12,-12V,+3.3V,+5V,-5V这些主电源电压 12.当主机电源送出+12V,-12V,+3.3V,+5V,-5V主电源电压后,其他主板转换后的工作电压如:+VTT_CPU,+1.5V,+2.5V_DAC,+5V_DUAL,+3V_DUAL,+1.8V_DUAL也将随后全部送出 13.当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD电源好信号(高电平)给CPU、时钟芯片、CPU电源管理芯片。 14.时钟芯片开始给各个功能性芯片电路提供同步时钟,(此时侦测卡的CLK指示灯亮) 15.时钟芯片同时给南桥提供时钟。 16.CPU用VTT_PWRGD信号确认VTT_CPU(供CPU电压)稳定在安全范围内,接到VTT_PWRGD信号后CPU会发出VID 17.CPU电源管理芯片收到VTT_PWRGD后会根据VID组合送出VCORE(CPU 核心供电) 18.在VCORE正常发出后,CPU电源管理芯片立即送出VRMPWRGD信号给南桥,来通知南桥现在VCORE电压已经正常发出。 19.当提供给南桥的工作电压和时钟都好了后,由南桥发出PLTRST#和PCIRST#给各个功能性芯片电路(此时侦测卡的RST指示灯亮) 20.在北桥接收到南桥发出的PLTRST#大约1ms后,(此时北桥的各个工作电压和时钟应正常)北桥送出CUPRST#给CPU,来通知CPU可以开始执行第一个指令动作 21.CPU开始寻址,调用BIOS程序开始自检。 22.自检时,CPU自检本身、北桥、南桥,再自检内存(自检64K基本内存)最后自检显卡 23.寻址自检通过内存和显卡成功后,硬件没有问题此时已经可以亮机了,会将控制权交给硬盘的操作系统,从而完成整个启动过程

Intel主板上电时序

时序:就是按照一定的时间顺序给出信号,就能得到你想要的数据,或者想要写的数据写进芯片。而上电时序是指主板在开机过程中电压及信号先后开启的顺序。上电时序反映的是主板工作的内在规律,是区分故障部位的重要手段,是使维修工作事半功倍的前提。 按下开机按键,启动就开始了。启动过程分为硬启动和软启动两步。硬启动就是指给主板加电,产生各级芯片必须的时钟信号和复位信号的过程;而软启动部分就是指BIOS的POST自检过程,通过POST自检程序检测电脑的配置和能否正常工作,产生各种总线信号,形成硬件配置信息。无论是台式机还是笔记本均先硬启动而后再软启动。 下面以神舟945PL天尊板为例,讲解主板的上电时序。 第一步:未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。 晶体(Crystal)提供32.768KHz频率给南桥。 第二步:插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL。 SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。 南桥正常送出待机时钟SUSCLK (32KHZ)。 第三步:按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。 SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。 SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。 当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V, +3.3V, ±5V 数组主要电压. 一般当电源送出的+3.3V and +5V正常后, SIO(IT8712K)的95脚ATXPG信号由5V

1_主板上电时序

主 板 上 电 时 序 一:INTEL 芯片组主板上电时序 ? 装入电池后首先送出RTCRST#,3V_BAT 给南桥 ? 晶振提供32.768KHz 频率给南桥 ? +5VSB 转换出+3VSB , IO 检查5VSB 是否正常,若正常则发出RSMRST#通知南桥待机电压OK ? 南桥送出SUSCLK (32KHz ) 按下电源开关后,送出PWRBTN#给IO IO 收到后发出IO_PWRBTN#给南桥 南桥送出SLP_S4#和SLP_S3#给IO IO 发出PS_ON#(持续低电平)给ATX 电源 当ATX 电源收到PS_ON#由高->低后,即送出+12v,-12v,+3.3v,+5v 等主电压 当主电压送出后,即通过主板电路转换出其他工作电压:+VTT_CPU,+1.5v,+2.5v_DAC, +5v_Dual , +3v_Dual,+1.8v_Dual 当+VTT_CPU 供给CPU 后,会经过电路转换出VTT_PWRGD 信号(高电平)给CPU 、时钟芯片、电源管理芯片 CPU 收到VTT_PWRGD 后,发出VID[0:5]组合信号给电源管理芯片 电源管理芯片收到VTT_PWRGD 和CPU 发来的VID 组合后,产生VCORE 当VCORE 正常后,电源管理芯片发出VRMPWRGD 信号给南桥,通知南桥此时CPU 电压已经正常 时钟芯片收到VTT_PWRGD ,且其3.3V 电压和14.318MHz 都正常后发出各组时钟频率 ATX 电源灰线延时发出ATXPWRGD 经过电路转化送给南桥,或者IO 延时发出PWROK 给南桥 南桥发出CPUPWRGD 给CPU ,通知CPU 电压已经正常 ? 南桥电压、时钟都正常,且收到VRMPWRGD 、PWROK 后,发出PLTRST#(平台复位)及PCIRST#给各个设备 ? 北桥接收到南桥发出的PLTRST#,且其电压、时钟都正常,大约1ms 后发出CPURST#给CPU ,通知CPU 可以开始执行第一个指令动作 中国主板维修基地月饼原创

