文档库 最新最全的文档下载
当前位置:文档库 › 焦炭光学组织与反应性关系的研究

焦炭光学组织与反应性关系的研究

焦炭光学组织与反应性关系的研究
焦炭光学组织与反应性关系的研究

生物医学光学探析

生物医学光学探析 1会议概况 工业激光和生物医学光学国际学术会议于1999年10月25~27日在华中科技大学学术交流中心举行。教授和干福熹院士担任大会主席,来自14个国家和地区的221位代表(境外代表46人)出席了会议。会议得到美国SPIE的支持,正式出版了会议论文集SPIE(工业激光论文集卜3862和SPIE(生物医学光学论文集关3863.前者共收录论文121篇,其中,国外作者论文13篇;后者共收录论文95篇,其中国外作者论文31篇。大会特邀了世界激光和生物医学光学领域的着名学者作主题报告,全体大会4个特邀报告,工业激光分会8个邀请报告,生物医学光学分会4个邀请报告,这些特邀报告和邀请报告学术水平高,均反映了当前国内外研究的前沿课题。 2工业激光研究的最新热点 在工业激光器领域,由于半导体激光器迅速发展,准连续器件已达到 4kw.因此,在许多应用领域均有采用半导体激光器代替传统的气体激光器及固体激光器的发展趋势。但是,由于半导体激光器目前光束质量较差,作为过渡的发展阶段是大量采用半导体激光器泵浦的固体激光器,其激光输出功率也已达到4kw 级,光束质量获得明显改善。因此,在世界市场上,1998年固体激光器的销售金额,首次超过了CO:激光器。据估计,近期激光技术的应用在高功率激光器方面仍然会以COZ激光器和固体激光器为主。在激光应用领域,除了高功率激光应用以外,国外已经在激光精密加工领域开展了深入的研究工作,如法国利用准分子激光超精密打孔、划线,精度非常高,孔径圆整、光滑,在陶瓷如S13N;,A12O3等方面的精密处理方面已有深人的研究。本次会议涉及到准分子激光应用的文章有15篇,涉及领域有激光淀积超导薄膜,金刚石薄膜、非晶金刚石薄膜等,激光制备光栅,激光制备纳米颗粒。我国大陆学者主要把准分子激光用于制备薄膜,台湾大学是用准分子激光制备光栅,法国学者用激光制备纳米颗粒。可见国外用准分子激光加工开展面比我国广泛。从本次会议看,国外今后重点发展研究领域和前沿课题包括:高功率半导体激光器,近五年内千瓦级器件将会实现实用化;半导体激光泵浦固体激光器,特别是盘片固体激光器近五年内也将会突破千瓦级;半导体激光泵浦全固体化紫外激光器已突破3W,如果能提高一个量级,将会逐步取代紫外气体激光器;利用准分子激光对电子元器件处理作了很深入的研究,在这些方面已成为激光超精密加工应用的重要发展方向。国内外在激光制备薄膜方面的研究始

影响焦炭反应性的因素

影响焦炭反应性的因素主要有以下两个方面: 1、原料煤性质:一般中等煤化度的煤,炼制的焦炭有较低的反应性。尤其是煤料的流动度较大时,易使焦炭中生成较多的光学各向异性组织,可降低焦炭反应性。而煤料中灰分常含有碱金属和碱土金属的氧化物,它们对焦炭和二氧化碳的反应有催化作用,因此,煤料灰分高或灰分中碱金属、碱土金属含量高,均会使焦炭反应性增大。 2、炼焦工艺条件:增大装煤堆比重、提高炼焦温度、采取焖炉等措施,可使焦炭结构致密,减少气孔表面积,使焦炭反应性降低。采用干熄焦,可避免水蒸汽对焦炭表面的活化,有利于降低焦炭的反应性。 1、焦炭的冷强度与焦炭其孔径及其分布有关,而热强度则与焦炭孔壁厚度密切相关。 2、为改善焦炭反应性,根本在于多用主焦煤少用高挥发分煤,特别是少用挥发分大于37%的煤。在粘结性足够的情况下,可配入一些粘结性中等的低挥发分煤。 3、若在煤料中配入5%左右挥发分10%的延迟焦,反应性可降低10~20%,其原理是在炼焦后期有大量裂解碳产生,阻塞了部分微气孔,因而降低了反应性。基于这一原理,提高入炉煤的堆密度,提高炼焦最终温度,也有相同的效果。 影响焦炭反应性的因素主要有以下几个方面: 一、煤的性质 原料煤性质:一般中等煤化度的煤,炼制的焦炭有较低的反应性。尤其是煤料的流动度较大时,易使焦炭中生成较多的光学各向异性组织,可降低焦炭反应性。而煤料中灰分常含有碱金属和碱土金的氧化物,它们对焦炭和二氧化碳的反应有催化作用,因此,煤料灰分高或灰分中碱金属、碱土金属含量高,均会使焦炭反应性增大。 1.单种煤值挥发份过高或过低,其反应性较高。在24%左右时,焦炭的反应性最小。 2.单种煤平均最大反射率过高或过低,其反应性较高。 3.灰分对热性质影响,尤其是碱性金属氧化物的存在。 二、炼焦工艺条件: 1)、增大装煤堆比重;堆密度越高,焦炭的热反应性越低,反应后强度越高(明显)。2)、提高炼焦温度; 3)、采取焖炉等措施;一般4.3米以上焦炉结焦时间普遍长。可使焦炭结构致密,减少气孔表面积,使焦炭反应性降低。 三、熄焦方式:采用干熄焦,可避免水蒸汽对焦炭表面的活化,有利于降低焦炭的反应性。 四、备煤工艺条件 1.采用先粉弱粘煤、再配煤、在粉碎的工艺能使焦炭的热反应性下降,反应后强度提高。 2.配煤中添加轧机废油不仅可以提高煤料的堆密度,而且可以改善焦炭的冶金性能指标。

