文档库 最新最全的文档下载
当前位置:文档库 › 大跨度预应力混凝土连续刚构桥合理边中跨比研究

大跨度预应力混凝土连续刚构桥合理边中跨比研究

大跨度预应力混凝土连续刚构桥合理边中跨比研究
大跨度预应力混凝土连续刚构桥合理边中跨比研究

比值之间没有明显的线性关系。

2模型的建立

以某桥跨80ITI+2×145m+80rrt预应力混凝土连续刚构桥为原始模型,在此桥的基础上修改边跨长度并进行结构计算。

2.1原始模型设计参数

主桥上部结构为预应力混凝土连续刚构箱梁,单箱单室截面,箱梁顶宽14.58m,底宽7m,翼缘板悬臂长3.79m;箱梁根部梁高8m,跨中梁高3.205m,顶板厚28cm,底板厚由跨中36cm渐变至根部截面100cm。箱粱0号阶段长8m,每个悬臂纵向分为21个节段,梁段数及梁段长由根部至跨中分别为:7×2.5m、6×3.0rn、8×4rn,22号节段为合拢段,长2m,23号节段为边跨现浇段,长6.5rfl。腹板厚度0号~ll号节段采用80cm,12号~13号节段由80cm渐变至60cm,14号~22号节段采用60cm,边跨现浇23号段由60cm渐变至80cm。刚构悬臂部分箱梁采用变截面,梁高及底板厚度均按1.65次抛物线渐变。箱梁采用C60混凝土。

桥墩采用双薄壁墩,墩身与箱梁固结,墩壁厚140cm,墩身横桥向宽度为700crn,端头做成圆端,采用C40混凝土。

2。2计算模型

运用Midas/civil软件建立6个模型,除边中跨比不同外,其他参数均相同。每个模型由197个节点、190个单元、72个截面组成。计算荷载包括梁自重、预应力、二期恒载、车道荷载、考虑温度变化及墩的不均匀沉降,实际分析时采用荷载为主梁自重、车辆荷载以及一个组合荷载。计算模型见图3。

图3计算模型

2.2.1工况

在参考国内外边中跨比取值经验的基础上,选取具有代表性的6个工况,工况1~6分别对应L边/L,为0.506、0.55、0.6、0.65、0.7、0.8。中跨跨径不变,通过调整边跨长度来改变边中跨比。2.2.2荷载

计算结果中荷载主要考虑自重、车辆荷载。车辆荷载为公路一I级荷载,单向2车道,车道分别位于距顶板中轴线3.5iTI处两侧。二期恒载为33.3kN/m。混凝土、钢绞线等材料设计参数以及车辆荷载等相关参数取值均参照规范口。4]。

3计算结果

3.1自重作用下

3.1.1应力

自重作用下,随着边中跨比的增大,对应原模型边跨跨中截面上缘由压应力转为拉应力,截面下缘由拉应力转为压应力,上、下缘应力随边中跨比值的增大呈指数增长;边跨根部、中跨根部以及中跨L/4截面上、下缘的应力均随着边中跨比比值的增大而增大,3个截面中,边跨根部截面应力增加幅度最大,且应力绝对值也最大;中跨跨中截面应力随着边中跨比的增大而减小。可见,增大边中跨比值,有利于减小中跨跨中应力,同时会增加根部截面、中跨1./4截面应力,尤其会增大边跨根部截面应力。

3.1.2变形

自重作用下,随着边中跨比的增加,原模型边跨跨中以及边跨根部截面挠度会迅速增加,尤其是边跨跨中截面,此截面边中跨比为0.8时的挠度是边中跨比为0.506时的12倍。中跨根部、中跨L/4、中跨L/2截面挠度随着边中跨比值的增加而减小。可见,增加边中跨比对减小跨中截面挠度有利,但会迅速增加边跨截面尤其是边跨跨中截面的挠度。

3.1.3薄壁墩反力

自重作用下,随着边中跨比的增加,边墩支反力会缓慢增加,主墩靠近边跨的支反力会迅速增加,而主墩靠近中跨的支反力会迅速减小。在边中跨比接近0.7时,靠近边跨主墩和靠近主跨主墩支反力非常接近。

3.2车道荷载作用下

3.2.1应力

车道荷载作用下,随着边中跨比的增加,边跨跨中截面上缘拉应力、下缘压应力先减后增,上缘压应力、下缘拉应力则逐渐减小,此截面上、下缘应力绝对值都不大。边跨根部截面上缘主要受拉、下缘主要受压,上缘拉应力、下缘压应力随边中跨比值的增加而增加,最大拉应力为1.34MPa,最大压应力为1.42MPa。中跨根部截面上

