文档库 最新最全的文档下载
当前位置:文档库 › 三相异步电动机能耗制动系统设计

三相异步电动机能耗制动系统设计

三相异步电动机能耗制动系统设计
三相异步电动机能耗制动系统设计

课程设计说明书

作者: hh 学号:jj

学院: kk

专业: pp

题目: 三相异步电动机能耗制动系统设计指导者:hh hh

目录

1、引言 (1)

1.1课程研究背景 (1)

1.2课程研究的价值 (1)

1.3课程设计的任务 (2)

2、三项异步电动机的基本结构和工作原理 (2)

2.1三项异步电动机的基本结构 (2)

2.1.1定子 (2)

2.1.2转子 (3)

2.2三项异步电动机的工作原理 (4)

3、三相异步电动机的能耗制动 (5)

3.1能耗制动的原理 (5)

3.2能耗制动的设计 (6)

3.2.1电器元件的选择 (6)

3.2.2计算与校验 (6)

3.2.3能耗制动原理图 (7)

3.3能耗制动的分析 (7)

3.3.1能耗制动特点[9] (7)

3.3.2能耗制动控制线路 (8)

结论 (8)

参考文献: (9)

1、引言

1.1课程研究背景

三相异步电动机又称三项感应电动机,它的应用非常广泛,几乎涵盖了农业生产和人类生活的各个领域。随着电气化、自动化技术的发展,三项异步电动机得到了越来越好的控制。

而电气化控制相较其他控制方法而言,更简洁便于操作,所以应用比较广泛。本课题的控制是采用PLC的梯形图编程语言来实现的。梯形图语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。

三相异步电动机切断电源后,由于惯性作用,转子需要经过一定时间才能停止旋转,这往往不能满足有些机械设备的工艺要求,造成运动部件的停机位置不准确,同时也影响生产效率的提高,因此必须对电动机采取有效的制动措施。停机制动方法有两大类,即机械制动和电气制动。机械制动是采用机械制动装置来强迫电机迅速停止,常用的有电磁抱闸制动和电磁离合器制动等。电气制动是使电动机产生一个与原来转子转动方向相反的制动转矩而使其迅速停止常用的有反接制动能、耗制动等[2]。

长期以来,能耗制动始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。由于能耗制动综合了计算机和自动化技术,所以它发展日新月异,大大超出其出现时的技术水平。它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制[10]。

1.2课程研究的价值

特别是超大规模集成电路的迅速发展以及信息、网络时代的到来,扩大了能耗制动的功能,使其具有很强的的联网通讯能力,从而更广泛地应用于众多行业,不管是农业还是工业,都有着举足轻重的作用。

随着科学技术的发展与不断进步,电气工程与自动化技术正以令人瞩目的发展快速的改变着我国的工业基础整体面貌。

与此同时,该技术的不断发展,对社会的生产方式、人们的生活方式和思想观念也产生了重大的影响,并在现代化建设中发挥着越来越重要的作用,它

正朝着智能化、网络化和集成化的方向发展。

1.3课程设计的任务

1.设计能耗制动系统,合理选择实现能耗制动的电气元件

2.根据所选电气元件,设计能耗制动主回路及其控制回路

3.要求三相异步电动机停机后迅速切除电源

2、三项异步电动机的基本结构和工作原理

2.1三项异步电动机的基本结构

三项异步电动机主要由定子和转子两个部分组成,定子是静止不动的部分,转子是旋转的部分,在定子与转子之间有一定的空隙,如图4.1所示[7]。

2.1.1定子

定子由铁芯绕组及机座组成。

定子铁芯是磁路的一部分,它由0.5毫米的硅钢片叠压而成一个整体固定于机座上,片与片之间是绝缘的,以减少涡流损耗。定子铁芯的内圆冲有定子槽,槽中安放线圈如图4.2所示[7]。

定子绕组是电动机的电路部分。三相电动机的定子绕组分为3个部分对称地分布在定子铁芯上,称为三相绕组,分别用AX、BY、CZ表示,其中A、B、C 称为首端,X、Y、Z称为末端,三相绕组接入三相交流电源,三相绕组中的电流在定子铁芯中产生旋转磁场。