光学金相组织观察方法

光学金相组织观察方法 目的 1.了解光学金相组织观察方法及步逐; 2.了解光学金相显微镜的结构,熟悉其使用的基本方法; 3.了解光学金相样品的制备过程,体会制过程对观察组织的影响。光学金相显微镜的结构 为观察材料的显微组织,必须借助显微镜,大家可能用过生物显微镜,知道其大致结构有:物镜、目镜、粗调、微调等,生物样品是透明的,可用自然光。 工程材料,如金属材料,是不透明的,成像利用的是反射光,因此在光学金相显微镜中,结构上明显特点是有一套照明设备,现用显微镜的照明设备包括:电源、变压器、灯泡、透镜组——得到平行光,经过孔径光栏、滤色片、视场光栏,再经过物镜照射到试样上。经过试样的反射光进入物镜经过一次放大,再经过目镜的再次放大,我们看到的是经过二次放大的虚像。因为最后看到的像和各人的视力的影响,不同人观察时对显微镜要进行微调。

显微组织成像原理 如图所示,从透镜内垂直照射 到试样上的平行光,将发生反射 和吸收。如果试样是镜面,光线 全部原路返回,最后成像为亮点; 如果试样有不平的沟槽,部分光线反射后不能进入物镜,这样这些地方成像为暗区。有明有暗就构成了表面的图象,就是我们观察到的组织形貌。 金相试样的制备方法 取样:从材料或零件上截取准备观察的样品,要求组织要有代表 性,大小要适合制样和观察,尺寸过小的还要进行镶嵌。 打平:让观察面宏观为平面,用砂轮、锉刀或其它方法来实现。 磨光:用不同粒度的金相砂纸,从粗到细依次细磨,让其粗糙度 不断减小。细磨的方法有干磨和湿磨,可用手工细磨和机械

细磨。 抛光:消除细磨留下的最后磨痕,使观察面成为光滑无痕的镜面。 抛光方法有机械抛光、化学抛光和电解抛光。 组织显示:抛光后的试样直接观察,只能分辨吸收光线不同的区域,如非金属夹杂、铸铁中的石墨形状或裂纹。用化学试剂 进行浸蚀,组织中不同结构浸蚀程度不同,如晶界就浸蚀成 沟槽,就可分辨各种组织。 实验内容 每人制备一个金相试样,并利用金相显微镜进行观察结果。 磨样:试样已经过打平,用金相砂纸进行磨光。砂纸下用玻璃板,一只手按住砂纸,另一只手拿试样平稳来回磨削,磨面受压均匀,前推用力,拖回放松。磨痕全部一致,换下一号砂纸,转90度再磨光。 抛光:在呢布上加水和抛光粉,手拿稳轻抛。得到镜面。 浸蚀:用4%的硝酸酒精擦抹试样到镜面光泽刚消失。 清洗、吸水、吹干试样。 在显微镜下观察结果。使用显微镜电源要经过变压器,不要用手摸镜头,注意脚下身后的电线,粗调到位即可见组织再用微调,移动视场轻动载物台。 试样中常见的制样缺陷: 划痕:未磨去(粗大量少)或未抛光好(较细)而留下砂纸磨痕。 麻点、曳尾:抛光过度造成。

焦炭反应性及反应后强度的测定

焦炭反应性及反应后强度的测定 1主要内容及适用范围 规定了测定焦炭反应性及反应后强度的方法提要、实验仪器、设备和材料、试样的采取和制备、实验步骤、试验的结果计算和精密度。 适用高炉炼铁用焦的焦炭反应性及反应后强度的测定,其它用途可参照执行。 2 原理 称取一定质量的焦炭试样,置于反应器中,在1100+5℃时与二氧化碳反应2小时后,以焦炭质量损失的百分数表示焦炭反应性(CRI%)。反应后的焦炭,经I型转鼓试验后,大于lOmm粒级焦炭占反应后焦炭的质量百 分数,表示反应后强度(CSR%)。 3 试验仪器、设备和材料 电炉、反应器、I型转鼓、转鼓控制器、圆孔筛、干燥箱、架盘天平、红外线灯泡、热电偶、筛板、高铝球、托架、反应器支架、块焦反应监控仪、计算机显示器、二氧化碳供给系统及氮气供给系统中的(转子流量计、 洗气瓶、干燥塔、,缓冲瓶)等。 4 技术条件 4.1 升温速度:O-1100℃,平均升温速度为8-16℃/min。 4.2 控温精度:1100±5℃,通二氧化碳j言面度在10-25min内恢复到1100±5℃。 4.3 通气温度:400℃时通氢气,1100℃切断氮气通二氧化碳。 4.4 温度显示误差:不大于±5℃。 4.5 时间显示误差:24小时内不大子30s。 4.6 电源电压:220(±10%)V,500HZ。 4.7 最大负载功率:8千瓦。 4.8 使用环境:温度10-35℃,湿度不大于80%,周围无强电磁场及腐蚀性气体的场所。 5 操作程序 5.1 试验前试样的采取和制备 5.1.1 按GBl997规定的取样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。用颚式破碎机破碎、混匀、缩分出10kg,再用φ25mm、φ21mm圆孔筛筛分,大于φ25mm的焦块再破碎、筛分,取φ21mm筛上物,去掉片状焦和条状焦,缩分得焦块2kg,分两次(每次lkg)置于I型转鼓中,以20r/min的转速,转50r,取出后再用φ21mm圆孔筛筛分,将筛上物缩分出900g作为试样,用四分法将试样分成四份,每份不少于220g。 5.1.2 试验焦炉的焦炭可用40mm-60mm粒级的焦炭进行制样。 5.1.3 将制好的试样放入干燥箱中,在170—180℃温度下烘干2小时,取出焦炭冷却至室温,称取200±5g待用。 5.2 试验前烘炉 5.2.1 检查电源电压是否正常,炉温控制仪上“手动/自动”开关是否在自动位置,控制电缆插头是否插好。 5.2.2 将反应器盖置子炉顶的托架上吊放在电炉内,热电偶插入热电偶套管内,托架与电炉盖问放置石棉板隔热。打开计算机电源开关,启动计算机进入Windows98操作系统。当计算机启动完成后,用鼠标双击桌面上的“块焦反应性控制系统”图标,即可进入操作,同时按下炉温控制仪电源开关。 5.2.3用鼠标单击“运行”单击“试验条件”将反应温度1100℃改成500℃即可,时间2小时,烘炉完成将反应温度500℃改为1100℃。 5.3 试验步骤 5.3.1 称取200±0.5g焦炭试样(大约38-42个之间),在反应器底部铺一层高约100mm的高铅球(40个),上面平放筛板。然后装入已各好的焦炭试样,注意装样前调整好高铝球高度,使反应器内焦炭层处于电炉恒温区内,将与上盖相连的热电偶套管插入料层中心位置,用螺丝将盖与反应器简体固定,将反应器置于炉顶的托架上吊放在电炉内,托架与电炉盖间放置石棉板隔热。 5.3.2 将反应器进气管、排气管分别与供气系统,排气系统连接。将测温热电偶插入反应器热电偶套管内,检查气路,保证严密。 5.3.3 用鼠标单击“运行”用炉温控制仪调节电炉加热。先用手动调节,电流由小到大,在15min之内逐渐调至最大值,然后将按钮拨到自动位置,升温速度为8-16℃/min。