缘主要受拉,下缘主要受压,上缘拉应力、下缘压

100+160+100公路预应力混凝土连续刚构桥毕业设计

100+160+100公路预应力混凝土连续刚构桥毕业设计 目录 第1章绪论 (3) 1.1预应力混凝土概述 (3) 1.2预应力混凝土连续刚构桥 (3) 1.3预应力混凝土连续刚构桥的施工方法 (6) 第2章桥梁总体布置及结构主要尺寸 (8) 2.1方案比选 (8) 2.2设计依据及基本资料 (9) 2.3桥跨布置 (10) 2.4上部结构尺寸拟定 (11) 2.5下部结构尺寸拟定 (15) 2.6特殊节段处理 (18) 第3章桥梁结构内力计算 (20) 3.1概述 (20) 3.2模型的建立 (21) 3.3桥梁恒载内力计算 (26) 3.4桥梁活载内力计算 (30) 第4章预应力钢筋设计 (38) 4.1预应力筋布置 (38) 4.2纵向预应力筋估算 (39) 4.3预应力损失及有效预应力计算 (44) 第5章次内力计算及内力组合 (49) 5.1预应力次内力 (49) 5.2收缩次内力 (50) 5.3徐变次内力 (51) 5.4温度次内力 (53) 5.5基础不均匀沉降次内力 (58) 5.6荷载组合 (60) 第6章主要截面验算 (66) 6.1强度验算 (66) 6.2承载能力极限状态截面验算 (67) 6.3正常使用极限状态截面验算 (68) 6.4变形验算 (73) 第7章抗震分析 (74) 7.1桥梁结构地震反应分析方法 (74) 7.2桥梁结构动力特性 (76)

7.3连续刚构桥的地震反应谱分析 (83) 7.4连续刚构桥的时程分析 (87) 第8章主要工程数量 (91) 8.1混凝土用量 (91) 8.2钢束用量估算 (92) 8.3锚具用量估算 (94) 结论 (96) 致谢 (97) 参考文献 (98)

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

连续刚构桥跨中下挠问题的起因及预防

结合实例研究连续刚构桥跨中下挠问题的起因及预防 栗勇王鑫 (北京市市政工程设计研究总院 100082) [摘要]连续刚构桥是我国桥梁工程中最常用的结构形式之一,已建此类桥梁普遍出现了跨中下挠过大的病害。以一实桥为工程背景,从控制弹性挠度不足、施工原因导致的有效预应力的降低、预应力摩阻损失、结构开裂、施工超方以及活载长期作用等方面,讨论了各因素对跨中下挠的影响程度。通过对一些设计指标的控制、必要的构造措施以及合理施工方式的采取来降低和消除可能出现的病害。 [关键词]连续刚构桥跨中下挠弹性挠度预应力结构开裂施工超方 引言 连续刚构桥多为预应力混凝土结构,主梁为薄壁箱梁。该种桥型以其结构刚度大、行车平顺舒适、伸缩缝少和养护简便等一系列优点,备受业主、设计单位和施工单位的欢迎。从20世纪70年代起,预应力混凝土连续刚构桥在我国得到了迅速发展和广泛应用。目前在跨径40~150m 范围内,预应力混凝土连续刚构桥已经成为主要桥型之一。 然而,随着预应力混凝土连续刚构桥在我国各地的广泛应用,有关该种桥型的病害报告也越来越多,主要有跨中下挠过大、腹板斜裂缝、底板裂缝等。其中主跨跨中的持续下挠已经成为国内大跨径连续刚构桥的一种普遍现象,跨中下挠的同时往往伴随着梁体腹板斜裂缝甚至底板横向裂缝的出现,不但给桥面行车带来不便,对结构本身来说也是很大的安全隐患[1]。 本文以烂柴湾大桥为背景,分析跨中下挠问题可能存在的成因,并给出相应预防措施,为今后类似工程的设计、施工提供参考。 1 工程概况 烂柴湾大桥主桥上部构造为70m+3×120m+70m五跨预应力混凝土连续刚构,引桥为1×45m 预应力混凝土简支箱梁桥。结构总体布置见图1。 图1 烂柴湾大桥立面布置(单位:cm) 主梁采用单箱单室大悬臂变截面PC连续箱梁,两端及中跨跨中梁高2.8m(1/42.9中跨),主墩墩顶根部梁高7.5m(1/16根部),梁高按1.8次抛物线变化。箱梁顶宽12.00m,底宽6.0m,悬臂长3m。主梁设纵、竖预应力,纵向预应力分别采用钢绞线,布置在顶、底及腹板内。竖向预应力采用JL32精轧螺纹钢筋,布置在腹板内。桥墩采用双薄壁墩,薄壁墩横桥向宽度6m。 作者:栗勇(1976-),男,高级工程师,2003年毕业于大连理工大学桥梁与隧道工程专业,工学硕士。Email:liyong@https://www.wendangku.net/doc/4c16036292.html,

多跨连续刚构一次合拢施工工法

多跨连续刚构一次合拢施工工法 中铁十八局集团第二工程有限公司 陈国胜崔新军张文卷于长彬孙兆会 1.前言 连续刚构合拢段施工是施工中技术难度最大的一部分,特别是对于多跨长大连续梁,采用合适及合理的合拢段施工顺序和施工方法,既能节省施工时间又能使合拢段的施工受力处于最有利的状态。大跨度连续刚构桥梁结构的分段施工一般要经历一个长期而又复杂的施工过程,多跨连续刚构桥的施工,还将经过几次结构体系转换,随着施工阶段的推进,桥梁的结构形式和荷载作用方式等都在不断发生变化。结构中的最终恒载内力与施工合拢的程序有关,不同的施工程序,由于它们的初始恒载内力不同,在体系转换的过程中,由徐变引起的内力重分布的数值也不同。采用不同的合拢顺序对整个桥梁建设的工期和成本的影响也不同,因此,选择正确的合拢顺序至关重要。 目前,连续刚构桥比较成熟的施工技术一般按“对称悬臂浇筑→边跨合拢→中跨合拢”的顺序施工,由于大跨径连续刚构跨径大、超静定次数高,其成桥需经历一个长期而复杂的结构体系转换过程,而且,对于多跨布置的连续刚构桥梁,这种成桥顺序需要的工期长,施工成本大。 多跨一次合拢,可缩短整个合拢工程的工期,工序紧凑。对于静定结构,各工况条件下的挠度计算值与实测值容易吻合,而对于超静定结构,计算值与实测值就容易出现一些偏差,因此,进行一次合拢对于挠度控制是十分有利的。此外,多跨连续体系一次合拢,使合拢段的荷载同时作用