dell上电时序及戴尔笔记本电脑开机过程

dell上电时序及戴尔笔记本电脑开机过程 根据我最近维修的戴尔系列笔记本电脑来看,不管是从奔四还是到迅驰或者双核,只要是使用SMSC系列单片机的主板,其开机过程都是大同小异,同样的道理像IBM的笔记本从奔三到迅驰的开机流程也都是差不多,因为它们也都是使用相同开机控制芯片系统(TB+PMH4+H8S),也就是说只要你熟悉某一块主板后,其他和这块主板使用相同单片机的电脑对你来说都不是太难。 最近我维修的机型有C640、D400、D420、D520、D600、D610、D820、D830、M1210、M1330、M1530等等,这些机器都有一个共同特点,那就是它们都是使用SMSC系列单片机,不过从D820后的单片机不再是BGA封装了,而是用两个DIP封装的芯片组合形成一个完整地控制系统。它们之间的开机步骤基本是相同的,与其他IBM或者HP机型相比较来说,其大的步骤也有相同之处,只是有些细节方面和信号名称不同而已。以下内容是以D600为例来解说,其他机型可能没有相应信号或者名称不同,在参考阅读时请适当灵活变化运用,下面各个步骤的名称也只是根据我个人爱好来取的,并非官方的准确名字。 第一步:BIOS电压(+RTC_PWR5V&+RTC_PWR3_3V) 这个电压从名称来看就是指BIOS电池供电的电压信号+RTCSRC,这个电压在没有插电源和电池时,是由主板上面的BIOS电池供给,当插上电源或电池时主板BIOS电池就处于充电状态,这个+RTCSRC电压信号的主要作用就是用来生成+RTC_PWR5V和+RTC_PWR3_3V两个电压信号,其中+RTC_PWR3_3V信号是给南桥和单片机的一个重要供电。 第二步:公共电压(PWR_SRC) 戴尔机器的公共电压名称叫做PWR_SRC,像IBM的公共电压名称叫做VINT16是一样的意思,公共电压顾名思义就知道是公共的意思,即就是电源和电池共用的上电电路,也就是说这个电压信号既可以是电源供给,也可以是电池供给,同时这个电压信号还会送到主板很多地方去使用,这里详细说说电源上电电路过程,把电池上电电路过程作为电池充电电路内容讲解。 公共电压PWR_SRC是从外部电源经过一系列电路转换而来的,大致步骤要经过DCIN+、+DC_IN、DC_IN+、SDC_IN+、ACAV_IN等几个信号的转换过程,其中SDC_IN+和ACAV_IN两个信号都是充电电路中比较重要的信号,因为SDC_IN+是给电池充电的一个主要电源,而ACAV_IN这个信号是给单片机SMSC芯片的一个重要开启信号,单片机缺少这个信号时将无法正常工作进行充电,当然如果是电池独立供电时就没有这个信号,但会从电池电路上发送另一个具有相同功能的信号给单片机作为指示,这些将会在电池充电电路中关于电源和电池转换过程中详细说明。 第三步:待机电压(+5VALW&+3VALW)

主板的上电时序及维修思路

一般主板的上电时序及维修思路 插上ATX电源后,先不要直接去将主板通电试机,而是要量测主板在待机状态下的一些重要工作条件是否是正常的。在这里我们要引入“Power Sequencing”——上电时序这个概念,主板对于上电的要求是很严格的,各种上电的必备条件都要有着先后的顺序,也就是我们所说的“Power Sequencing”,一项条件满足后才可以转到下一步,如果其中的某一个环节出现了故障,则整个上电过程不能继续下去,当然也就不能使主板上电了。 主板上最基本的Power Sequencing可以理解为这样一个过程,RTCRST#-VSB待机电压-RTCRST#-SLP_S3#-PSON#,掌握了Power Sequencing的过程,我们就可以一步一步的来进行反查,找到没有正常执行的那一个步骤,并加以排除。下面具体介绍一下 整个Power Sequencing的详细过程: 1.在未插上ATX电源之前,由主板上的电池产生VBAT电压和CMOS跳线上的RTCRST#来供给南桥,RCTRST#用来复位南桥内部的逻辑电路,因此我们应首先在未插上ATX电源之前量测电池是否有电,CMOS跳线上是否有 2.5V-3V的电压。 2.检查晶振是否输出了32.768KHz的频率给南桥(在nFORCE芯片组的主板上,还要量测25MHz的晶振是否起振) 3.插上ATX电源之后,检查5VSB、3VSB、1.8VSB、1.5VSB、1.2VSB等待机电压是否正常的转换出来(5VSB和3VSB的待机电压是每块主板上都必须要有的,其它待机电压则依据主板芯片组的不同而不同,具体请参照相关芯片组的 DATASHEET中的介绍) 4.检查RSMRST#信号是否为3.3V的高电平,RSMRST#信号是用来通知南桥5VSB和3VSB待机电压正常的信号,这个信号如果为低,则南桥收到错误的信息,认为相应的待机电压没有OK,所以不会进行下一步的上电动作。RSMRST#可以在I/O 、集成网卡等元件上量测得到,除了量测RSMRST#信号的电压外,还要量测RSMRST#信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际维修中,多发的故障是I/O或网卡不良引起RMSRST#信号不正常。 5.检查南桥是否发出了SUSCLK这个32KHz的频率。 6.短接主板上的电源开关,发出一个PWBTN#信号给I/O,I/O收到此信号后,经过内部逻辑处理发出一个PWBTIN#给到南桥。

