文档库 最新最全的文档下载
当前位置:文档库 › 铜基复合材料的研究新进展_韩昌松

铜基复合材料的研究新进展_韩昌松

铜基复合材料的研究新进展_韩昌松
铜基复合材料的研究新进展_韩昌松

超细Al2O3颗粒增强铜基复合材料的研究

第15卷 1998年   第3期 8月 复 合 材 料 学 报 A CTA M A T ER I A E COM PO S ITA E S I N I CA V o l .15 N o.3A ugust 1998 收修改稿、初稿日期:1997204225,1997202205 本课题为机械工业部教育司基金和陕西省自然科学基金资助项目 超细A l 2O 3颗粒增强铜基复合材料的研究 梁淑华 范志康 时惠英 魏 兵 (西安理工大学材料科学与工程学院,西安710048) 摘 要 采用热压烧结法制备了超细A l 2O 3P Cu 复合材料,并进行了轧制,对其组织与性能进行观察与分析。结果表明,超细A l 2O 3P 在基体中分布均匀,细化了晶粒,具有优于铜及铜合金的抗软化性能和耐磨性能。随着超细A l 2O 3P 含量的提高,密度、电导率降低,硬度、强度升高,轧制后的电导率与美国SC M 制品接近。 关键词 热压烧结,复合材料,组织和性能中图分类号 TB 331 A l 2O 3颗粒增强铜基复合材料是一种新型的优秀材料,它可以同时具有高强度、高导热性,以及优于其他任何一种铜合金的耐磨性,是I C 引线框架、电阻焊电极、连铸钢坯结晶器、氧枪喷头等要求高温下高强度、高导电及良好耐磨性的材质最佳选择[1]。国内在这方面的研究报导较少,国外的材料主要采用内氧化法制取,这种方法周期长,一般需要10~20小时,工艺复杂, 要经过制取合金粉(雾化),内氧化处理,热等静压等工序,生产成本高。正是由于生产方法、成本的限制,这种优秀的复合材料至今没有得到良好的应用[2]。 本研究旨在开发一种简单易行,生产成本低廉的生产方法,试图通过研究使这种复合材料得到更广泛的应用,并为此提供依据。 1 材料及实验方法 试验所用A l 2O 3为Α结构,粒度为0.1Λm 和55Λm (对比),经过化学和热处理后使用,铜粉为270目电解铜粉,将两种原料按比例配制后,再加入适量的分散剂,放入QM 24H 型超级球磨机中进行球磨5~6h (A r 保护),然后将原料装入石墨模具中在自制的热压烧结炉中进行烧结,采用N 2保护,烧结温度为850~1000℃,压力40~50M Pa 。显微组织在普通金相显微镜及SE M 下观察,密度用0.1m g 光电天平排水法测量,硬度测试在HB 23000型布氏硬度计上进行测试,在7501型涡流电导仪中测量电导率(%I A CS ),磨损试验在MM 2200型往复磨损试验机上进行,在25吨万能拉伸试验机上测试抗压强度Ρbc 。 除抗压和磨损试验外,其他试样经过热轧,轧制温度500~600℃,相对变形量65%。

高强高导铜合金研究进展

高强高导铜合金研究进展 摘要:介绍了高强高导铜合金的常见应用、及基本性能、强化方式与制备方法,同时对高强高导铜合金的发展趋势进行了展望。 关键词:高强高导铜合金;强化;制备 1 引言 作为最早应用在人类历史上的金属材料之一,也是至今应用最为广泛的金属材料之一,铜及铜合金由于具有较高的强度、优良的导电性能、导热性能以及良好的耐蚀性能,被广泛的应用于电工、电力、机械制造等重要工业部门[1]。但随着科学技术以及现代工业的发展,对铜及铜合金的综合性能提出了更高的要求。大规模集成电路的引线框架、大型高速涡轮发电机的转子导线、触头材料、各种点焊、滚焊机的电极、大型电动机车的架空导线、电动工具的换向器、高压开关簧片、微波管以及宇航飞行器元器件等都要求材料在保持本身优良导电性能的同时,更具有较高的强度和硬度。热交换环境中的零器件,比如电厂锅炉内喷射式点火喷孔、气割枪喷嘴、连铸机结晶器内衬以及大推力火箭发动机燃烧室内衬等,不仅要求材料具有十分良好的电导率和热导率,而且还要求材料具有足够高的热强度。因此,人们在不断探索具有优良的综合物理性能和力学性能的功能材料——高强高导铜合金。 国外发达国家自上世纪70年代开始,对高强高导电铜合金进行了大量的研究和开发工作,针对不同的用途开发了多个系列产品,并已商业化生产,其中美国、日本、德国等是主要的生产和出口国。我国在高强高导电铜材料领域的研究起步较晚,许多研究工作仍处于试验阶段,大多数未形成产业化规模,使得我国高性能铜材料大部分依赖于进口。而我国是铜资源大国,拥有众多的铜加工企业,因此,对高性能铜材料进行研究开发,逐步建立拥有自主知识产权的材科体系,具有重要的战略意义和现实意义。 2 高强高导铜合金的应用 铜及铜合金具有多方面的、突出的优良性能。如:①高导电性、高导热性; ②抗磁性;③较高的机械性能和塑性;④较耐蚀性;⑤具有良好的合金化能力,