在最终结构上,可使内力的变化更趋均匀,比逐孔合拢相继产生的次内力随超静定次数的增加,其作用的结构形式不断改变所带来的复杂内力计算要简单得多。因此,采用多跨连续体系一次合拢可以达到线形正确、受力合理、成桥快的目的。 由中铁十八局集团第二工程有限公司承建的铜黄高速公路沮河特大桥,主桥上部构造为(85+3×160+85)米预应力混凝土变截面连续刚构,经过对多跨连续刚构一次合拢顶推力进行优化,采用“分级顶推、同时锁定、一次合拢”的技术;成功实施了对铜黄沮河特大桥5跨650米一联的连续刚构高温条件下的合拢。 取得了显著经济效益和社会效益,经总结形成本工法。 2.工法特点 多跨连续刚构一次合拢,可缩短整个合拢工程的工期,工序紧凑。而且对于超静定结构,计算值与实测值容易出现一些偏差,进行一次合拢对于挠度控制是十分有利的。而且多跨连续体系一次合拢,使合拢段的荷载同时作用在最终结构上,可使内力的变化更趋均匀,比逐孔合拢相继产生的次内力随超静定次数的增加,其作用的结构形式不断改变所带来的复杂内力计算要简单得多。因此,采用多跨连续体系一次合拢可以达到线形正确、受力合理、成桥快的目的。 3.适用范围 本工法适用于悬臂法浇注的多跨连续梁。 4.工艺原理 采用“分级顶推、同时锁定、一次合拢”的技术;对多跨连续梁合拢

高墩大跨超长联连续刚构桥设计

第33卷,第4期2008年8月 公路工程 H ighway Engi n eering V o.l 33,N o .4Aug.,2008 [收稿日期]2008)05)10 [作者简介]曾照亮(1971)),男,湖北钟祥人,硕士,高级工程师,主要从事公路与桥梁研究设计工作。 高墩大跨超长联连续刚构桥设计 曾照亮,王 勇,张安国 (中交第二公路勘察设计研究院有限公司,湖北武汉 430056) [摘 要]以贵州镇(宁)胜(境关)高速公路虎跳河特大桥主桥设计为背景,重点介绍高墩大跨超长联连续刚构的设计特点,如设计时考虑主墩截面特殊设计、合拢时顶推方法解决主梁位移较大及其产生的边主墩较大内力等问题。 [关键词]镇胜高速;虎跳河;高墩;大跨;超长联;连续刚构[中图分类号]U 442.5 [文献标识码]B [文章编号]1002)1205(2008)04)0103)02 Design of Conti nuous R igid Fra m e Bri dge wit h H igh pier , Long Span and Overlong Unit ZENG Zhaoliang ,WANG Yong ,ZHANG Anguo (Cccc Second H i g hw ay Consu ltan ts C o .Ltd ,W uhan ,H ube i 430056,China) [K ey words]zhensheng h i g hw ay ;huti a o river ;high pier ;l o ng span;overl o ng continuous un i;t continuous rig i d fra m e bridge 目前连续刚构以其跨越能力大、经济性较好等优势广泛运用于公路、城市桥梁,特别是高速公路进入山区后更是成为了跨越沟谷最常见的大跨度桥梁,以下结合虎跳河特大桥主桥的设计讨论联长较长的刚构桥设计。 1 概述 虎跳河特大桥为适应河流及地形特点,主桥桥 跨布置为120m +4@225m +120m 六跨一联的预应力混凝土连续刚构桥(见图1),长1140m ,为目前国内最长联的连续刚构桥。主墩均为薄壁墩,高度较高的6、7号桥墩(高度分别为106、150m )下部分采用整体(双幅)箱形断面。镇宁、胜境关两岸各设一交界墩,镇宁岸引桥为5@50m 先简支后连续的预应力T 梁,胜境关岸为5@50+6@50m 先简支后连续的预应力T 梁。全桥总长1957.74m 。 图1 虎跳河特大桥主桥布置图(单位:c m ) 连续刚构除两端外无其他伸缩缝,有利于行车。但是对于较长的连续刚构,由于主梁混凝土收缩徐 变及体系温差产生的主梁位移较大,从而引起边主墩位移过大,因此要设计较长的连续刚构必须解决主梁位移较大及其产生的边主墩较大内力问题。 2 设计特点 2.1 适当减小边、中跨比 主桥半幅桥宽采用单箱单室,C 50混凝土,三向预应力,箱底宽 6.7m,翼板悬臂2.65m ,全宽

大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制 重庆鱼洞长江大桥 发表人:侯圣慧 中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部 2010年12月16日

目录 一、工程概况 (1) 二、小组概况 (1) 三、选题理由 (2) 四、现状调查 (2) 五、设定目标 (3) 六、原因分析 (4) 七、要因分析 (4) 八、制定对策 (5) 九、对策实施 (8) 十、效果检验 (11) 十一、巩固措施 (14) 十二、总结和今后打算 (15)

大跨度连续刚构桥线型控制 一、工程概况 重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。 本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。二、小组概况 本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

连续刚构桥梁方案比选(原创、优秀)