主板电路详解

主板电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个

主板上电顺序

第一步:未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。 晶体(Crystal)提供32.768KHz频率给南桥。 第二步:插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL。 SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。 南桥正常送出待机时钟SUSCLK (32KHZ)。 第三步:按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。 SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。 SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。 当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V, +3.3V, ±5V 数组主要电压. 一般当电源送出的+3.3V and +5V正常后, SIO(IT8712K)的95脚A TXPG信号由5V 通过R450和R472两个8.2K的电阻分压提供侦测信号。 Super IO侦测到5V电压正常后,即送出PWROK给南北桥,通知南北桥此时ATX Main Power 送出OK。 当ATX Power送出±12V, +3.3V, ±5V数组Main Power电压后,其它工作电压如+1.8V ,+1.5V,1.05V,MCH1.2V,2.5V,2.5V-DAC,+ 5V A VDD,VTT-DDR0.9V等也将随后全部送出。 当+VTT_GMCH送给CPU后,CPU会送出VTT_OL,控制产生VTT-PWRGD信号[High]给CPU,VRM芯片; CPU用VTT_PWRGD信号会发出VID[0:5]。 VRM芯片收到VTT_PWRGD后会根据VID组合送出Vcore. 在VCORE正常发出后,VCORE芯片即送出VRMGD信号给南桥ICH7,以通知南桥此时VCORE已经正常发出。 在VCORE正常发出后, 此信号还通知给时钟芯片,以通知时钟芯片可以正常发出所有Clock. 当提供给的南桥工作电压及Clock都OK后,由南桥发出PFMRST#给SIO的37脚,PCIRST#给PCI槽和网芯;SIO收到PFMRST#信号后,然后由SIO的31脚输出PCIERST#、33脚输出IDERST#、34脚输出PFMRST1到BIOS和北桥。 (主板上的很多复位电路的复位端,有时候是直接并联在一起的,有时候是在复位端前面加一个缓冲器进行隔离,常用的缓冲器就是74F125。) 在北桥NB接收到南桥送出的PFMRST1后,北桥送出CPURST#给775CPU,以通知CPU可以开始执行第一个指令动作.(不过要北桥送出CPURST#的前提是在北桥的各个工作电压&Clock都OK的情况下)。 之后电脑就进入软启动状态,即BIOS开始工作,将控制权交给BIOS的POST程序,由POST程序检查硬件的工作状态和配置信息,产生各种总线信号,初始化硬件,点亮显示器,然后将控制权交给操作系统,完成软启动。

很容易理解的上电时序

第一步: 未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。 晶体(Crystal)提供 32.768KHz频率给xx。 第二步: 插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL。 SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。 南桥正常送出待机时钟SUSCLK(32KHZ)。 第三步: 按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。 SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。 SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。 当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V,+ 3.3V,±5V数组主要电压.

一般当电源送出的+ 3.3Vand +5V正常后,SIO(IT8712K)的95脚ATXPG信号由5V通过R450和R472两个 8.2K的电阻分压提供侦测信号。 Super IO侦测到5V电压正常后,即送出PWROK给南北桥,通知南北桥此时ATX Main Power 送出OK。 当ATX Power送出±12V,+ 3.3V, ±5V数组Main Power电压后,其它工作电压如+ 1.8V,+ 1.5V, 1.05V,MCH 1.2V, 2.5V, 2.5V-DAC,+ 5VAVDD,VTT-DDR 0.9V等也将随后全部送出。 当+VTT_GMCH送给CPU后,CPU会送出VTT_OL,控制产生VTT-PWRGD信号[High]给CPU,VRM芯片; CPU用VTT_PWRGD信号会发出VID[0:5]。 VRM芯片收到VTT_PWRGD后会根据VID组合送出Vcore. 在VCORE正常发出后,VCORE芯片即送出VRMGD信号给南桥ICH7,以通知南桥此时VCORE已经正常发出。

相关文档