翻译-金属基复合材料注射成型工艺总结

金属基复合材料注射成型工艺总结 摘要 金属注射成型(金属注射成型工艺)是一种成熟制造技术,是能够低成本高效益批量生产复杂零件的制造工艺。这种独特处理方法能,使它对金属基复合材料的制造有吸引力。在本文中,通过金属注射成型工艺制造金属基复合材料的研究和发展的状况进行总结,材料系统,制造方法,由此产生的材料特性和微观结构是主要的焦点。此外,这种复合材料制造技术的不足在本文中也会介绍。金属注射成型工艺工艺制备金属基复合材料的全部潜力有待探讨。

目录 1. 介绍 (3) 2. 金属基复合材料注射成型工艺 (4) 2.1难熔金属基复合材料 (4) 2.2 钛基复合材料 (6) 2.3 金属化合物基复合材料 (6) 2.4 钢基复合材料 (7) 2.5双金属结构 (8) 3.微注射成形 (9) 4.总结 (10)

1. 介绍 粉末注射成型(PIM)是一种与塑料注塑成型相结合的成熟的制造技术。粉末的能力冶金用于加工金属和陶瓷粉末(德国,1990年)。PIM的过程通常包括四个步骤:混合,注塑成型,脱脂和烧结,如下图(图1)PIM技术的演变导致了许多变化,反映了不同的组合粉末,粘结剂,成型技术,脱脂路线,烧结做法。金属注射成型,常用其简称金属注射成型工艺,是迄今为止使用最广泛的PIM的过程。 金属注射成型工艺吸引人的特点,非常有利于金属基复合材料的制造(MMC)或陶瓷基复合材料(CMC)。虽然许多金属基复合材料具有独特的属性,但是无法正常实现制造工艺来实现材料,其商业用途往往受限于材料和制造成本。通过采用金属注射成型工艺,使用复合材料的商业成本可显着降低。在近年来,综合性的工作已进行到探索金属基复合材料的制造,并扩展到陶瓷基复合材料和部件。金属注射成型工艺技术的复合材料制造公司甚至已建立并形成商业能力(德克尔,1989年,H. C. Starck的公司,2003年)。最广泛的研究是PIM金属基复合材料,包括不锈钢钢,难熔金属,金属间化合物和钛合金。虽然在理论上加强型复合材料可以采取或者连续(通常长纤维)或连续(颗粒和短纤维/晶

(TiB2+α-Al2O3)颗粒增强铜基复合材料的原位反应机理及摩擦磨损性能研究

(TiB2+α-Al2O3)颗粒增强铜基复合材料的原位反应机理及摩擦磨损性能研究

硕士专业学位论文 (TiB2+仅.A1203)颗粒增强铜基复合材料的原位反应机理及摩 擦磨损性能研究 作者:蒋娅琳指导教 师:朱和国教授 南京理工大学 2015年01月

Master Dissertation Reaction pathways and Friction and wear ·●- -·J-orooerties ol the in-situ cooper matrix composites reinforced by(TiB2+仅--A1203) J● l D articles Jiang Yalin Supervised by Pyoj.Zhu Heguo Nanj ing University of Science&Technology January,2015

声明 本学位论文是我在导师的指导下取得的研究成果,尽我所知,在本学位论文中,除了加以标注和致谢的部分外,不包含其他人已经发表或公布过的研究成果,也不包含我为获得任何教育机构的学位或学历而使用过的材料。与我一同工作的同事对本学位论文做出的贡献均己在论文中作了明确的说明。 研究生签名:孪泌尸阵乡月碉 学位论文使用授权声明 南京理工大学有权保存本学位论文的电子和纸质文档,可以借阅或上网公布本学位论文的部分或全部内容,可以向有关部门或机构送交并授权其保存、借阅或上网公布本学位论文的部分或全部内容。对于保密论文,按保密的有关规定和程序处理。 研究生签名:矽篮年乡月徊

硕士学位论文(TiB2+o【.A1203)颗粒增强铜基复合材料的原位反应机理及摩擦磨损性能研究 摘要 本文采用放热弥散法()(D)成功以A1.Ti02.B.Cu、A1.Ti02.B203.Cu体系为原料通过原 位反应法制备了以(TiB2+仅.A1203)颗粒为增强相的铜基复合材料。对A1.Ti02.B.Cu和A1.Ti02 一B203.Cu系进行了反应热力学计算,通过真空烧结两种体系,对生成物进行SEM 观察和 EDS能谱检测,并结合XRD分析结果鉴定反应产物的相组成,根据反应产物类型建立反 应模型,分析反应过程,研究反应机理。结果表明,体系可以按热力学方向进行,分别生成 0【.A1203和TiB2增强相,可以制备出颗粒增强的铜基复合材料。同时本课题对该两种体系 制备出来的复合材料进行了摩擦磨损性能研究。 反应机理研究表明:A1.Ti02.B.Cu系在烧结过程中发生了四步化学反应,每步反应的表观活化能分别为590.5kJ·mol~,708.0kJ·m01.1,354.6kJ·mol。1和346.4kJ·mol~。A1.Ti02.B203.Cu系在烧结过程中共有两步反应,每步反应的表观反应活化能分别为 1 68.9 kJ.mol。1和342.8kJ.mol~。 摩擦磨损性能研究表明:在所研究的三种体积分数的材料当中,体积分数为30v01.% 时A1.Ti02.B.Cu系和A1.Ti02.B203.Cu系的耐磨性能最低,太高的增强相体积分数破坏了 铜基的软韧性,脆性急剧升高,在实验过程中容易脆断。 对于增强相体积分数为20v01.%,10v01.%的铜基复合材料,在常温下,体积分数为 10v01.%的摩擦磨损性能最高增强相大小分布均匀,摩擦所形成的犁沟浅且窄。摩擦系数 变化范围不大。摩擦磨损性能较为稳定。 随着滑动速率的增加,材料的磨损量在一定范围内先升高后下降。这是由于材料在磨 损过程中产生了硬化膜,这层硬化膜阻碍了摩擦进程。A1.Ti02.B203.Cu(10v01.%)的试 样在摩擦磨损过程当中最早出现下降趋势,减小了磨损量,有相当耐磨损能力。 关键词:原位反应,反应机理,增强相,活化能,摩擦磨损性能