机座主要用来固定与支撑定子铁芯。中小心型异步电动机一般采用铸铁机座。根据不同的冷却方式采用不同的机座。

2.1.2转子

转子由铁芯和绕组组成。

转子铁芯也是电动机磁路的一部分,由硅钢片叠压而成为一个整体装在转轴上。转子铁芯的内圆冲有转子槽,槽中安放线圈如图4.2所示。

异步电动机转子多采用绕线式和鼠笼式两种形式。因此异步电动机按绕组形式的不同分为绕线异步电动机和笼型异步电动机两种。绕线电动机和笼形电动机的转子构造虽然不同,但工作原理是一致的。转子的作用是产生转子电流及产生电磁转矩。

绕线异步电动机转子绕组是由线圈组成,三相绕组对称放入转子铁芯槽内。转子绕组通过轴上的滑环和电刷在转子回路中接入外加电阻,用以改善启动性能与调节转速,如图4.3所示[7]。

笼型异步电动机转子绕组是在转子铁芯槽里插入铜条,再将全部同条两端焊在两个同端环上组成,如图4.4所示。小型鼠笼式转子绕组多用铝离心浇铸而成,转子铁芯如图4.5所示[7]。

2.2三项异步电动机的工作原理

三项异步电动机的工作原理,基于定子旋转磁场(定子绕组内三项电流所产生的合成磁场)和转子电流(转子绕组内的电流)的相互作用。如图4.13(a)所示。当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。如图4.13(b)所示[7]。

3、三相异步电动机的能耗制动

3.1能耗制动的原理

异步电动机能耗制动的电路原理图一般如图4.45(a)所示。进行能耗制

动时,首先将定子绕组从三相交流电源断开(KM1断开),接着立即将一低压直流电源接入定子绕组(KM2闭合)。直流电流通过定子绕组后,在电动机内部建立一个固定不变的磁场,由于转子在运动系统储存的机械能作用下继续旋转,转子导体内就会产生感应电动势和电流,该电流与恒定磁场相互作用产生作用方向与转子实际旋转方向相反的制动转矩。在它的作用下,电动机转速迅速下降,此时运动系统储存的机械能被电动机转换成电能后消耗在转子电路的电阻中。

能耗制动时的机械特性如图 4.45(b)所示。制动时系统运行点从特性曲线1的a点平移至特性曲线2的b点,在制动转矩和负载转矩的共同作用下,沿特性曲线2迅速减速。直到n等于0为止,当n等于0时,T等于0。所以,能耗制动能准确停车,不像电源反接制动那样,如不及时切断电源会使电动机反转,不过当电动机停止后不应再接通直流电源,因为那样将会烧坏电子绕组[8]。另外,制动的后阶段随着转速的降低能耗制动转矩也很快减小,所以制动较平稳,但制动效果比电源反接制动差。可以用改变定子励磁电流I

f

或转子电路串接附加电阻绕线异步电动机的大小来调节制动转矩,从而调节制动的强

弱,由于制动时间很短,所以通过定子的直流电流I

f

可以大于电动机的电子额

定电流,一般取I

f =(2~3)I

1N

[7]

3.2能耗制动的设计

3.2.1电器元件的选择

1.三相异步电动机

2.接触器FR

3.热继电器FU

4.开关SB

5.时间继电器KT

6.滑动变阻器 R

7.整流装置

8.变压装置

9.继电器KM

10.二极管

11.热敏电阻PTC

设计要求电动机自选,其主要参数为:

3.2.2计算与校验

能耗制动的强弱与通入直流电的大小和电动机转速有关系。在同样转速下,直流越大制动作用越强,一般直流电为电动机空载电流的3-4倍。电机的空载电流按不同磁极有所不同的,空载电流与额定电流之比有一定的关系:2极:20~30% 6极:35~50% 4极:30~45% 8极:35~60% [4]所以先根据电机磁极数和额定电流计算出空载电流I,然后算出电机两相之间的电阻R,根据欧姆定律,即可计算出直流电压:U=3IR。知道了电机两相电阻,和直流电压,可以根据自己的需要来选择限流电阻了,想要直流电流为,则=U/(R+),和U,R已知,就可以计算出了。