1.1 方案比选 1.1.1 工程概况 (一) 主要技术指标: (1)孔跨布置:见”分组题目”。 (2)公路等级:一级。 (3)荷载标准:公路I 级,人群荷载3.5kN/m 2 (4)桥面宽度:桥面宽度20.5m ,即净2?7.5m(车行道)+1.5m(中央分隔带)+2 ?2.0m(人行道和栏杆) (5)桥面纵坡:0%(平坡);桥轴平面线型:直线 (6)该地区气温:1月份平均6℃,7月份平均30℃。 (7)桥面铺装:铺装层为10cm 防水混凝土,磨耗层为8cm 沥青混凝土。 (二)材料规格 (1) 梁体混凝土:C50混凝土; (2) 桥面铺装及栏杆混凝土:C40级混凝土; (3) 预应力钢筋及锚具: 主梁纵向预应力钢筋可选用 715.24,915.24,1215.j j j j φφφφ----高强度低松弛钢绞线 (115.24j φ-公称断面面积为2140.00mm ),1860MPa b y R =,1488MPa y R =,对应锚具分别为YM15-7,YM15-9,YM15-12,YM15-19;对应波纹管直径分别为(内径) 70,80,85,100mm φφφφ(外径比同径大7mm )。 主梁竖向预应力钢筋采用32φ冷拉IV 级钢筋,735MPa b y R =(冷拉应力),550MPa y R =;对应锚具为M343?(螺距);对应孔道直径43φ,锚垫板边长140mm a =,相邻锚板中心距离不小于15cm 。 (三)河床横断面 河 床 横 断 面

(四)工程地质条件 大桥位于江心洲西侧及附近水域,其中0+250~0+532地面高程为 3.8~4.20米,低潮时为陆地,高潮时被水淹没;0+542,0+614位于水中,地面高程为-0.18~-3.63米,钻孔揭露表明,桥位覆盖层厚43.00~50.10米,主要为中密细、中砂层,其中0+322~0+614下部分布有厚18.60~21.15米的密实卵石土层。下附基岩全、强分化层均很发育,厚22.75~34.10米,其中0+532,0+614具有不均匀分化现象,全、强风化花岗岩中在高程-64.00~-75.50米间分布有厚0.95~4.70米的微风化花岗岩残留体。微风化基岩面变化很大,在-62.12~-82.03米间,基岩主要为灰白色中粗粒花岗岩、花岗斑岩,微风化基岩岩质坚硬,呈块状~大块状砌体结构,为主墩桩基良好的持力层。基础设计时宜采用微风化基岩作为基础持力层,桩端进入微风化基岩一定深度。 微风化岩面一览表

连续刚构大桥中跨合拢前顶推力计算

毛坯子大桥主桥中跨合拢段顶推力计算预应力砼连续刚构桥在完成体系转换后,后期砼收缩徐变与降温效应相组合使两墩之间主梁有缩短得趋势,迫使墩顶向跨中方向发生位移,墩顶、墩底产生较大得弯矩,同时主梁受到砼纤维限制,在结构内部产生拉应力,对结构造成危害。因此,在边跨合拢后、中跨合拢前对中跨悬臂端部施加一个水平推力,使桥墩产生一个预偏位来抵抗上述位移,有利于桥梁后期受力,增加结构得安全度。为此,监控组根据设计图纸要求,通过建立有限元模型,计算分析确定合拢顶推力值。 一墩顶偏位与顶推力关系 在结构有限元计算模型(图1)中,需在最大悬臂工况下(即中跨合拢前)对悬臂端施加纵向得水平推力P,来消除各墩顶产生得水平偏位。 图1 毛坯子大桥主桥有限元模型 在最大悬臂端分别施加0KN、100kN、200kN 、300kN得顶推力,两个主墩墩身对应在0#块中心得节点(25号、71号节点)处得水平位移见表1。 表1 不同顶推力作用下主墩对应节点水平位移(mm)(合拢温差为0) 节点 25 71 顶推力 0KN 4、10 -2、89 100KN -0、01 1、04 200KN -4、26 5、11 300KN -8、60 9、26 从表1中可以瞧出,控制截面节点得水平位移变化基本与顶推力呈线性变化,即每增加100KN得顶推力,8#墩对应0#块中心处水平偏位为4、2mm,9#墩对应

0#块中心处水平偏位为4、1mm。有了上述节点位移量与顶推力得关系,即可开展顶推力优化计算与温度影响得分析。 二顶推力计算 2、1 收缩徐变对顶推力得影响 在确定桥梁在运营一段时间后因收缩徐变影响所需得实际顶推量时,我们需要考虑以下两个因素: (1)理论上得顶推量为长期收缩徐变后得累积纵向水平位移,结构有限元模型就是对桥梁结构理想状态得模拟,而实际桥梁结构得边跨支座位移肯定会受到摩阻力得影响。 (2)从成桥到收缩徐变完成需要很长时间,若预先顶推100% 收缩徐变效应值,这样结构在合龙完成后在运营阶段将会带有由于顶推作用而引起得反向过大位移,并且在这期间还有活荷载得作用,这对运营阶段得桥墩产生很大得不利弯矩,更有可能引起开裂。另外双薄壁墩一般采用柔性墩,设计上原本就容许有一定得纵向位移。 根据工程经验一般只需预顶实际收缩徐变量得60%。考虑桥梁运营十年后,主墩对应0#块中心处节点位移如表2所示。 表2 桥梁运营十年后对应节点水平位移(mm)(未顶推,合拢温差为0) 在顶推力Pi 作用下, 各节点得水平位移量可按式(1) 计算: δi =δ1-i×P i(1) δi =60%*δ10(2) 即P i=δi/δ1-i (3) 式中:δi 为各节点顶推产生得水平位移;δ1-i为单位顶推力作用下各节点水平位移;P i为顶推力;δ10为桥梁运营十年后节点累计水平位移。 通过表1,表2及公式(3),可计算出: P25=δ25/δ1-25=-21、87×0、6/0、042=-313KN; P71=δ71/δ1-71=20、54×0、6/0、041=301KN;