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。做了简单的介绍。 关键词:铝基复合材料,制造工艺,性能,应用 Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up. Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史 1.1概述 复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。金属基复合材料在20世纪60年代末才有较快的发展,是复合材料的一个新分支,其以高比强、高比模和耐磨蚀等优异的综合性能,在航空、航天、先进武器系统和汽车等领域有广泛的应用,已成为国内外十分重视发展的先进复合材料。 在金属基复合材料中,铝基复合材料具有密度低、基体合金选择范围广、可热处理性好、制备工艺灵活、比基体更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工性和价格低廉的优点,更加引起人们的注意[2]。铝基复合材料具有很大的应用潜力,并且已有部分铝基复合材料成功地进入了商业化生产阶段。 铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等[3]。 然而不管增强物的类型和形状尺寸如何,大多数铝基复台材料具有以优点: ①重量轻、比强度、比刚度高。 ②具有高的剪切强度。 ③热膨胀系数低,热稳定性高,并有良好的导热性和导电性。 ④具有卓越的抗磨耐磨性。 ⑤能耐有机液体,如燃料和溶剂的侵蚀。 ⑥可用常规工艺和设备进行成型和处理。 1.2分类

碳纤维增强铜基复合材料

碳纤维增强铜基复合材料 姓名: 张洪敏 学号: SX1206088 专业: 材料加工工程 导师:汪涛 日期:2012年11月15日

碳纤维增强铜基复合材料 一、碳纤维增强铜基复合材料的性质及其特点 目前国内外开展金属基复合材料占主导地位的是铝基复合材料及其制品,铜基复合材料的研究虽然不占主导地位,近年来也受到了人们的极大重视。现在有许多关于碳/铜复合材料的报道,证明它又一系列的优异性能。如:可利用其低的膨胀系数和优良的导热、导电、延展性和耐磨性制作功能结构元件;大功率晶闸管支撑电极;大规模集成电路基板;电刷、触头及其他导电滑块;耐磨自润滑轴承和其他耐磨件等。但是由于铜的熔点较高,较其他熔点低的金属来说,制造过程困难,同时由于铜基体与金属基复合材料的主要增强体润湿性差,所以影响了对其的研究和开发。随着人们对界面结构认识的提高及对改善润湿性方法的采用,使铜基复合材料的开发和应用具有广泛的前景。 碳/铜复合材料除具有铜基复合材料的共同特点之外,还具有优良的高温力学性能,根据增强体的体积,可将热膨胀系数减到接近零。这种复合材料的成本比钛低,密度比钢小,且易加工,因此碳/铜复合材料受到人们的广泛关注。 碳纤维增强铜基复合材料是以铜为基体,以碳纤维为增强体的金属基复合材料。选择高强高模、高强中模及超高模量碳纤维,以一定的含量和分布方式与铜基体组成不同性能的碳/铜复合材料。 由于碳纤维具有很高的强度和模量,负的热膨胀系数以及耐磨、耐烧蚀等性能,与具有良好导热导电性的铜基组成复合材料具有很好的导热导电性、高的比强度、比模量,很小的热膨胀系数和耐磨、耐烧蚀性,是高性能的导热、导电功能材料。 二、碳纤维增强铜基复合材料的表面改性 一束碳纤维表面直接沉积铜后,经不同温度的真空热扩散,测试热扩散前后C/Cu复合材料丝的断裂强度,测定结果表明,复合丝经900℃热扩散后强度仍未降低,说明碳纤维与铜基体之间没有发生界面反应。X射线衍射结果也表明,C/Cu界面处无反应物产生。界面成分分析表明,没有发生Cu与C的互扩散及其溶解。因此,C/Cu界面不会发生化学反应,也不会有溶解现象,只是一种已机械结合为主的物理结合。 为改善界面结合特性,有人首先在高强度碳纤维表面上电沉积镍涂层,使界面形成C-Ni互扩散结合特性,然后在镍涂层上电沉积铜。最后把经过电镀的碳纤维预制件在900℃下热压实。由此生产的材料模量不高,仅为180GPa,抗拉强度为380MPa,造成这种情况的主要原因是分层、纤维分布不均匀及基体松孔。 碳纤维与铜具有良好的化学相容性,但二者的润湿性差。目前的研究,主要集中于以下两方面来改善其润湿性。 1、在基体中加入合金元素 在基体中加入适量的合金元素,通过改变基体的化学成分以降低润湿过程的自由能,促进基体与纤维润湿。 2、对碳纤维进行表面处理 用化学镀铜法,使碳纤维与铜箔产生了良好的复合,在碳纤维表面进行化学气相沉积处理后,再浸铜,得到了碳/铜复合丝,这种方法也可促进二者之间的润湿。