焦炭热反应性

焦炭反应性及反应后强度试验方法 1 范围 本标准规定了测定焦炭反应性及反应后强度试验方法的原理、试验仪器、设备和材料、试样的采取与制备、试验步骤、试验结果的计算及精密度。 本标准适用高炉炼铁用焦的焦炭反应性及反应后强度的测定,其他用途焦炭可参照执行。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T1997-1989 焦炭试样的采取和制备 GB/T2006-1994 冶金焦炭机械强度的测定方法 3 原理 称取一定质量的焦炭试样,置于反应器中,在1100℃±5℃时与二氧化碳反应2小时后,以焦炭质量损失的百分数表示焦炭反应性(CRI%)。 反应后焦炭,经I型转鼓试验后,大于10mm粒级焦炭占反应后焦炭的质量百分数,表示焦炭反应后强度(CSR%)。 4 试验仪器、设备和材料 4.1 电炉 电炉用电炉丝、碳化硅或其它能满足试验要求的加热元件加热均可。 4.1.1 底部封闭式加热电炉 炉体结构如图1。 图1 图2 1 高铝外丝管 2 铁铬铝炉丝3、4 轻质高铝砖 1 炉壳2、3、4 轻质高铝砖5绝缘子 5 炉壳 6 脚轮 7 炉盖8绝缘子 6 炉盖7 硅碳棒8炉脚9 反应器支架 炉膛内径140mm,外径160mm,高度640mm(高铝质外丝管)。

加热元件:使用碳化硅加热器或者电炉丝,前者的使用寿命较长,后者的使用寿命较短,而且更换麻烦。 使用电炉丝时的电炉安装要点:炉壳底部封闭,上口敞开,预先在底板上装好脚轮。在底部铺一层耐火砖,将绕好电阻丝的外丝管立放于底板正中。在外丝管与炉壳间隙之间,填充轻质高铝砖预制件(由标准尺寸的轻质高铝砖切制)或者保温棉,炉丝由上下两端引出,与固定在炉壳上的绝缘子相联接。炉丝引出部分用单孔绝缘管保护好,切忌相互搭接,以免造成短路。控温电偶插入反应器中央,将电炉与控温仪及电源接好。每一台电炉安装完毕即测定恒温区,使炉膛内1100±5℃温度区长度不小于150mm。 使用碳化硅加热元件时的安装要点:可以使用硅碳管或者6到8根硅碳棒,接线时尽量在加热元件的同一端接电源,同时要注意露出的接线端的绝缘保护,防止触电。 4.1.2 底部开口加热电炉 炉体结构如图2。 炉膛:180 mm×180mm ,高600mm(炉壳)。 加热元件:U型硅碳棒,四支,四面炉膛各一支。 电炉安装要点:炉壳底部开口,保证高铝反应管能够通过,上口敞开;底部下反应器支架中间开小孔,使进气管口能够通过,底板用脚支撑。在底部铺一层耐火砖,用标准尺寸的轻质高铝砖砌制炉膛,周围填充保温材料。炉膛顶部开四个孔,放置硅碳棒。硅碳棒连接线与固定在炉壳上的绝缘子相联接,盖好上盖。控温电偶插入反应器中央,将电炉与控温仪及电源接好,每一台电炉安装完毕即测定恒温区,使炉膛内1100℃±5℃温度区长度大于150mm。 4.2 反应器 反应器为耐高温合金钢反应器或高铝质反应器。 4.2.1 耐高温合金钢反应器 结构如图3,由耐高温合金钢制成(GH23或GH44)。 图3 图4 1 中心热电偶套管 2 进气管 3 排气管1中心热电偶插孔 2 进气管 3 排气管 4 盖子 5 底座 4.2.2 高铝质反应器 结构如图4,由耐高温刚玉管和耐高温合金钢(GH23或GH44)制作。反应筒用耐高温刚玉管,上盖下底用耐高温合金钢制作。与硅碳棒加热电炉配置。此反应器也可全用耐高温合金钢(GH23或GH44)制作。 4.2.3 电炉与反应器组装图 电阻丝加热电炉与耐高温合金钢反应器组装图,如图5。