浅析高墩大跨连续刚构桥施工技术

浅析高墩大跨连续刚构桥施工技术 发表时间:2018-08-23T13:41:08.753Z 来源:《建筑学研究前沿》2018年第10期作者:黄镇平 [导读] 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式。 广东省南粤交通投资建设有限公司广东广州 510000 摘要:预应力混凝土连续刚构桥具有经济美观、跨越能力强、施工简便快捷的优势,在大跨度桥梁中具有广泛的应用。本文以广东省龙怀高速大埠河大桥预应力混凝土高墩大跨连续刚构桥为工程实例,浅析了高墩大跨连续刚构桥主墩和主梁的施工技术。 关键词:桥梁工程;高墩大跨;连续刚构桥;施工技术 引言 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式,其具有经济美观、跨越能力强、施工简便快捷等优点[1],使之成为预应力混凝土大跨度梁式桥的主要桥型之一。 我国于上世纪80年代引进预应力混凝土连续刚构桥型,在高墩修建过程中,随着翻模施工、滑模施工等施工技术的发展,使得高墩尤其是超高墩的修建成为可能。随着我国“西部大开发”、“一带一路”以及“亚洲基础设施投资银行”等国家重大战略的相继实施,新一轮的交通基础设施建设热潮已经开始,高墩大跨连续刚构桥也迎来新的建设高峰。 1 工程概况 大埠河大桥位于汕头至昆明高速公路龙川至怀集段上,地处广东省连平县元善镇境内。大桥主桥为跨径82+150+82m的连续刚构桥,桥梁总体布置图如图1所示,主桥采用预应力混凝土箱梁形式,上下行分幅布置,箱梁顶板宽12.5m、底板宽6.2m。 图1大埠河大桥桥型布置图(单位:cm) 该桥设置三向预应力钢束,纵向预应力钢束:顶板束为15-25的高强预应力钢绞线、腹板束为腹板束为15-22、中跨合拢束为15-22高强预应力钢绞线、边跨束为15-17高强预应力钢绞线;横向预应力钢束:箱梁桥面板横向预应力采用15-2高强预应力钢绞线,纵向布置间距1.0m,单端交错整体张拉,管道成孔采用扁形塑料波纹管,固定端采用P 型锚具。竖向预应力钢束:采用15-3高强预应力钢绞线。横断面每道腹板内布2根,锚垫板下设置螺旋筋,管道成孔采用内径50mm的塑料波纹管。 主墩采用箱型墩,平面尺寸为5.0×6.2m(横桥向×顺桥向),壁厚1m,墩底8m、墩顶3m范围内为实心墩,1/2 墩高位置,设置1m高隔板。墩高67.35m至71.98m不等。 2 主梁施工技术 连续刚构桥主梁的施工主要有以下几种方法:悬臂施工法、支架现浇法、顶推法、缆索吊装法、旋转施工法、大型浮吊法及移动模架法等[2]。高墩大跨连续刚构桥由于其主墩较高,地形条件复杂,施工环境较差,采用对场地要求比较小的悬臂施工法进行施工。 悬臂浇筑法又称为无支架平衡伸臂法或挂篮法,它是以已经完成的墩顶节段(0#块)为起点,通过挂篮的前移对称的向两侧跨中逐段浇筑混凝土,并施加预应力的悬出循环作业法,我国已经建成的多数大跨混凝土桥梁大多采用此种方法。主要程序为移动挂篮位置、绑扎钢筋及预应力管道、浇筑混凝土、张拉预应力、移动挂篮,循环依次进行,直到达到最大悬臂块段,悬臂浇筑流程图如下图2所示。 图2悬臂浇筑施工工艺流程 3 主墩施工技术 3.1 主要施工技术概述 高墩大跨连续刚构桥主墩通常采用双薄壁墩、单薄壁空心墩及上部为双薄壁、下部为单薄壁空心墩的组合式桥墩形式[3-4],一般采用滑模、爬模、翻模三种方式进行施工[5]。 3.1.1 翻模施工 翻模施工墩身模板采用组合型大型钢模板,每个墩柱使用3套钢模板,每套模板高度为2.5m,一次翻模浇筑高度为4.5m。当浇注完混凝土达到拆模强度时后,拆除底下两层模板,上层一节模板不动,作为下一节墩柱模板的持力点,拆除的模板用钢丝绳或手拉葫芦直接吊在上层模板上,清除掉板面上的混凝土、涂刷脱模剂。当钢筋绑扎完毕后,用塔吊将模板安放到位,进入下道工序,以上是翻模施工的一