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究 摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。 关键词:铝基复合材料,材料性能,研究成果,趋势 Development and progress of aluminium matrix composites Tang nong-j Abstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward. Key words:aluminium matrix composites,material properties,research findings,trend

金属基复合材料

金属基复合材料 姓名:李英杰 班级:材控13-2 学号:201301021048

铜金属基复合材料 摘要:铜基复合材料因其具有优良的力学性能、较高的耐磨性和良好的导电导热性,被广泛应用于电子封装、电刷、电接触元件及电阻焊电极等方面。寻求既具有高导电导热性又具有良好力学性能的新型增强颗粒,对于铜基复合材料的研究和应用具有非常重要的意义。纳米金刚石(ND)具有高硬度、高耐磨性、导热性好和热膨胀系数低等优异性能,将其弥散分布到铜体中有望得到具有优良综合性能的铜基复合材料。本文主要介绍碳纤维增强铜基复合材料,其次还有不同的制备方法和加入不同的增强体的铜基材料。 关键词:碳纤维增强铜基复合材料复合电铸粉末冶金法 Cr3C2颗粒 引言:碳纤维增强铜基复合材料以其优异的导电、导热、减摩 和耐磨性能以及较低的热膨胀系数而广泛应用于航空航天、机械和电子等领域[1-5]。正是由于这种材料优异的性能以及在应用方面的优势,国内外对于碳纤维增强铜基复合材料的研究一直没有间断过。从2O世纪7O年代末开始,国内有关研究机构和高等院校就相继展开了C/Cu复合材料的试验研究,并取得了重要进展[6]。综合合金化强化、固溶强化、颗粒增强复合材料、形变强化以及时效析出强化等多种手段,对高强高导铜基材料展开研究,成功制备了一种新的Cr3C2颗粒增强Cu基复合材料,并探讨了Cr3C2/Cu复合材料的相关机理[7]。粉末冶金法是制备短碳纤/铜基复合材料的一种普遍方法。其中,冷压烧结粉末冶金法只适合制备碳纤维含量较低的碳一铜复合材料[8]。复合电铸工艺制备颗粒增强铜基复合材料,通过工艺研究、优化,成功制备了颗粒分布均匀,含量可控,材料组织致密、完整的Cu/SiC Cu/Al2O3复合材料。通过对力学性能、物理性能及摩擦磨损性能的研究考察,确定了复合电铸工艺制备的不同粒径颗粒增强铜基复合材料的性能特点、强化机制,为材料的实际应用提供理论参考[9]。 一、简述不同类型铜金属基复合材料 1.复合电铸制备颗粒增强铜基复合材料 随着现代航空航天、电子技术、汽车、机械工业的快速发展,对铜的使用提出了更多更高的要求,即在保证铜良好的导电、导热性能的基础上,要求铜具有高强度,尤其是良好的高温力学性能,低的热膨胀系数和良好的摩擦磨损性能。颗粒

铜基自润滑复合材料综述

铜基自润滑复合材料综述 前言 铜及其合金不仅具有优良的导热性、导电性、耐腐蚀性、接合性、可加工性等综合物理、力学性能,而且价格适中,所以铜及其合金作为导电、导热等功能材料在电子、电器工业、电力、仪表和军工中用途十分广泛,是不可缺少的基础材料之。但是随着科学技术的发展,纯铜和现有牌号铜合金的导电性与其强度及高温性能难以兼顾,不能全面满足航天、航空、微电子等高技术迅速发展对其综合性能的要求。相对于铜及其合金,铜基复合材料是一类具有优良综合性能的新型结构功能一体化材料.它既继承了紫铜的优良导电性,又具有高的强度和优越的耐磨性,在各种领域都有着广阔的应用前景。所以研制高强度、高电导率的铜基复合材料是发挥铜的优势、开拓铜的应用领域的一种行之有效的方法。目前,研制高强度、高导电铜基材料遇到的首要问题是材料的导电性与强度难以兼顾的矛盾,即电导率高则强度低,强度的提高是以损失电导率为代价的。传统的强化手段(如合金化)由于自身的局限性,在提高铜的强度的同时,很难兼顾铜的导电性。导电理论指出,固溶在铜基体中的原子引起的铜原子点阵畸变对电子的散射作用较第二相引起的散射作用要强得多。因此,相对于合金化而言,复合强化不会明显降低铜基体的导电性.而且由于强化相的作用还改善了基体的室温及高温性能.成为获得高强度、高导电铜基复合材料的主要强化手段。铜基复合材料具有高强度、高耐磨性、高导电性的优势,目前已经成为研究的热点。铜石墨复合材料不仅含有良好强度、硬度、导电导热性、耐蚀性好等特点的铜,而且还含有良好自润滑性、高熔点、抗熔焊性好和耐电弧烧蚀能力好的石墨,从而使得铜石墨复合材料在摩擦材料、含油轴承、电接触材料、导电材料和机械零件材料领域发挥着重大作用,特别是作为受电弓滑板材料和电刷材料,有着广泛的应用。提高铜石墨复合材料的综合性能一直以来都是科研人员研究的主要内容。 复合材料定义:复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。 复合材料分类:复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 1.铜基复合材料的制备方法: 铜基复合材料的制备方法很多,如内氧化法、粉末冶金法、复合铸造法、机械合金化法、浸渍法、燃烧合成法、溅射成型法、原位形变法等,各有其优缺点。下面对主要的制备方法及其大致发展趋势进行叙述,以期对制备工艺进行优化或为开发新的制备方法提供参考。