光学参数研究现状

双积分球技术 近年来,激光在生物医学上的应用得到人们越来越广泛的关注,其中生物组织光学特性在光与组织体的相互作用中扮演着重要的角色。组织光学特性参数用来表述组织的光学性质,为临床的医疗诊断和治疗提供参数指标,对医学领域的相关应用有重要的指导意义。 生物组织是一种复杂介质,是一种高散射随机介质,研究光与这种随机介质的相互作用并通过相互作用来反映有关组织内部的特征信息是近几年光学技术研究较为活跃的前沿领域之一,并逐步发展成为一种新兴学科分支——组织光学。 组织光学的核心是发挥光子学测量的实时、无损或微创等优势,利用各种光子学技术,通过测量组织光学特性参数的变化来揭示生物组织结构与功能的变化。因此,光学特性参数的测量对组织光学至关重要。 随着激光生物医学的普及,特别是各种新型激光器的出现,激光正广泛应用于生物医学领域的各个方面。令人遗憾的是,目前有关激光生物医学领域的基础研究并未跟上临床应用,实际的应用中还存在着很大的盲目性,“经验"起着很重要的作用。其主要的原因在于,对激光与生物组织相互作用机理认识不足。为 研究光与组织的相互作用,诸多模型被提出来了,这些模型的准确性取决于组织光学特性参数的测量。因此,光学特性参数的准确测量对组织光学至关重要,它是进一步研究光在生物组织中传播的基础,对激光外科,光动力疗法等激光临床应用都有重要的指导意义。 凡是与光学参数有关的关系和规律,均可成为测量的依据和原理,因而组织体光学特性参数的测量方法及所涉及的内容几乎包罗万象。测量组织光学特性参数方法有时间分辩、空间分辩、频率调制,超快时间分辩谱和空间分辨谱,积分球技术甚至神经网络技术等等。各种测量方法各有千秋,双积分球技术是目前公认最为精确的一种测量技术。该技术采用的是一种离体的间接光学特性参数测量方法,是将积分球系统及传输理论的精确解结合起来实现的。在己知生物组织样品厚度的情况下,利用积分球系统测量组织样品的反射率,透射率以及准直透射率,而后再根据特定的组织体光学传输模型就可以获得组织体的主要光学特性参数。它能够同时获取离体生物样品的各项光学特性参数,并且可以分别考虑组织的层状结构,如可以对离体的真皮和表皮分别进行测量,是研究组织光学的一种重要方法。 生物组织中的光传输以及生物组织的光学特性是生物医学光子学重要的研究内容,在医学上对疾病的光诊断和光治疗有重要的理硷和实际的意义。因此本论文对光在生物组织中的传输以及生物组织光学特性参数的测量进行了理论和实验研究。 从光的传输理论出发,在漫射近似下获得了生物组织内光传输的漫射近似方程,并且在不同的边界条件下对无限细光束垂直入射到半无限大组织的漫射方程进行了求解,给出了组织表面漫反射系数的时间和空间分辨的表达式。 生物组织是由不同大小、不同成分的细胞和细胞问质组成的,对可见光和近红外光通常呈现出不透明、混沌和高散射的特点。光在生物组织传播是一个很复杂的过程,其主要特点是生物组织对光波的散射和吸收。 确定生物组织光学特性参数是医学诊断和治疗领域中迫切需要解决的问题,是生物医学光子学研究的热点之一。目前,生物组织光学特性参数的测量方法主要有直接测量法和间接测量法,其中活体组织的无损测量法是研究的热点。出于生物组织结构的多样性和复杂性,从目前国内外报道的研究和测量结果来看,所获得的生物组织的光学特性参数有较大的离散性,表明光传输理论或其他相关的理论尚有待进一步完善,依据光传输理论所建立测量方法与技术尚在理论和实验研究阶段,对于实际医学临床的使用还有大量的工作要做。另一方面,传统的光学参数有时并不适合于实际应用,寻找新的参数,使其能够更准确、更具特异性的体现生物组织的特性,也是今后这方面工作的一个重点。 历史上曾经提出两科t不同的理论来处理光波在随机分布粒子群中的传播问题,一种称为解析理论,另一种称为输运理论。解析理论也称为多次散射理论,它从Maxwell方程或波动方程这种基本微分方程出发,引进粒子的散射和吸收特性,并求出方差和相关函数这些统计量的适当的微分方程或积分方程。原则上,这种理论考虑了多次散射、衍射和干涉效应,在这个意义上说,它在数学上是严格的。但是,实际上它不

焦炭参考试验方法

焦炭参考试验方法 显微强度测定 焦炭显微强度在自制显微强度测定仪上测定,取2g粒度为0.6~1.25mm的焦样,装入内装12个Φ8mm钢球的长305mm内径Φ25.4mm的钢管中,以25±0.5r/min的转速转800r。焦炭经转鼓后,用0.6~0.2mm的圆孔筛,振筛五分钟,称出>0.6mm,0.2~0.6mm焦粒的质量,并分别计算其百分含量,分别以R1,R2表示,并以R1+R2作为显微强度指标(MSI)。 结构强度的测定 焦炭结构强度在自制结构强度测定仪上测定,用量筒量取50ml粒度为3~6mm的焦样并称重,装入内装5个Φ15mm钢球的长305mm内径Φ25.4mm的钢管中,以25±0.5r/min的转速转800r。焦炭经转鼓后,用1mm的圆孔筛振筛五分钟,称出>1mm焦粒的百分含量,以>1mm焦粒的百分含量表示结构强度指标(SSI)。 粒焦反应性测定 焦炭反应性在粒焦反应性(PRI)装置上测定,取20g粒度为3~6mm干燥后的焦样,以20~25℃/min速度升温至400℃,通入氮气保护,继续升温至1100℃,切换成二氧化碳气体,流量为0.5L/min,反应时间为120 min。然后通氮气保护冷却至室温,以反应前后焦样损失质量百分率作为粒焦反应性指标(PRI)。 焦炭反应性CRI和反应后强度测定 按照GB1997-1989进行取样,按照GB/T4000-1996进行测定。焦炭反应性在块焦反应性(CRI)装置上测定,取200 g粒度为21~25 mm干燥后的焦样,以20~25 ℃/min速度升温至400 ℃,通入氮气保护,继续升温至1100 ℃,切换成二氧化碳气体,流量为0.5 L/min,反应时间为120 min。然后通氮气保护冷却至室温,以反应前后焦样损失质量百分率作为粒焦反应性指标(CRI),反应后的焦炭在直径130mm,长700mm的I型转鼓中以20r/min速度转动600转,然后用10mm筛子筛分,测量筛上物占装入转鼓的反应后焦炭量的百分比作为反应后强度指标(CSR)。 焦炭光学组织测定 按照GB1997-89进行焦炭试样的制备;按照MT116.1-86,MT116.2-86 煤砖光片及块煤光片的制备方法;按照GB8899-88 进行煤的显微组分和矿物的测定,具体如下: ①仪器:日本NIKON-Ⅱ偏反光光学显微镜。 ②制作及测定:将焦样粉碎至粒度小于1.25mm,然后筛除在显微镜下不易辨别出光学组织的细粒级(<0.071mm),取0.071~1.25mm 级作为制备粉焦光片用试样。将干燥后的粉焦样与粘结剂制成型块(直径D≥20mm),经粗磨、细磨和抛光后于偏反光显微镜油侵物镜下观测,放大显微镜倍数为500倍,采用数点法,规定行间距为1mm,点间距为0.3mm,统计的总点数至少在400点以上,由各组织所占点数与总点数之比求得各光学组织的百分含量。用焦炭光学组织指数(OTI)来表征焦炭光学组织各向异性程度。焦炭的OTI 值计算式为: OTI = Σfi(OTI)i 式中: fi 为焦炭各光学组织结构的百分含量;(OTI)i为焦炭各光学组织相对应的赋值。