预应力混凝土刚构桥的发展

预应力混凝土刚构桥的发展 摘要:预应力混凝土刚构桥在我国发展的50多年中,不断创新,实现了更大跨径,总结其原因是工程材料的改进,预应力技术的发展与普及、设计方法与施工技术的不断发展。这也为今后预应力混凝土刚构桥的发展指引了方向。 关键词:预应力混凝土;刚构桥;发展;原因 Abstract: Prestressed Concrete Rigid Frame Bridge Development in China for over 50 years, continuous innovation, and realize a greater span, summarizes its reason is the improved prestressed engineering materials, the development and popularization of technology, design method and construction technology development. It also for future prestressed concrete rigid-frame bridge development direction direction. Keywords: prestressed concrete ;rigid frame bridge; development; reasons; 预应力混凝土刚构桥在我国应用非常广泛,其快速发展,特别是从20世纪60年代在我国发展以来的50年中,可以看出预应力钢构桥的跨径从几十米发展到270米,这是预应力技术不断创新的丰硕成果。大跨度预应力钢构桥的发展,如高速公路的快速发展,河流通航要求的提高,首先与当代世界各国经济发展有关,从而对桥梁的使用荷载、跨度和使用性能等提出更高的要求。而工程材料的改进,预应力技术的发展与普及、设计方法与施工技术的不断发展等促进了刚构桥的发展。归纳起来有以下几个原因。 建筑材料的发展与改进。 高强度等级混凝土和其它高性能混凝土的研究与应用 预应力混凝土桥梁结构要求高强度等级混凝土。过去一般常用C40混凝土,目前国内外已开始广泛采用C50、C60混凝土,甚至C80混凝土。减水剂和早强剂的大量推广使悬臂施工在确保质量的前提下加快施工速度,特别是早强水泥的使用更可使混凝土在24小时达到混凝土强度的70%以上,为加快施工速度创造了条件。 高性能混凝土概念的提出至今已有10多年时间,它是伴随着高强混凝土问世的。1993年美国混凝土协会定义高性能混凝土的性质,它需要满足特定性能和匀质性要求,其“高性能”包括:易浇捣而不离析,长期力学性能良好,强度高,异常坚硬,高体积稳定性或严酷环境中使用寿命长久(如海上建筑结构中必须使用)。和高强度一样,各国对高性能混凝土的要求也有所不同,但新拌混凝土的工作性、硬化混凝土的强度和耐久性,是高性能混凝土的基本要素。高性能混凝土在配合比上的特点是低用水量(水胶比低于0.4,而且单方混凝土用水量低于

连续刚构桥合拢段施工和技术要点

《连续刚构桥合拢段施工和技术要点》 连续刚构桥是一种介于连续梁桥和T型刚构桥之间的桥型,这种桥型的桥梁又称为墩梁固结的连续梁桥。目前连续刚构桥大多用于大跨度的薄壁高墩上,即把高墩看作一种摆动支承体系,从而降低墩的内力。由于其具备超越连续梁桥跨径的能力,是近年来使用较多的梁式桥。 悬臂施工法是一种常用的桥梁施工方法,目前大跨径预应力混凝土连续刚构桥的施工大多采用悬臂施工法。概括地讲,其操作方法是:首先由墩顶开始向两边采用平衡悬臂施工法逐节段施工结构的上部梁体,形成一个T字形的双悬臂结构,接着合拢边跨,最后合拢中跨,形成最终体系。悬臂施工法可以分为悬臂浇筑和悬臂拼装两种工法,其中尤以悬臂浇筑具有更广泛的适用性。 合拢段的施工是悬臂浇筑技术非常重要的工序之一。它不仅是梁体体系转换的必由之路,而且因为其混凝土从浇筑到张拉预应力筋,实现真正“合拢”期间,昼夜温差的影响、 新浇混凝土的早期收缩、徐变等因素,都要在结构中产生变形、引起内力,所以必须采取合理的措施,确保合拢段混凝土不致因自身的长度的变化造成开裂和压碎,使桥梁顺利合拢。鉴于目前文献合拢段的施工,都是针对连续梁而言的,连续刚构有其自身的特点。本文结合录安洲夹江大桥施工实例,论述悬臂施工中合拢段的施工方案和技术注重事项。1工程概况 录安洲夹江大桥主桥为m五跨预应力连续刚构,单箱双室变高度预应力混凝土箱梁,桥面宽18m,箱宽11m,跨中及边跨端部梁高2.5m,13、14号墩根部梁高6米,15号墩顶根部梁高5米。桥梁桥跨体系采用悬臂浇筑法施工,悬浇段每节长度为3.0m~4.0m,中跨合拢段长2.0m,主桥箱梁采用C50混凝土,预应力采用三向预应力体系。0号块和1号块采用贝雷支架现浇施工,全桥共设8个三角形轻型挂篮对称悬臂浇筑施工。中跨合拢段利用挂蓝主梁作为导梁,其下悬吊底模浇筑。边跨现浇段采用在11号悬浇块端与边墩之间搭设型钢支架进行现浇施工。主桥合拢顺序为先合拢边跨现浇段,再合拢中跨,从而形成一个连续刚构体系。图1连续刚构桥悬臂浇筑和合拢段施工示意图 2施工方案 2.1边跨现浇段施工 边跨现浇合拢段施工采用钢管脚手架搭设支架进行现浇。施工前支架基础应做严格的压实处理,首先对11号墩与11号悬浇块之间的河堤进行严格压实或换填处理,然后上铺垫木,搭设90×90×120cm钢管脚手架支架至设计高度。现浇段模板采用δ=20mm高强度竹质胶合板。浇筑前对支架进行100%重量预压,消除塑性变形,预留弹性变形,确保合拢后线形符合设计要求。 2.2中跨合拢段施工 边跨合拢后,即可进行中跨合拢段的施工。因中跨两梁段上的挂篮已非常接近,此时可利用挂篮进行中跨合拢段的施工。 具体施工方法是:合拢前先调整中线位置和高程,合拢口临时锁定,张拉合拢临时钢束,并按设计要求在两端悬臂用水箱法预加压重,在混凝土浇筑过程中逐步撤除。临时锁定设置由四根钢接杆组成的临时劲性支撑,分别位于箱梁顶底板靠近腹板处,钢接杆按图纸预先拼焊好后,在箱梁两端对应预埋件上就位焊接,此后张拉上顶板临时束和下底板对应钢束,形成顶部抗拉的近似刚性接头。利用挂篮底模做中跨合拢段底模,侧模用挂篮钢侧模。取出挂篮内模,改用方木骨架外贴胶合板做合拢段内模,绑扎合拢段钢筋及对接预应力管道,同时在合拢块混凝土浇筑前将预应力钢筋预先穿入。3合拢段施工注重事项 3.1环境温度