已知技术参数和条件,根据电机数据可得:P=60f/n0=3,确定电机是6极的。额定定子线电流为=12.8A,所以取空载电流I=×40%=5.12A。制动时的直流电流为3I=15.36A。再算电机定子相电阻。由=(-)/Ns=0.04,R=0.95/,所以可以算出R=0.65Ω。再确定经整流后的电压。因为采用的是桥式整流,任意两相电流电压=220V,整流电路输出电压平均值U=0.9=198V。制动时的电流由上面

可知为15.36A。所以选的可调电阻最小=(U/3I)-R=12.24Ω。故可调阻>12.24Ω。

因为异步电动机制动直流电流为15.36A,故桥式电路中所选二极管流过的电流为0.5×15.36=7.68A,其所能承受的电压为×198=225.8V。二极管应选承

受的最大电流大于7.68A,最大电压大于226V。交流继电器和时间继电器应该是能受的最大电压大于130V。直流电压为:U=3IR=9.984V。

根据经验,取定时器(1.5-2s)/kw,所以定时器取TON,T37,设置参数45 3.2.3能耗制动原理图

能耗制动原理图[5]如下:

由于延时继电器在延时所设置的时间后便自动断开主触点,所以不用担心电机转速为零时依然接入直流电源的问题。

3.3能耗制动的分析

3.3.1能耗制动特点[9]

制动作用的强弱与直流电流的大小和电动机转速有关,在同样的转速下电流越大制动作用越强。一般取直流电流为电动机空载电流的3~4倍,过大会使定子过热。电动机能耗制动时,制动转矩随电动机的惯性转速下降而减小,故制动平稳且能量消耗小,但是制动力较弱,特别是低速时尤为突出;另外控制系统需附加直流电源装置。一般在重型机床中常与电磁抱闸配合使用,先能耗

制动,待转速降至一定值时,再令抱闸动作,可有效实现准确、快速停车。能耗制动一般用于制动要求平稳准确、电动机容量大和起制动频繁的场合,如磨床、龙门刨床及组合机床的主轴定位等等。

3.3.2能耗制动控制线路

切断电动机的三相交流电源后,立即在定子绕组中通入一个直流电源,以产生一个恒定的磁场,而因惯性旋转的转子绕组则切割磁力线产生感应电流,继而产生与惯性转动方向相反的电磁转矩,对转子起到制动作用。当电动机转速降至零时,再切除直流电源。这种消耗转子的机械能,并将其转化成电能,从而产生制动力的制动方法,称为能耗制动法[4]。

启动控制:

按下SB2→KM1线圈得电→

制动控制:

需停时间

KT延时断开常闭触点断开KM2线圈断电→

结论

本次课程设计主意为:设计一个三相异步电动机能耗制动的主电路和控制电路。一开始我以为这个课程设计很容易完成,因为这学期刚学的PLC书上有

这个讲解,现成的控制电路图和主电路,需要的图我都可以在书上找到然后用手机软件扫描下来,粘贴到word。所以我就放心大胆地去做了。后来重新看课程设计的要求才知道,不仅是要设计系统,还要针对某一具体电动机选定滑动变阻器阻值产生某一具体直流电流来产生反转转矩,这就牵扯到一系列的计算。好在后来查到了有关资料,算出了相应的参数,成功解决了问题。再来还需设定具体的时间继电器的定时时间,保证在电机完全停止或停止之前时间继电器开始工作,断开主触点的开关。虽然要求说的是:电动机在速度为零的时候迅速切断电源,本来我是想用速度继电器来完成这个任务的,但查阅资料后发现没有哪种速度继电器能满足这个要求,所以只能通过设定时间继电器,在电机停止转动之前断开主触点,切断电源。在网上查了资料后发现,根据经验来说,能耗制动大概是(1.5-2s)/kw[9],所以我选择通电延时的时间继电器,定时4.5秒。因为断开电源越早越好,所以定时时间宜短不宜长,就取1.5s/kw,电动机额定功率3kw,定时4.5秒就应该断开了。

还有就是主电路要求是过流保护,这个对我来说比较生疏,而过载保护过热保护是比较熟悉的。之后查阅资料之后发现在主电路中串联PTC热敏电阻[1]就能完成过热保护了。这些问题也就得到了解决。

参考文献:

[1]沈广鸿,过荣霞等.小型三相异步电动机保护电路的设计[D].安徽蚌埠:蚌埠坦克学院实验中心,2002

[2]黎觉钢. 三相异步电动机的制动控制简述[J]. ISSN:1673-8918,2011,(13):190-191

[3]罗德荣,江岳春等. 三相异步电动机能耗制动的数值仿真[D].湖南长潲:湖南大学,2002

[4]沈阳机电学院电机系.三相异步电动机[M].沈阳:科学出版社,1977

[5]唐婷.电机与电器控制[M].北京:北京邮电大学出版社.2014.5

[6]吴亦锋,侯志伟,陈德为等.[M].5.北京:电子工业出版社,2013.1

[7]冯清秀,邓星钟等.机电传动控制[M].5.武汉:华中科技大学出版社,2014.4

[8]山东,申世忠.三相异步电机常用的几种制动方法[N].电子报.2009-05-31(012)

[9]杨耕,罗应立.电机与运动控制系统[M].北京:清华大学出版社.2006.3

[10]丛亮. 三相异步电动机以及PLC控制[D].吉林:吉林省工程技师学院,2013

三相异步交流电机的设计_毕业设计

学生毕业设计(毕业论文) 系别:机电工程 专业:数控技术 设计(论文)题目:三相异步交流电机

毕业设计(论文)任务书 一、课题名称:三相异步电机的设计 二、主要技术指标: 1.内部由定子和转子构成。 2. 外壳有机座、端盖、轴承盖、接线盒、吊环等组成。 3. 技术要求:采用电压AC380,可以实现正反转。 三、工作内容和要求: 1.设计磁路部分:定子铁心和转子铁心。 2 设计电路部分:定子绕组和转子绕组以及电路图。 3 设计机械部分:机座、端子、轴和轴承等。 4.设计电路的正反转和安全控制部分。 5.按照“毕业设计规格”设计毕业报告。 四、主要参考文献: 1.[1]王世琨.《图解电工入门》[M].中国电力出版社.2008.

2.[2]满永奎.《电工学》[M].清华大学出版社.2008. 3.[3]乔长君.《电机绕组接线图册》[M].化学工业出版社.2012. 4.百度文库 学生(签名)年月日 指导教师(签名)年月日 教研室主任(签名)年月日 系主任(签名)年月日

毕业设计(论文)开题报告

摘要

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机。 作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用。 Reese and Tesla invented in AC system. At the mid of 1880s, 多沃罗沃尔Chomsky invented the three-phase asynchronous motors, asynchronous motors without brushes and commutate. Three-phase asynchronous motors (Triple-phase asynchronous motor) is by simultaneously accessing 380V three-phase AC power supply of a class of motors, three-phase asynchronous motor as the rotor and the stator rotating in the same direction, to rotate at different speeds, there turn slip, so called three-phase asynchronous motors. For three-phase asynchronous motors motor is running. Three-phase asynchronous motor rotor speed is lower than the speed of the rotating magnetic field, the magnetic field due to the rotor windings relative motion exists between the induced electromotive force and current, and the magnetic field generated by the interaction with the electromagnetic torque and achieve energy conversion. Compared with single-phase induction motor, Three- phase asynchronous motor running properties, and save a variety of materials. According to the different structure of the rotor, three-phase cage induction motor and the winding can be divided into two kinds. Cage rotor induction motor, simple structure, reliable operation, light weight, cheap, has been widely used

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

水轮机课程设计

目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20) 第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标 第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显着。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 机组台数与其他因素的关系 对于区域电网的单机:装机容量较小≯15%系统最大负荷(不为主导电站);装机容量较大≯10%系统容量(系统事故备用容量),因而,单机容量与台数选取不受限制。 根据设计规范要求,机组单机容量应以水轮机单机运行时其出力在机组的稳定运行区域范围内确定为原则。不同型式的水轮机的稳定运行负荷区域如表1。 表2 不同型式的水轮机的稳定运行负荷区域