焦炭反应性及反应后强度操作规程

焦炭反应性及反应后强度 操作规程 This model paper was revised by the Standardization Office on December 10, 2020

焦炭反应性及反应后强度安全操作规程 1、设备必须由专职电工或厂家调试人员进行安装及调试 2、电源电压必须与电气设备的额定电压相同(AC220V),且电源电压应在±5%范围内 3、设备如遇跳闸时应查明原因排除故障后再合闸,不得强行合闸。 4、设备启动后应检视各电器仪表正常后方可正式工作。 5、如遇漏电失火时应先切断电源,用二氧化碳和干粉灭火器进行灭火。禁止用水及其它 液体灭火器进行灭火。 6、发生人体触电时应立即切断电源,然后用人工呼吸法作紧急抢救治疗。但在未切断电 源之前禁止与触电者直接接触,以免再发生触电。 7、设备应接地良好,不得借用避雷器地线做接地线。电气部分不应有漏电现象。 8、电器设备的所有连接桩头应牢固并需经常检查。如发现松动,先需切断电源后再行处 理。 9、设备的配电箱内必须保持清洁,不得存放任何东西,并应配备有安全锁。未经本机操 作人员和有关人员的允许,其它人员不准随意开箱合线路总闸或分段路闸,以防造成事故。 10、不得用水清洗电气设备,以免电气设备受潮发生事故。 11、设备应存放在干燥的室内。 12、工作中如遇停电时应立即将电源开关拉开。

13、如需修理和维护时,不仅要切断电源并在电闸箱上加锁,同时挂上“机械修理禁止合 闸”的警示牌。 14、工作完毕后应及时切断电源,并锁好闸箱门。 15、设备在工作状态下严禁将身体任何部分贴近电炉部分,以免高温对人身造成伤害。 16、设备工作状态下,室内必须保证通风良好,以免有害气体对人身造成伤害。 17、设备在工作状态时禁止触碰洗气瓶,防止腐蚀性药品泄露伤人。 18、操作转鼓时应与转鼓保持安全距离(),且时刻观察转鼓是否与工作台刮碰 19、提出反应器时应小心高温灼伤。 20、操作反应器是应保证反应器温度在100℃以下,同时应佩戴耐高温防护手套。 焦炭反应性及反应后强度试验步骤 1、试样采取 试样要求:φ23-φ25,去掉棱角,近似球形2㎏ 取样方法:在大焦堆的四角和顶部取M40的焦炭10㎏,经鄂式破碎机破碎成φ25-φ26的粒度,弃去泡焦、炉头焦,用专用制样器,用小锤轻敲过孔后经过I型转鼓转50圈后或使用焦炭制样系统制出的样品取2㎏(也可采用专用制样系统进行制样)。 2、烘干 烘干条件:170-180℃烘干2小时(1㎏)

焦炭反应性及反应后强度试验中注意事项

焦炭反应性及反应后强度试验中注意事项: 焦炭反应性及反应后强度是评价焦炭热性质的重要指标,对高炉冶炼影响很大。近年来随着高炉大型化,该两个指标越来越受到人们的重视,许多国家根据国资源和技术需要制定不同的测试方法,并用相应的指标来控制焦炭的质量,我国于1983年制定了国家标准,但是由于试验条件不易掌握,导致两指标的测定值误差较大,影响了对焦炭质量的评价。根据几年来的工作经验,提出几个测定中注意的问题仅供大家参考。1.自测观察其大小是否均匀外,每次试验不仅要保证试样质量符合标准。同时还要尽量使试样的焦块数目相等。在反应器底部装100mm后高铝球时要装平,装焦炭块时也要均匀装平。2.按GB/T4000-2008规定,焦炭在装入反应器前需在烘箱中干燥,温度在170-180度,干燥2小时,去除焦炭外表面吸收的水分,放入干燥器中冷却到室温。称重(200±0.5g)入炉,为防止试验过程中焦炭丢失影响试验的准确性,试验做完后,要重新数一数焦块数目,检查与装入数目是否一致,还要检查以下反映后的焦块,如果有说明取样不好,数据的代表性和准确性差。 1.严格按照国标制焦炭样使粒度形状尽量接近。 (1).按GB/T4000-2008规定的制样方法,按比例取大于25mm焦炭20kg,弃去泡焦和炉头焦。用颚式破碎机破碎、混匀、缩分出10kg,再用25mm、23mm圆孔筛筛分,大于25mm焦块再破碎、筛分。取23mm筛上物,去掉薄片状焦和细条状焦,保留较厚片状焦和较粗条状焦,并将较厚片状焦和较粗条状焦用手工修整成颗粒状焦块,用制样方法一(1)在厚度为8-10mm的钢板上,钻若干个直径为21mm的圆孔钢板,在此钢板砸出110粒焦炭试样。(2)在170-180度的烘箱中,烘干时间不低于2