铜基自润滑复合材料综述2

铜基自润滑复合材料综述 1 国内外铜基复合材料的研究现状与发展趋势 近年来,随着电子技术、计算机和信息技术的迅猛发展,焊接电极、接触导线、轴瓦和集成电路引线框架、仪器仪表、电子通信器件中的接触元件等部件种类增多,需求量急剧增大,而且器件向高整化、高集成电路化、高密实装化等方向变化,要求材料不仅具有良好的导电性、导热性、弹性极限和韧性,而且还应具有较好的耐磨性,较高的抗张强度,较低的热膨胀系数,加工性能好;焊接性能、电镀性能及封装、性能良好等一系列优良性能。自美国Ollin公司首先研制生产Cl9400铜合金替代铁镍合金作引线框架以来,在世界上掀起了研制和生产铜基复合材料的热潮,由于铜基复合材料强度的提高往往伴随着导电、导热性的下降。如何解决这一矛盾,将是铜基复合材料研究的关键课题。目前,Cu基复合材料的研究开发国内外非常活跃,抗拉强度在600MPa以上,导电率大于80%LACS的铜基复合材料已成为开发的热点之一。铜与其它一种金属有良好的融合性,采用Fe、Cr、Zr、Ti等在铜基体中有较大固溶度的合金元素,经固溶和时效处理后,合金元素以单质或金属间化合物的形式弥散析出,析出的弥散相有效阻止位错和晶界的移动,达到强化效果,而且第二相的析出纯化了基体金属,恢复了有固溶处理所降低的导电、导热性,取得了强度和导电导热性的平衡。如Cu-Ni-Si合金,通过固溶处理,强冷变形并时效处理后,由于在时效过程中调幅结构幅度的变化和沿晶界析出相形核的形成,NiSi相呈颗粒状从晶界上析出,使该合金抗拉强度达到760MPa,导电率43%;又通过对Cu-Cr-Zr系合金固溶处理和时效的控制,使含富Cr的金属间化合物在Cu基体上呈纳米微细结构弥散析出,获得了抗张强度600MPa、电导率80%IACS。 Cu基复合材料所追求的并非只是强度和导电,而是多项性能的综合。在实际使用过程中,电子器件发热所增加的热量需要通过铜基合金向外散热,因此,作为高强度Cu基复合材料还要求具有良好的导热性能。在Cu基复合材料的开发应注重以下几个方面: (1)新材料必须提高能适应部件小型化的加工性能; (2)Cu基复合材料的开发应注重特定的应用环境,如发动机四周的汽车电器,要求高温应力松弛特性优良的部件等。 引入纤维、晶须、陶瓷颗粒等高强度的强化相增强基体显示出良好的发展前景,其方法是向铜基体内植入稳定的高强度第二相,通过冷变形等加工处理,使第二相以弥散的颗粒状或纤维状分布与基体中,达到机械能和电导性能的最佳匹配。 2 铜基复合材料颗粒增强相的种类 颗粒增强铜基复合材料是指在铜基体中人为地或通过一定工艺生成弥散分布的第二相粒子。第二相粒子利用混合强化和阻碍位错运动的方式来提高铜基的强度,增加其耐磨性,如Al2O3/Cu复合材料,Ti2B2/Cu复合材料。通常第二相粒子在铜基复合材料中主要以2种形式分布:(1)在晶粒内部弥散分布;(2)在晶界上聚集分布。

高强高导铜合金

近年来,熔体过热处理理论和工艺的发展为改善材料性能提供了一种全新的思路和方法。“熔体过热高强高导铜合金制备新工艺的研发”是一项基于该技术的应用研究项目,在当前合金化及“固溶+时效”热处理工艺基础上,引入熔体过热处理新工艺进行高强高导型Cu-Cr-Zr系、高强中导型Cu-Ni-Si系等高强高导铜合金生产线的研制与开发。 制得的高性能铜合金在保持优异的导电性能的同时,具有高强度、高耐磨性以及良好塑性等多样综合性能,是一类具有优良物理和力学性能的功能材料。可广泛应用于国民经济的各个部门,重要的应用领域有:集成电路引线框架材料、高速电力机车架空导线、点接触头和焊接材料、发电机组、锅炉衬料等,市场前景广阔。 与国内外普遍采用的合金化及“固溶+时效”热处理制备工艺方法相比,本项目从熔体热历史角度出发,制备过程采用熔体过热工序改善合金熔体结构,并结合水冷连续铸造快速凝固,进一步提高铜合金的高强、高导等多样综合性能,其主要创新性如下: (1)开发了熔体过热制备高性能铜合金的新工艺,该工艺流程简单,投资低见效好。其优点主要有:①熔体过热处理增大Zr、Cr、Ni等在铜液中的饱和固溶度,可进一步提高合金元素固溶强化和沉淀强化效果。②熔体过热处理对合金的凝固组织和性能有着重要影响,经过过热处理组织变得更加均匀,晶粒大大细化,冶金质量和综合力学性能可得到不同程度的提高。③熔体过热处理的最大优点是在处理过程中不需要加入变质剂,从根本上防止添加剂元素混入铜合金是所产生的副作用,尤其是降低其导电性能。 (2)由于采用了快速水冷连续铸造,熔体的凝固是在极大过冷度下完成,从而使合金中固溶度较低的合金元素有效的保留下来,同时合金铸锭的组织较致密。由于结晶一直保持顺序结晶,具有明显的方向性,消除了缩孔、缩松等缺陷。由于合金铸锭较长,可根据加工车间工艺要求的需要,进行合理锯切,从而减少了切头、切尾的消耗。与铁模相比,该工艺生产效率高,劳动条件好。 部分项目内容现已通过小试阶段,小试制成的Cu-Cr系铜合金经过熔体过热处理后,与未处理前相比其抗拉强度提高近20%以上,导电性能IACS及塑性均有一定上升,其性能及性价比较国内外同类产品具有一定优势。该项目的成功实施将有效弥补我司在铜合金高端市场上的不足,开拓并掌握市场先机。 一、项目的国内外研究现状和发展趋势 为阐明项目背景和起源,其实际意义及创新点所在,有必要对其相关的研究现状及发展趋势做简要分析如下:

铜基自润滑复合材料摩擦磨损性能研究

铜基自润滑复合材料摩擦磨损性能研究 前言 随着电子技术、信息技术以及航空、航天技术等的迅猛发展,焊接电极、接触导线、轴瓦和集成电路引线框架、仪器仪表、电子通信器件中的接触元件等部件种类增多,需求量急剧增大,而且器件向高整化、高集成电路化、高密实装化等方向变化,要求材料不仅具有良好的导电性、导热性、弹性极限和韧性,而且还应具有较好的耐磨性、较高的拉伸强度、较低的热膨胀系数,并具有良好的成型性和电镀及封装性能。 很多金属材料虽然有较高的强度,但摩擦学性能较差。采取合金化措施使硬组分分布在韧基体中,便可改善合金的摩擦学特性。把几种各具不同特点的材料(如软金属和其他固体润滑剂)进行人工复合,构成复合材料,使各组分间能相互取长补短,从而得到力学性能、化学性能和摩擦学性能都较为理想的金属基复合材料。铜具有很高的导电性、导热性,优良的耐腐蚀性能和工艺性能,广泛应用于电力、电工、机械制造等工业。但是铜的屈服强度一般较低,高温下抗变形能力更低,因而限制了其进一步应用。如何在不降低或稍降低铜的导电性等物理性能的前提下,提高铜的力学性能,是材料工作者研究的热点。 现有的铜基复合材料可分为显微复合铜合金、颗粒增强铜基复合材料及纤维增强铜基复合材料[1]。显微复合铜合金是一种Cu-X二元合金,以其超高强度、高导电率以及良好耐热性能引起人们的重视,有望用于热交换器、推进器、焊接电板等。颗粒增强铜基复合材料与铜基合金相比,具有更高的比强度和较好的高温强度,因而备受重视。常用的颗粒有金属颗粒(如钢颗粒、钨颗粒等)和陶瓷颗粒(如SiC、A1 03、A1N 、TiC、TiB5 、ZrC、WC 、纳米碳管等),其中以Al2 03颗粒和SiC颗粒研究得较多。碳纤维/铜复合材料由于综合铜的良好导电、导热性,及碳纤维的高比强度、高比模量和低热膨胀系数,具备较高的强度、良好的传导性、减摩耐摩性、耐蚀性、耐电弧烧蚀性和抗熔焊性等一系列优点,已被广泛应用于电子元件材料、滑动材料、触头材料、集成电路散热板及耐磨器件等领域口。这类材料的性能可设计性好,可通过控制碳纤维的种类、含量及分布来获得不同的性能指标,是一类很有发展前途的新型功能材料。 主题 1、铜基复合材料的研究现状 1-1、SiC颗粒增强铜基复合材料 SiC颗粒增强铜基复合材料的制备主要有粉末冶金法、复合电铸法、复合电沉积法等,但不能采用液态法,原因是在高温液态下铜和SiC会发生严重的化学反应口而损害增强体。香港城市大学s.C.Wjong等应用热等静压法制备了SiC颗粒增强铜基复合材料,并测定了其耐磨性能、屈服强度和维氏硬度,虽然其耐磨性能和维氏硬度提高了,但其屈服强度却比基体铜还低。其原因是SiC颗粒和基体铜之间在固态条件制备下既不润湿,又没有界面反应,因而界面结合太弱了,Kuen-ming Shu等采用化学镀的方法在SiC颗粒表面包覆一层铜后通过粉末冶金法制备成型,并对比了无涂层和有涂层处理两种试样的显微组织和热膨胀特性,发现有涂层的界面结合较好,而且其热膨胀系数也能得到有效的减少。上海交通大学湛永钟等也采用化学处理工艺在SiC颗粒增强物表面均匀地包覆了一层铜,使复合材料获得紧密的界面结合,图2 2 所示为其断口形貌,有SiC颗粒脱粘的明显迹象。经过界面改性后,发挥了SiC 颗粒的增强作用,使复合材料获得了更高的强度和硬度,而电导率只有稍许下降。 1-2、碳纤维增强铜基复合材料 对碳纤维/铜基复合材料制备工艺的探讨一直是该类材料的研究热点之一。由于碳纤维