Y2-160M1-2三相异步电动机电磁设计解读

目录 摘要 ..................................................................... I Abstract................................................................. II 第一章绪论........................................................ - 4 - 1.1 工程背景...................................................... - 4 - 1.2 该课题设计的主要内容.......................................... - 4 - 第二章三相异步电动机................................................ - 6 - 2.1 三相异步电动机结构............................................ - 6 - 2.1.1 异步电动机的定子结构..................................... - 7 - 2.1.2 异步电动机的转子结构..................................... - 8 - 2.1.3 三相异步电动机接线图..................................... - 8 - 2.2 三相异步电动机工作原理........................................ - 9 - 2.3 三相异步电动机的机械特性和工作特性........................... - 12 - 第三章三相异步电机电磁设计......................................... - 14 - 3.1 主要尺寸和空气隙的确定....................................... - 14 - 3.2 定子绕组与铁芯设计........................................... - 14 - 3.2.1 定子绕组型式和节距的选择................................ - 15 - 3.2.2 定子冲片的设计.......................................... - 16 - 3.3 额定数据及主要尺寸........................................... - 17 - 3.4 磁路计算..................................................... - 19 - 3.5 性能计算..................................................... - 22 - 3.5.1 工作性能计算............................................ - 22 - 3.5.2 起动性能计算............................................ - 26 - 第四章电机转动轴的工艺分析......................................... - 28 - 4.1 转动轴的加工工艺分析......................................... - 28 - 4.2 选择设备和加工工序........................................... - 30 - 4.3 成品的最后工序............................................... - 31 - 小结与致谢........................................................... - 32 - 参考文献............................................................. - 33 -

汽车制动系统-毕业设计(论文)

1 引言汽车制动系的概述 制动系的功用是使汽车以适当的减速度降速行驶直至停车,在下坡行驶时使汽车保持适当的稳定车速,使汽车可靠地停在原地或坡道上。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。 除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。防止制动时车轮被抱死,有利于提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来制动防抱死系统(ABS)在汽车上得到很快的发展和应用。此外,含有石棉的摩擦材料,因存在石棉有致癌公害问题已被逐渐淘汰,取而代之的是各种无石棉型材料并相继研制成功[1]。 1.1汽车制动系统的分类 (1) 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 (2)按制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化

水轮机课程设计报告

- - - 目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20)

第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标

第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 2.1机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

2.2机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 2.3机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显著。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 2.4机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 2.5机组台数与其他因素的关系 2.5.1机组台数与电网的关系

三相异步电动机的设计说明书

三相异步电动机的设 计说明书 一.三相异步电动机的基本结构 三相异步电动机由两个基本部分构成:固定部分—定子和转子,转子 按其结构可分为鼠笼型和绕线型两种。 1-1.定子的结构组成 定子由定子铁心、机座、定子绕组等部分组成,定子铁心是异步电动机磁路的一部分,一般由0.5毫米厚的硅钢片叠压而成,用压圈及扣片固紧,各片之间相互绝缘,以减少涡流损耗。 定子绕组是由带有绝缘的铝导线或铜导线绕制而成的,小型电机采用散下线圈或称软绕组,大中型电机采用成型线圈,又称为硬绕组。 1-2.转子的结构组成 转子由转子铁心、转子绕组、转子支架、转轴和风扇等部分组成,转子铁心和定子铁心一样,也是由0.5毫米硅钢片叠压而成。鼠笼型转子的绕组是由安放在转子铁心槽的裸导条和两端的环形端环连接而成,如果去掉转子铁心,绕组的形状象一个笼子;绕线型转子的绕组与定子绕组相似,做成三相绕组,在部星型或三角型。 1-3.工作原理 当定子绕组接至三相对称电源时,流入定子绕组的三相对称电流,在气隙产生一个以同步转速n 1 旋转的定子旋转磁场,设旋转磁场的转向为逆 时针,当旋转磁场的磁力线切割转子导体时,将在导体产生感应电动势e 2 ,电动势的方向根据右手定则确定。N极下的电动势方向用?表示,S极下的 电动势用Θ表示,转子电流的有功分量i 2a 与e 2 同相位,所以Θ ?和既表示 电动势的方向,又表示电流有功分量的方向。转子电流有功分量与气隙旋转磁场相互作用产生电磁力f em ,根据左手定则,在N极下的所有电流方向为