材料课件实验一光学金相组织观察方法

材料课件实验一光学金相 组织观察方法 Jenny was compiled in January 2021

实验一光学金相组织观察方法 目的 1.了解光学金相组织观察方法及步逐; 2.了解光学金相显微镜的结构,熟悉其使用的基本方法; 3.了解光学金相样品的制备过程,体会制过程对观察组织的影响。光学金相显微镜的结构 为观察材料的显微组织,必须借助显微镜,大家可能用过生物显微镜,知道其大致结构有:物镜、目镜、粗调、微调等,生物样品是透明的,可用自然光。 工程材料,如金属材料,是不透明的,成像利用的是反射光,因此在光学金相显微镜中,结构上明显特点是有一套照明设备,现用显微镜的照明设备包括:电源、变压器、灯泡、透镜组——得到平行光,经过孔径光栏、滤色片、视场光栏,再经过物镜照射到试样上。经过试样的反射光进入物镜经过一次放大,再经过目镜的再次放大,我们看到的是经过二次放大的虚像。因为最后看到的像和各人的视力的影响,不同人观察时对显微镜要进行微调。

显微组织成像原理 如图所示,从透镜内垂直照射 到试样上的平行光,将发生反射和 吸收。如果试样是镜面,光线全部 原路返回,最后成像为亮点;如果 试样有不平的沟槽,部分光线反射后不能进入物镜,这样这些地方成像为暗区。有明有暗就构成了表面的图象,就是我们观察到的组织形貌。金相试样的制备方法 取样:从材料或零件上截取准备观察的样品,要求组织要有代表性,大小要适合制样和观察,尺寸过小的还要进行镶嵌。 打平:让观察面宏观为平面,用砂轮、锉刀或其它方法来实现。 磨光:用不同粒度的金相砂纸,从粗到细依次细磨,让其粗糙度不断减小。细磨的方法有干磨和湿磨,可用手工细磨和机械细磨。

第三章中间相理论

第三章中间相理论 中间相理论是在煤岩学及现代物理检测分析的基础上发展起来的,对于粘结机理、碳素材料的制备起了巨大推动作用。 第一节中间相的形成 5.1 中间相发展 人们从本世纪20年代开始用光学显微镜研究焦炭,并发现焦炭中存在着大小不一的光学各向异性组织,但不能解释其成因。61年Taylor在澳大利亚煤中发现了中间相小球体(这种小球体在我国山西热变质煤中也有发现),并观察到它的长大,融并和最后生成镶嵌型光学组织的过程后,对各种含碳有机化合物在热解过程中所形成的中间相及其发展过程进行了广泛的研究。逐步形成了中间相理论成焦机理。 5.2 中间相基本概念 (1)液晶 液晶是指介于固相与液相之间的一种特殊相。液晶既保留了晶体中分子排列整齐,呈各向异性的特点,又具有流动性,即为液态晶体。它是某些有机化合物的一种特殊存在形式,它既不同于晶体,也不同于液体。 晶体:是原子或原子团有规律排列的物体,具有各向异性特征,称为远程有序。 液体:原子或原子团在小范围内有规律的排列,具有各向同性特征。称为近程有序、远程无序。 晶体混浊的流体透明液体 (各向异性)(各向异性)(各向同性) 某些有机化合物在晶体融化过程中所形成的浑浊流体既为液晶。 液晶同液体的区别:能流动但显示各向异性。 液晶同晶体的区别:显示各向异性但能流动。 液晶的种类很多,基本上可以分为二大类: a、热变型液晶 在一定温度范围内在纯物质或混合物中出现。 b、溶变性液晶 在一定浓度和温度范围内通过极性金属和特定溶剂互相作用而产生,故在纯物质中不存在。 液晶的分子都有特殊的取向。如向列型晶体的分子是头碰头的排列着。层间分子排列大致平行。 (2)中间相 某些煤、沥青及其它含炭有机物在加热到350—500℃时,能够在熔融状态液相中形成由聚合液晶构成的各向异性的流动物质,称为中间相。

焦炭热反应性技术参数

全自动焦炭反应性及反应后强度测定仪技术要求 一、设备名称、数量 1、主设备 名称:全自动焦炭反应性及反应后强度测定仪 数量:1台套 2、配套设备、备件 2.1 名称: I型转鼓 数量:1台 2.2名称:计算机 数量:1套 2.3名称:二氧化碳气体净化装置(洗气瓶、干燥塔、缓冲瓶) 数量:2套 2.4氮气气体净化装置(洗气瓶、干燥塔) 数量:2套 2.5名称:反应器 数量:10 2.6名称:S热电偶 数量:2套 二、技术要求 焦炭反应性及反应后强度测定仪采用计算机自动控制和手动控制,硅碳棒加热,焦炭反应器自动升降装置自动出炉装置,无人值守操作,安全、可靠。 全面符和国家标准GB/T4000-2008《焦炭反应性及反应后强度试验方法》技术要求。 控制部分采用德国西门子PLC,气体流量采用质量流量控制器自动控制。 双电偶控制,具有超温报警功能,超温后自动断电,防止可控硅击穿、电偶损坏、信号干扰等原因造成电炉烧坏或反应器烧融。 三、技术参数: 1、加热炉工作温度:1250℃(MAX);额定功率:10KW,

硅碳棒加热,独立炉膛内管:翼式碳化炉,Φ170×550mm ;独立炉膛外管:刚玉材质,Φ160×640;有效恒温区:>150mm。 2、电偶S型,0.5级控制精度: 1100℃±5℃;保护管GH3030。 温控过程:室温~1100℃, 升温速率8-16℃/min;1100℃恒温2h ;内置可编辑多段温控曲线,温控精度:1100℃恒温,精度:±2℃; 3、流量控制采用质量流量控制器自动控制,计算机能自动切换氮气和二氧化碳。计算机手动CO2与N2分别独立可调,N2:0-10L可调;CO2:0-10L可调;准确度:±1.0%FS。重复精度:±0.2%FS 。 4、反应器材质GH3044,最高使用温度1400℃。反应器尺寸:内径Φ80mm×500mm。 5、 I型转鼓:Φ140mm×700mm;壁厚5mm~6mm。 30min±1 min,600转,自动计数和控制。 6、试验筛:23mm,25mm,10mm的圆孔筛。 7、I型转鼓:一体化减速总成:转数20r/min,试验转数:60转;I鼓自动定位装出试样,无需拆卸;总转数:600r;时间:30min;电机功率:0.18kw, 8、CO2、 N2专用减压器,配套气路连接专用管。 9、高铝球:规格:Φ20mm,数量100个。 10、计算机最低配置: CPU Intel Pentium 双核2.0G以上处理器,2GB内存,160GB以上硬盘,19”液晶显示器,DVD-ROM, 2个串口(1个缓冲),1个并口,正版WINDOWS XP或更高操作系统 四、技术服务 1、设备安装、调试和验收: 仪器到达用户所在地后,制造商及设备总承包商的技术代表到工作现场进行安装调试,直至通过验收。 2、技术培训:在用户安装现场对用户进行至少二人的技术培训;培训内容包括仪器的技术原理、仪器操作、数据处理、仪器基本维护等;所有的费用由供应商提供,费用包含在设备报价中。