金属基复合材料的发展与研究现状_李凤平

收稿日期:2003207221 作者简介:李凤平(1956-),男,副教授,从事产品造型设计。 金属基复合材料的发展与研究现状 李凤平 (辽宁工程技术大学机械学院,辽宁阜新 123000) 摘要: 本文对金属基复合材料的分类、制造方法进行了综述,阐述了国内外研究现状,提出了在重金属基复合材料的研究中存在的问题,探讨了重金属基复合材料的研究方向。 关键词: 金属基复合材料;制造方法;分类;研究现状;研究方向 中图分类号:TB331 文献标识码:A 文章编号:1003-0999(2004)01-0048 近20年来,伴随航空航天工业和宇宙空间技术及民用行业技术的进步,金属基复合材料获得惊人的发展。在航天、机器人、核反应堆等高技术领域,镁基、铝基、钛基等轻质复合材料起到了支撑作用[1],SiC 晶须增强的铝基复合材料薄板将用于先进战斗机的蒙皮和机尾的加强筋,钨纤维增强高温合金基复合材料可用于飞机发动机部件,石墨/铝、石墨/镁复合材料具有很高的比刚度和抗热变形性,是卫星和宇宙飞行器用的良好的结构材料。美国航天航空局采用石墨/铝复合材料作为航天飞机中部长20m 的货舱架。此外,金属基复合材料还可以用于光学与精密仪器,美国把金属基复合材料高性能反光镜用于红外探测系统,航天激光系统及超轻量太空望远镜,通过改变SiC 强化颗粒占铝基合金的比例,能使反光镀层的热膨胀系数与复合材料相同,有助于提高跟踪和命中率。 在民用工业中,复合材料的应用领域十分广阔。以碳氮化物或金属间化合物颗粒为强化剂的钢基复合材料,能明显提高强度、韧性、耐磨、耐蚀和切削性能。美国在各类合金钢中用适当工艺加入TiC ,称之为TiC 2铁基复合材料,前苏联称这类复合材料为碳化物钢。这类材料的特点是重量轻、尺寸稳定、硬度高、摩擦系数小。根据不同基钢,可使复合材料具有耐蚀、耐磨、耐热性能,也可做成无磁材料。尤其是工具、模具钢、高温合金、夹具和耐磨件,采用这类复合材料能有效提高寿命和性能,日本和前苏联将用粉末冶金制取得这类材料称为新型硬质合金。用Al 2O 3或SiC 晶须或纤维强化的复合材料,由于耐 高温和高强度,可用于发动机和泵的叶轮,也可加工成模具。如果工程机械用刮板及铲斗和冶金行业用磨损件由普通耐磨钢改为陶瓷复合材料,则可明显 提高材料使用寿命。在汽车制造行业中,20~60% 的零件可以用碳纤维复合材料制造,一般可减重40~80%[1]。氧化铝增强铝合金已成功地制成镶圈,用于活塞环槽及顶部,以代替含镍奥氏体铸铁,不仅耐磨性相当,而且还可以减轻重量,简化工艺和降低成本。另外,发动机钢套、连杆、连销、刹车盘等也在使用金属基复合材料制造,如果能打开市场,将会有较大的产量。其他方面,如运动器材、自行车架、各种型材以及装甲车履带、轻质防弹装甲车等也初步应用复合材料。 1 金属基复合材料的分类 金属基复合材料可分为宏观组合型和微观强化型两大类[2]。宏观组合型指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);微观强化型指其组分需用显微镜才能分辨的以提高强度为主要目的的材料。根据复合材料基体可划分为铝基、镁基、钢基、铁基及铝合金基复合材料等。按增强相形态的不同可划分为颗粒增强金属复合材料、晶须或短纤维增强金属基复合材料及连续纤维增强金属基复合材料。颗粒增强金属基复合材料是利用颗粒自身的强度,基体起着把颗粒组合在一起的作 用,颗粒平均直径在1 μm 以上,强化相的容积比(Vf )可达90%[4]。纤维增强金属基复合材料是利用无机纤维(或晶须)及金属细线等增强金属得到轻 而强的材料,纤维直径从3 μm 到150μm (晶须直径小于1 μm ),纵横比(长度/直径)在102以上。2 金属基复合材料的制备方法 金属基复合材料的复合工艺相对比较复杂和困难。这是由于金属熔点较高,需要在高温下操作;同时不少金属对增强体表面润湿性很差,甚至不润湿,加上金属在高温下很活泼,易与多种增强体发生反 FRP/CM 2004.No.1

【CN110157999A】一种受电弓滑板用石墨纤维增强铜基复合材料【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910384324.2 (22)申请日 2019.05.09 (71)申请人 李纳 地址 466000 河南省周口市禅城县南丰镇 李路口行政村邬小庙村1号 (72)发明人 李纳  (51)Int.Cl. C22C 49/02(2006.01) C22C 49/14(2006.01) B22F 1/02(2006.01) B60L 5/20(2006.01) C22C 47/14(2006.01) C22C 47/04(2006.01) C22C 101/10(2006.01) (54)发明名称 一种受电弓滑板用石墨纤维增强铜基复合 材料 (57)摘要 本发明涉及受电弓滑板材料制备技术领域, 且公开了一种受电弓滑板用石墨纤维增强铜基 复合材料,包括以下重量份数配比的原料:80~ 100份微米级Cu粉、60~100份微米级石墨纤维 粉、10~20份硅烷偶联剂、15~25份双酚A型E51 环氧树脂、5~8份抗氧化剂1010;在Cu粉表面包 裹上硅烷偶联剂、在经过混合强酸氧化处理的石 墨纤维表面包裹上硅烷偶联剂,再以环氧树脂为 粘结剂,将平均粒径基本相同的Cu粉与石墨纤维 粉粘合成一体,最后静压后烧结成型。本发明解 决了现有受电弓滑板用铜/石墨自润滑金属基复 合材料,由于铜与石墨之间的界面结合作用力不 强,导致材料在承受载荷时发生失效的技术问 题。权利要求书1页 说明书4页CN 110157999 A 2019.08.23 C N 110157999 A