?的导体和在S极下所有电流流向为Θ的导体均产生沿着逆时针方向的切 向电磁力f em ,在该电磁力作用下,使转子受到了逆时针方向的电磁转矩M em 的驱动作用,转子将沿着旋转磁场相同的方向转动。驱动转子的电磁转矩与转子轴端拖动的生产机械的制动转矩相平衡,转子将以恒速n拖动生产机械稳定运行,从而实现了电能与机械能之间的能量转换,这就是异步电动机的基本工作原理。 二.异步电动机存在的缺点 2-1.笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2-2.绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机

santana2000轿车制动系统的毕业设计

摘要 国内汽车市场迅速发展,而轿车是汽车发展的方向。然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了santana2000轿车制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。 关键字:制动;鼓式制动器;盘式制动器;液压 附录:

Abstract The rapid development of the domestic vehicle market, saloon car is an important tendency of vehicle. However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises. This paper mainly introduces the design of braking system of the santana2000 type of car. Fist of all, braking system’s development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameter’s choice of main components braking and channel settings. Key words: braking; brake drum; brake disc; hydroid pressure

汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

水轮机课程设计样本

水轮机课程设计

第一章 水轮机的选型设计 1.1水轮机型号选定 一、水轮机型式的选择 根据原始资料,该水电站的水头范围为59.07-82.9m ,电站总装机容量56万千瓦,拟选2、3、4、5台机组,平均水头为75.43m ,最大水头为82.9m ,最小水头为59.07m 。 水轮机的设计水头估算为m H r 72= 按中国水轮机的型谱推荐的设计水头与比转速的关系, 水轮机的比转速s n : 2162072 2000202000=-=-=H n s m.KW 根据原始资料,适合此水头范围的水轮机类型有斜流式和混流式。 又根据混流式水轮机的优点: (1)比转速范围广,适用水头范围广,可适用30~700m ; (2)结构简单,价格低; (3)装有尾水管,可减少转轮出口水流损失。 故选择混流式水轮机。 因此,选择s n 在216m.kw 左右的混流式水轮机为宜。 根据表本电站水头变化范围(H=59.07-82.9m)查《水电站机电设计手册—水力机械》1-4]

适合此水头范围的有HL220-46。 二、拟订机组台数并确定单机容量 表1-1 机组台数比较表 1.2 原型水轮机各方案主要参数的选择 按电站建成后,在电力系统的作用和供电方式,初步拟定为2台,3台,4台,5台四种方案进行比较。 基本参数, 模型效率:89.0=M η,推荐使用最优单位流量: h m 315.1,最优单位转速:m in 7011r n r =,最优单位流量:s l Q r 115011=。 一、2台机组(方案一) 1、计算转轮直径 装机容量22万千瓦,由《水轮机》325页可知:水轮机额定出力: kw N P G G r 3.28571498 .0280000===η 上式中: G η-----发电机效率,取0.98 G N -----机组的单机容量(KW )

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

水轮机课程设计(2)

课程设计报告 题目:能量转换机械创新综合设计——水轮机课程设计 姓名:xxx 学号:xxx 班级:xxx 2014年 6 月24 日

目录 目录 (1) 课程设计任务书 (2) 1. 课程设计的目的和要求 (2) 2. 基本参数 (2) 3. 课程设计的任务 (3) 第一章水轮机的选型设计 (3) 1.水轮机型号选择 (3) 已知参数 (3) 2. 水轮机基本参数的计算 (5) 一.转轮直径1D的计算 (5) 二.效率 的计算 (6) 三.转速n的计算。 (6) 4. 水轮机设计流量的计算 (7) 5. 几何吸出高度Hs的计算 (7) 6.飞逸转速nR的计算 (7) 7. 转轮轴向水推力Ft的计算 (7) 8. 检验水轮机的工作范围 (8) 第二章水轮机运转特性曲线的绘制 (9) 1.等效率曲线的计算 (10) 2. 机组出力限制线的计算 (12) 3.等吸出高度线的计算 (12) 第三章蜗壳设计 (14) 1.蜗壳型式的选择及参数 (14) 2.蜗壳进口断面的计算 (16) 3.椭圆断面的计算 (20) 第四章尾水管设计 (21) 第六章参考文献 (24) 第七章附录 (25) 1. 水轮机的运转综合特性曲线 (25) 2. 蜗壳断面图 (25) 3. 尾水管单线图 (25)