焦炭反应性及反应后强度操作规程

焦炭反应性及反应后强度安全操作规程 1、设备必须由专职电工或厂家调试人员进行安装及调试 2、电源电压必须与电气设备的额定电压相同(AC220V),且电源电压 应在±5%范围内 3、设备如遇跳闸时应查明原因排除故障后再合闸,不得强行合闸。 4、设备启动后应检视各电器仪表正常后方可正式工作。 5、如遇漏电失火时应先切断电源,用二氧化碳和干粉灭火器进行灭 火。禁止用水及其它液体灭火器进行灭火。 6、发生人体触电时应立即切断电源,然后用人工呼吸法作紧急抢救 治疗。但在未切断电源之前禁止与触电者直接接触,以免再发生触电。 7、设备应接地良好,不得借用避雷器地线做接地线。电气部分不应有 漏电现象。 8、电器设备的所有连接桩头应牢固并需经常检查。如发现松动,先 需切断电源后再行处理。 9、设备的配电箱内必须保持清洁,不得存放任何东西,并应配备有 安全锁。未经本机操作人员和有关人员的允许,其它人员不准随意开箱合线路总闸或分段路闸,以防造成事故。 10、不得用水清洗电气设备,以免电气设备受潮发生事故。 11、设备应存放在干燥的室内。 12、工作中如遇停电时应立即将电源开关拉开。 13、如需修理和维护时,不仅要切断电源并在电闸箱上加锁,同时挂

上“机械修理禁止合闸”的警示牌。 14、工作完毕后应及时切断电源,并锁好闸箱门。 15、设备在工作状态下严禁将身体任何部分贴近电炉部分,以免高温 对人身造成伤害。 16、设备工作状态下,室内必须保证通风良好,以免有害气体对人身 造成伤害。 17、设备在工作状态时禁止触碰洗气瓶,防止腐蚀性药品泄露伤人。 18、操作转鼓时应与转鼓保持安全距离(0.8m),且时刻观察转鼓是 否与工作台刮碰 19、提出反应器时应小心高温灼伤。 20、操作反应器是应保证反应器温度在100℃以下,同时应佩戴耐高 温防护手套。

生物组织光学性质的测量原理与技术

第16卷第4期 1997年12月 中 国 生 物 医 学 工 程 学 报 CH I N ESE JOU RNAL O F B I OM ED I CAL EN G I N EER I N G V o l.16N o.4 D ecem ber1997 生物组织光学性质的测量原理与技术3 谢树森 李 晖 (福建师范大学物理学系,福州350007) Ch ia T eck Chee (Schoo l of Science,N anyang T echno logical U niversity,Singapo re1025)本文讨论了组织光学性质参数的测量原理和技术,提出了一种新的测量和计算方法,采用联合测定组织体表面漫反射率和体内光能流率分布,并利用漫射理论和M onte Carlo模型的部分结论,可求出组织的光穿透深度,吸收系数和有效散射系数,以4种猪组织为例,研究了哺乳动物组织的光学性质,这一原理和技术可适用于人体组织光学性质的测量。 关键词: 组织光学;吸收;散射;漫射;M onte Carlo;漫反射率;光能流率 分类号: R197.39;R318.6 0 前 言 激光医学的进展,尤其是光动力学疗法(PD T)在临床上的深入应用,需要精确了解在一定光照条件下人体组织内的光能分布,以便安排最佳的光治疗方案。其中最关键的问题可归结为如何确定组织体的光学性质基本参数,即吸收系数Λa,散射系数Λs和散射位相函数S(Η)或平均散射余弦g。一旦已知这些光与组织的相互作用参数,在给定的光照方式和边界条件下,光能流率5(r)或其它参量如全反射率R,全透过率T等分布可由有关的数学模型唯一地确定[1,2]。 本文所提出的新方法系采用联合测定组织体表面漫反射率和组织体内部的光能流率分布,并利用漫射理论和M on te Carlo模型的部分结论,可求出组织的光学性质基本参数。 1 组织光学性质参数测量的理论基础 作为电磁波的光在组织中传播行为属于光与组织相互作用问题,在不考虑吸收的情况下,理论上由麦克斯韦方程组及组织体的电磁性质Ε,Λ或折射率,加上边界条件唯一地确定:即在所给定的条件下求解麦克斯韦方程,以得到电矢量在空间中和时间上的分布。其中必然出现一般光学中所有的各种现象,诸如干涉、衍射、反射和偏振等纯粹的物理光学问题。当组织存在光吸收时,应当考虑组织中原子分子的能级结构性质。换言之,此时应采用半经典理论,最严格的处理应使用全量子理论,不难想到,仅由于生物组织折射率的不均匀性,我们就无望获得麦氏方程的数值解,更不用说解析解了。 其实,可以把光在组织体中的传播进而有光能分布的物理实在,用一种粒子的传输过程来 国家自然科学基金和国家教委回国留学人员资助项目 1995年11月27日收稿,1996年4月29日修回