昆明理工大学材料学院学生大四上学期专业课论文_颗粒增强铝基复合材料

铝基复合材料的研究发展现状与发展前景——颗粒增强铝基复合材料 课程名称:复合材料 学生:XX 学号:XXXXX 班级:XX 日期:20XX年X月X日

铝基复合材料的研究发展现状与发展前景 ——颗粒增强铝基复合材料 XX (刚理工大学,省市,650093) 摘要:介绍了颗粒增强铝基复合材料的发展历史、制备工艺、性能及应用,以碳化硅颗粒增强铝基复合材料为例指出了颗粒增强铝基复合材料这一行业存在的问题,并对这种材料的未来发展趋势做了预测。 关键词:颗粒增强铝基复合材料;历史;工艺;性能;应用;趋势 0.引言 近年来在金属基复合材料领域, 铝基复合材料(包括纤维增强和颗粒增强)的发展尤为迅速。这不仅因为它具有重量轻、比强度、比刚度高、剪切强度高、热膨胀系数低、良好的热稳定性和导热、导电性能, 以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等一系列优点, 而且因为在世界围有丰富的铝资源, 加之可用常规设备和工艺加工成型和处理, 因而制备和生产铝基复合材料比其他金属基复合材料更为经济, 易于推广和应用,因此, 这种材料在国外受到普遍重视。而其中的颗粒增强铝基复合材料解决了纤维增强铝基复合材料增强纤维制备成本昂贵的问题, 而且材料各向同性, 克服了制备过程中出现的诸如纤维损伤、微观组织不均匀、纤维与纤维相互接触、反应带过大等影响材料性能的许多缺点。所以颗粒增强铝基复合材料已成为当今世界金属基复合材料研究领域中的一个最为重要的热点, 并日益向工业规模化生产和应用的方向发展。 1.发展历史 金属基复合材料(复合材料)自60年代初期开始研究,现在已经取得了突破性的进展。初期研究的工作主要集中在连续纤维增强复合材料]1[,但由于连续长纤维本身的制造工艺复杂、价格昂贵,再加上纤维的预处理以及纤维增强复合材料制造工艺限制,使连续纤维增强复合材料成本极高,仅限用于要求极高性能的场合。 因此,进入80年代,研究重点转向了成本较低的SiC、Al 2O 3 等颗粒或晶须作为增 强材料的不连续增强复合材料,这种材料具有比刚度、比强度强,耐磨性、抗蠕变性好、热膨胀系数小等特点]2[,其比刚度超过了钢和钛合金,而价格不到钛合金的十分之一]3[,用以取代钢、钛等材料,对减轻产品结构重量,降低成本具有明显的经济效益,尤其是取代航空、航天飞行器中的合金钢、钛合金构件,更具有巨大的潜力。 20世纪70年代末,美国政府开始将复合材料列入武器研究清单,并对其研究成果限制发表。日本通产省在20世纪80年代初期开始实施的“下世纪产业基础技术”规划中,把发展铝基复合材料放在了主要位置,并在财力、物力上向有关院所、高校和公司倾斜。我国从20世纪80年代中期开始经过十几年的努力,在颗粒增强铝基复合材料的组织性能、复合材料界面等方面的研究工作已接近国际先进水平,铝基复合材料已列为国家“863”新型材料研究课题。

纤维增强铜基复合材料

纤维顶出出一个研究铜基复合材料与工程接口:模拟实验和凝聚力元素 文章信息 文章历史:2008年9月25日收稿 2009年7月21日重新修订 2009年9月1日发行 重点; 纤维顶出试验 衔接区模型 纤维增强铜基复合材料 有限元模拟 界面脱粘 牵引分离法则 摘要 该纤维顶出试验是一种基本方法,探讨了纤维的力学性能/纤维增强金属基复合材料界面。为了估计的界面性能,参数应进行校准测量负载位移数据和理论模型。在软基复合材料的情况下,可能的塑料区域要进行校准考虑。由于传统的剪滞模型是基于弹性行为,一个详细评估的塑料效果是需要准确的校准的。在本文中,实验和模拟研究,提出了铜基复合材料与基体

的塑性强大的界面结合效果。显微图像表现出显着的塑性变形的区域全球领先的纤维负载位移曲线突出的非线性响应。作为比较,没有化学键涂层界面也可以检测到而其中的非线性则不能够观察到。一个先进的有限元建模是被用来完成一个推出有结合力的区域模型或相反的装置。与测量的推出曲线完全吻合,实验结果证明了预测结果。 1. 介绍 目前,用来加强铜基复合材料的连续 在2002年碳化硅(SiC)纤维作为一种新型的高热量的热点材料得到了很高的关注。一种可能的应用实例是核聚变反应的等离子面向组件。在实践中带有碳保护涂层的厚SiC纤维是用来起到增强作用的。最理想的复合材料的性能能通过铜和非常高强度的SiC纤维的热导性的结合来实现。 纤维的牢固结合面/基体界面的加载必须保证是从有延伸性的基体传导到牢固的纤维。结力强通常是指在纤维表面的薄的反应膜形成一个稳定的化学粘合的接口。界面的结合强度取决于最后的轴向和横向的载荷的施加量。此外,界面的摩擦也有助于一些区域载荷量的承载,只要拉拔纤维时在附近的接口处产生了相当大的剪应力。由于复合材料结构的设计通常取决

相关文档