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

预应力混凝土连续刚构桥(计算书)

预应力混凝土连续刚构桥 计算书 课程名称:大跨度桥梁 学院:土木与建筑学院 任课教师:/教授 学生姓名 学生学号: 专业方向:建筑与土木工程 (桥梁与隧道工程) 日期:2017年1月10日

目录 一、基本信息 (3) 1.1 工程概况 (3) 1.2 技术标准 (3) 1.3 主要规范 (4) 1.4 结构概述 (4) 1.5 主要材料及材料性能 (6) 1.6 计算原则、内容及控制标准 (6) 二、模型建立与分析 (7) 2.1 计算模型 (7) 2.2 主要钢筋布置图及材料用表 (10) 2.3 截面特性及有效宽度 (12) 2.4 荷载工况及荷载组合 (12) 三、内力图 (13) 3.1 内力图 (13) 四、持久状况承载能力极限状态验算结果 (50) 4.1 截面受压区高度 (50) 4.2 正截面抗弯承载能力验算 (50) 4.3 斜截面抗剪承载能力验算 (50) 4.4 抗扭承载能力验算 (51) 4.5 支反力计算 (51) 五、持久状况正常使用极限状态验算结果 (53) 5.1 结构正截面抗裂验算 (53) 5.2 结构斜截面抗裂验算 (53) 六、持久状况构件应力验算结果 (54) 6.1 正截面混凝土法向压应力验算 (54) 6.2 正截面受拉区钢筋拉应力验算 (54) 6.3 斜截面混凝土的主压应力验算 (55) 七、短暂状况构件应力验算结果 (55) 7.1 短暂状况构件应力验算 (55) 八、详细计算表格 (55)

一、基本信息 本人学号16202030383,根据教学要求,设计的桥型主跨为128m(120+学号倒数第二位),桥宽为12.3m(12+学号倒数第一位/10),施工方法采用悬臂浇筑。计算要求包括:考虑施工过程,计算恒载、活载、温度、温度梯度、支座沉降等作用下内力和组合内力,出计算书。图纸要求包括:方案布置图和上部结构一般构造图。 1.1 工程概况 本设计采用85+128+85m三跨预应力混凝土连续刚构桥结构体系。两端悬臂长度均为85m,相应的悬臂根部梁高为7m,梁端梁高为2.7m。中跨跨中梁高2.7m。形成一个通航孔,桥面最大纵坡 2.43℅。主梁截面全部使用单箱单室截面。下部结构基础分别采用明挖扩大基础及灌注混凝土,墩身为实腹长方形截面。 本方案技术较先进,工艺要求较严格,主梁上部结构施工方法采用悬臂浇筑。采用移动式挂篮作为主要施工设备,以桥墩为中心,对称地向两岸利用挂篮浇筑节段的混凝土,待混凝土达到要求强度后,便张拉预应力束,然后移动挂篮,进行下一节段施工。 本方案属于超静定结构,该连续刚构桥既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T构不须设大吨位支座的优点,同时避免了连续梁(存在临时固结和体系转换)和T构(存在伸缩缝问题)两者的缺点,养护工作量小。此外,连续钢构施工稳固性好,减少或避免边跨梁端搭架合龙的难度。 但此桥型对地基承载力的要求更高,若地基发生过大的不均匀沉降,连续梁可通过调整墩顶支座的高程,抵消下沉来补救,而连续刚构则做不到。当其主墩刚度过大时,中跨梁体因会产生过大的温差拉力而对结构受力不利。此外,梁墩联结处应力复杂也是连续刚构的一个缺点。 1.2 技术标准 (1)主跨径:128m(此为桥墩中距)。 (2)桥宽:12.3m(2×净5.5m(车行道)+0.9m(中央分隔带)+2×0.2m(及护栏)=12.3m)。 (3)设计荷载:公路-Ⅰ级(汽车-超20级,挂车-120级)。 (4)防撞栏杆:单侧按每延米9.0KN。 (5)截面:主梁采用变截面单箱单室的箱形截面,桥墩采用实腹长方形截面。 (6)桥面纵坡:左2.43℅,中0,右2.40℅。 (7)桥面横坡:1.5℅,并适当设置路拱。 (8)地质情况:河中为大范围紫红色砂岩。 (9)墩高:40m。