焦炭光学组织的测定与分析

焦炭光学组织的测定与分析 马学刚 (济南钢铁集团总公司技术中心,山东济南 250101) 摘要:在分析了煤变质程度、煤岩相组成等对焦炭光学组织的影响,以及焦炭光学组织与焦炭性质之间的关系的基础上,指出以粒状镶嵌组织为主的焦炭更符合高炉的要求。 关键词:焦炭;光学组织;测定方法;各向异性 中图分类号:TF526+.1 文献标识码:B 文章编号:1004-4620(2003)02-0037-03 Measurement and Analysis of Coke Optical Texture MA Xue-gang (The Technical Center of Jinan Iron and Steel Group,Jinan 250101,China) Abstract:On the basis of analyzing the influences of coal degenerative degree and the coal petrographic constituents on coke optical texture and the relation between the coke optical texture and its quality,points out that the coke with grain enchasing texture is according with the needs of blast furnace. Key words:coke;optical texture;measurement method;anisotropy 1前言 焦炭的光学组织决定了焦炭的冶金性能。目前,对焦炭冶金性能指标的测定,仅限于宏观性能,如M40、M10等。因此,对焦化生产中出现的异常现象只能从宏观上去寻找原因,忽视了微观组织对性能的影响。试图通过对焦炭光学组织的测定与分析探讨焦炭光学组织对性能的影响。 2焦炭的光学组织及其测定方法

在体生物光学成像技术的研究进展

第34卷第12期自动化学报Vol.34,No.12 2008年12月ACTA AUTOMATICA SINICA December,2008 在体生物光学成像技术的研究进展 李慧1,2戴汝为2 摘要在体生物发光成像和在体荧光成像是近年来新兴的在体生物光学成像技术,能够无损实时动态监测被标记细胞在活体小动物体内的活动及反应,在肿瘤检测、基因表达、蛋白质分子检测、药物受体定位、药物筛选和药物疗效评价等方面具有很大的应用潜力.本文详细介绍了在体生物发光成像和在体荧光成像的特点、系统及应用,比较了它们的异同,综述了在体生物光学成像技术的基本原理和应用领域,讨论了将其应用于临床的进一步发展方向. 关键词在体生物光学成像,生物发光成像,荧光成像 中图分类号R319 Development of In Vivo Optical Imaging LI Hui1,2DAI Ru-Wei2 Abstract With the emergence of in vivo optical imaging,bioluminescence imaging and?uorescence imaging can be used to non-invasively monitor the activities and responses of cells marked with optical signals in real time,which are considered to be promising tools for tumor detection,gene expression pro?ling,protein molecular detection,drug receptor localization,drug screening,and therapeutic evaluation.In this paper,the features,imaging systems,and applications of in vivo bioluminescence imaging and in vivo?uorescence imaging have been introduced and compared in detail.The basic theories,application?elds,and development of in vivo optical imaging in future are reviewed. Key words In vivo optical imaging,bioluminescence imaging(BLI),?uorescence imaging(FI) 随着荧光标记技术和光学成像技术的发展,在体生物光学成像(In vivo optical imaging)已经发展为一项崭新的分子、基因表达的分析检测技术,在生命科学、医学研究及药物研发等领域得到广泛应用,主要分为在体生物发光成像(Biolumi-nescence imaging,BLI)和在体荧光成像(Fluores-cence imaging)两种成像方式[1?2].在体生物发光成像采用荧光素酶(Luciferase)基因标记细胞或DNA,在体荧光成像则采用荧光报告基团,如绿色荧光蛋白(Green?uorescent protein,GFP)、红色荧光蛋白(Red?uorescent protein,RFP)等进行标记[3].利用灵敏的光学检测仪器,如电荷耦合摄像机(Charge coupled device camera,CCD camera),观测活体动物体内疾病的发生发展、肿瘤的生长及 收稿日期2007-08-08收修改稿日期2007-11-19 Received August8,2007;in revised form November19,2007国家自然科学基金(30500131),北京市优秀人才资助项目(20061D0501600216),中国博士后科学基金(20070410146)和中国科学院王宽诚博士后工作奖励基金资助 Supported by National Natural Science Foundation of China (30500131),Research Fund for Beijing Distinguished Specialists (20061D0501600216),Chinese Postdoctoral Science Foundation (20070410146),and Chinese Academy of Sciences K.C.Wong Postdoctoral Fellowships 1.首都师范大学教育技术系北京100048 2.中国科学院自动化研究所复杂系统与智能科学重点实验室北京100190 1.Department of Education Technology,Capital Normal Uni-versity,Beijing100048 2.Key Laboratory of Complex Sys-tems and Intelligence Science,Institute of Automation,Chinese Academy of Sciences,Beijing100190 DOI:10.3724/SP.J.1004.2008.01449转移、基因的表达及反应等生物学过程,从而监测活体生物体内的细胞活动和基因行为[4?8]. 相对于其他成像技术,如核磁共振成像(Mag-netic resonance imaging,MRI)、计算机层析成像(Computed tomography,CT)、超声成像(Ultra-sonic imaging)、正电子发射断层成像(Positron emission tomography,PET)、单光子发射断层成像(Single photon emission computed tomography, SPECT)等,在体生物光学成像具有巨大的优越性,堪称是分子基因检测领域的革命性技术.它具有如下优点:较高的时间/空间分辨率;在肿瘤和良性/正常疾患之间有高的软组织对比度;成像对比度直接与生物分子相关,适于重要疾病的基因表达、生理过程的在体成像;获得信息丰富、适于多参数复合测量;价格适中等.尽管其测量范围与测量深度有限,但适用于小动物的整体在体成像和在体基因表达成像.表1和表2(见下页)分别给出了几种主要成像技术的应用场合及参数比较[5,9],可以看出,基于分子光学标记的在体生物光学成像技术已经在活体动物体内基因表达规律方面展示了较大优势.近年来,随着生物光学成像设备的研制以及转基因动物的研究,国外发达国家已经将在体生物光学成像技术广泛应用于肿瘤免疫及治疗、基因治疗、药物研发等领域并取得了许多成果[4?8]. 本文分别介绍了在体生物发光成像和在体荧光成像的特点、系统及主要应用,比较二者在分子探

相关文档
相关文档 最新文档