课程设计任务书 1. 课程设计的目的和要求 课程设计是水轮机课程教学计划中的一个重要环节,是培养学生综合运用所学理论知识解决工程实际问题的一次系统的基本训练。通过水轮机课本章节的相关理论知识的学习后,再通过课程设计的环节以达到巩固和加强理论知识的目的,进一步培养学生独立思考、严谨工作的能力,使学生学会查阅、收集、整理和分析相关文献资料;熟悉水轮机选型设计阶段的内容,针对给定任务能提出合理的设计方案并得出正确的计算结果。 2. 基本参数 电站总装机容量:3000 MW 电站装机台数:4台 水轮机安装高程:2241.5m 最大工作水头 H:220m max 最小工作水头 H:192.1m min 设计工作水头 H:205m r 加权平均工作水头 H:210.5 m a

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

水轮机课程设计

水轮机课程设计 说明书 姓名: 学号: 学院:水利水电学院 班级: 指导老师:

目录 一、水轮机选型及参数计算 1.已知参数 (1) 2.水轮机型号选择 (1) 3.水轮机基本参数计算 (1) 二、水轮机运转特性曲线的绘制 1.等效率曲线的绘制 (3) 2.等吸出高度线绘制 (4) 3.出力限制线绘制 (5) 三、蜗壳设计 1.蜗壳型式及基本参数的选择 (6) 2.进口断面计算 (6) 3.圆断面计算 (7) 4.椭圆形断面计算 (8) 四、尾水管设计 1.尾水管形式的选择 (9) 2.尾水管高度的确定 (9) 3.尾水管各部分尺寸的计算 (9) 蜗壳平面图 (10) 蜗壳单线图 (11) 尾水管图 (12)

一、水轮机选型及参数计算 1.已知参数 装机容量580.00MW ;装机台数4台;单机容量145MW ; max H =84.5m ; min H =68.00m ; r H =73.00m ; a H =71.2m 水轮机安装高程?580.00m 2.水轮机型号选择 s n = H 2000 -20= 73 2000-20=214.08(m·kw) 可以选择HL220型水轮机 3.水轮机基本参数计算 (1)计算转轮直径1D 。水轮机额定出力: r P == G G N η14795998.0145000=KW 取最优单位转速=110n 71.0r/min 与出力限制线交点的单位流量为设计工况点单位流量,则14.1r 11=Q (s /m 3),对应的模型效率%89=M η暂取效率修正值 % 3=?η,则设计工况原型水轮机效率 92.003.089.0=+=?+=ηηηM ,水轮机转轮直径1D 为 m 80.492 .07314.181.9147959 81.95 .15 .111r 1=???= = η r r H Q P D 取标准值1D =5m 该方案水头高于40m,故应使用金属蜗壳,则使用水轮机型号为 HL220-LJ-500 (2)效率η 的计算 944.05 46.0)91.01(1) -1(-155110max =--==D D M M ηη 024.092.0944.0=-=?η 914.0024.089.0=+=η (3)转速n 的计算

PLC控制三相异步电动机正反转设计

A n h u i Vo c a c t i o n a l& Te c h n i c a l C o l l e g e o f I n d u s t r y&Tr a d e 毕业论文 PLC控制三相异步电动机正反转设计Plc control with a three wire asynchronous motor is inverting design 所在系院: 专业班级: 学生学号: 学生姓名: 指导教师: 2013年03 月02日

A n h u i Vo c a c t i o n a l& Te c h n i c a l C o l l e g e o f I n d u s t r y&Tr a d e 毕业设计说明书 PLC控制三相异步电动机正反转设计Plc control with a three wire asynchronous motor is inverting design 所在系院: 专业班级: 学生学号: 学生姓名: 指导教师: 2013年03 月02 日

毕业设计(论文)任务书 系(院)专业班级1 学生姓名学号2010050205 一、题目:PLC控制三项异步电动机正反转设计 二、内容与要求: 内容:1.三相异步电动机的基本结构;2.PLC的基础知识;3三项异步电动机的PLC控制 要求:了解三相异步电动机的基本结构,运用学过的PLC知识对三项异步电动机正反转进行程序设计。运用所学理论知识与实践相结合,利用PLC控制三项异步电动机正反转,以达到方便,简单,易于操作的目的。 三、设计(论文)起止日期: 任务下达日期: 2012 年 1 月 15 日 完成日期: 2013 年 3 月 2 日 指导教师签名: 年月日四、教研室审查意见: 教研室负责人签名: 年月日

相关文档
相关文档 最新文档