大跨度连续刚构桥的研究和发展

大跨度连续刚构桥的研究和发展 (所属杂志:此文章来自原稿)发布时间:2008-07-16 已阅读:1290 张伟,胡守增,韩红春,张勇 (西南交通大学土木工程学院桥梁系,四川成都610031) 摘要:介绍大跨度连续刚构桥的桥型特点,分析了连续刚构桥的结构受力特点,以及应用和发展现状,并以武汉军山长江公路大桥为例对其进行探讨;同时介绍了对连续刚构桥设计,施工控制等方面的创新方面的内容。 关键词:大跨径;连续刚构桥;桥型特点;受力特点 中图分类号:U448.23 文献标识码:A 就当代技术水平而言,大跨度、特大跨度桥梁无论是在设计理论、施工方法、建桥材料等方面都存在自身固有的特点和困难,这些问题解决的合理程度,不仅直接影响着大跨度桥梁的发展,制约着大跨度桥梁建设的经济效益,而且影响着交通事业的发展以及人类征服自然的历史进程。 在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构—连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁固结代之以设置支座的连续结构。 连续刚构是将连续梁的桥墩与梁部固结,以减小支座处的负弯矩和增

强结构的整体性。由于墩属小偏压构件,故与连续梁的桥墩相比配筋并不增加很多,而梁体受力则更为合理,因而在同等条件下连续刚构要比连续梁更为经济。此外,墩梁固结也在一定程度上克服了大吨位支座设计与制造的困难,也省去了连续梁施工过程中墩梁临时固结、合拢后再行调整的这一施工环节。 1连续刚构桥的结构受力特点、应用及现状 1.1 结构受力特点 连续刚构桥由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展:具有一个主孔的单孔跨径已达 270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用下,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构—连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构—连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具

高墩大跨连续刚构桥施工技术研究报告之二

超高薄壁空心墩外翻内爬模施工技术 1前言 根据对典型高墩大跨连续刚构桥施工稳定性的研究指出,结构的稳定性计算表明,试验模型实测的失稳临界荷载总是大大低于理论的计算值,这是由于结构不可避免地存在一些几何偏差和缺陷,而几何缺陷对临界荷载的影响很大。本项目具有138m 高墩、主跨为160m为一典型的高墩大跨连续刚构,理论分析表明,“T”构在最大悬臂状态下(73m长)时,9#(138m墩高)和8#(130m墩高)墩的稳定特征值较小,稳定安全储备不大,如果高墩的墩身由于施工的原因而出现了偏斜、弯曲等几何缺陷,将会使结构的稳定性大大下降,甚至产生整体失稳的严重后果。在施工中只有严格控制墩身的垂直度,才能使结构的稳定得到根本的保证。 葫芦河特大桥位于陕西黄土沟壑地区,由于工程的特殊地理位置,日照温差较大,而且主墩均为薄壁空心墩,受日照温差影响后,墩身不可避免将出现位移。根据计算,日照温差致使混凝土箱形空心墩身发生弯曲变形,使墩顶发生较大位移,138m的高墩位移甚至可达到3cm±。温度变化对超高墩混凝土结构的受力与变形影响很大,并随温度的改变而改变。在不同时刻对结构状态进行量测,其结果是不一样的,如果在施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据(与控制理想状态比较),从而也难以保证控制的有效性。因此,在施工控制中必须考虑日照温差对结构的位移影响。 2工程概况 葫芦特大桥是黄陵至延安段高速公路上的一座特大型连续刚构梁桥,位于中国西部黄土高坡陕西黄陵县境内,桥梁全长1468m,主桥为90m+3×160m+90m共660m五跨曲线连续刚构桥,上、下行分离。主梁为三向预应力连续箱梁结构。主桥桥墩采用双薄壁空心墩,单幅由两个4.0m×6.5m薄壁空心墩组成,其中9#墩最高,达138m 高。7#和10#墩壁厚0.5m,8#、9#墩壁厚横桥向0.7m,顺桥向1.2m。主桥桥墩7#、8#、9#、10#高度分别为80m、138m、130m、58m。7#墩单幅从基顶起40m高,8#墩单幅从基顶起44m、86m高,9#墩单幅从基顶起46m、92m高设高度为1m的横撑,将两个薄壁空心墩联接成一体。葫芦河特大桥主桥立面图见图2-1所示,箱梁墩顶和跨中断面图

预应力混凝土连续刚构箱梁桥

浅谈预应力混凝土连续刚构箱梁桥几种常用受力分析方法的对 比 【摘要】随着我国交通事业的迅速发展,公路桥梁与城市桥梁的修建也日益增多。同时由于技术的进步与成熟,桥型也由之前的简支转变为结构受力比较先进,跨度更大的连续梁或者连续刚构。当桥梁跨径加大时,结构性能优良的箱形截面往往是合宜的横截面选择。因此,对箱梁桥的受力分析方法的研究就显得很有必要。本文首先对箱梁截面的优点进行简要阐述,然后重点针对学者们对预应力混凝土连续钢构箱梁公路桥梁受力的几种常用分析方法进行阐述并加以对比,着重阐述了解析法和数值法在预应力箱梁受力分析中的原理和应用,并进一步得出相应结论。 1前言 箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。在国内外得

到了十分迅速的发展和广泛的应用。 预应力混凝土的研究已有一百余年的历史。近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。 2 解析法在预应力箱梁受力分析中的原理及应用 解析法是为了把问题简化,往往采用一些假定和近似处理方法。如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。通过这些荷载分解,就单项问题进行较深入的探讨。采用若干假定,是解析法的另一特点,如对位移模式的假定等。 箱形梁剪力滞的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。对于箱形梁的横向弯曲,分析方法有影响面法和框架分析法。影响面法计算较为繁琐,而框架分析法是一种颇为简便的方法。

相关文档
相关文档 最新文档