文档库 最新最全的文档下载
当前位置:文档库 › 自制中继

自制中继

自制中继
自制中继

自制中继的想法已经很久了,正好朋友有两台不用的MOTO GP88S手台,考虑用88S自制个中继学习一下。使用88S手台基于两个想法,1、88S 量大,而且又是全U段机。2、对MOTO的手台还是很信任的。之前朋友的P200,GP88S,A8等MOTO手台还是给我留下了很深刻的印象。所以还是选择GP88S来做这次测试。

有了上述想法以后,我就开始动手上网寻找相关资料。

1、88S自制中继板线路图

首先要感谢BG7JWF的线路图,有了他,就可以自制中继板来连接两台88S了。

2、音频信号取样点

88S从喇叭或耳机哪里是取不到完整的音频信号的,因为88s的音频功放电路,采用的是TDA8547桥接,2根喇叭线之间的信号是完整的,其中的任意一根与接地端(GND)之间的信号,都是不完整的;

从音量电位器那里,也是取不到音频信号的,88s的音量电位器,是给音频处理电路提供电压信号的,所以根本就没有音频信号;

从音频功放的输入端取信号,就OK

另一种连接方法“从喇叭输出,话筒输入没问题,只是调整串联、并联的两个电阻阻值。”(提供技术的HAM,试过多种手台,但没试过88s)也不知道好不好用。先记下来吧。到时候一并测试。

常用型号对讲机的中继台设置方法v1.1

中继设置方法v1.1 以协会应急中继为例: 1.上行发射频率:434.625 2.下行守听频率:439.625 3.亚音:88.5 4.下差:5 各种电台中继设置方法: 1.车台: 八重州FT-1807 1,按手咪P2键键立一个新的频率 2,输入下行频率439.625 3,长按主机面板上的" MHZ SET "键进入菜单 4,旋转DIAL旋钮到43项点" MHZ SET "键进入,旋转旋钮调出下差(减号) 5,点"DIAL"键返回菜单,旋到46项,点" MHZ SET "键进入,将下差调成5 6,点"DIAL"键返回菜单,旋到49项,点" MHZ SET "键进入,选TONE(打开哑音) 7,点"DIAL"键返回菜单,旋到52项,点" MHZ SET "键进入,将哑音调成88.5 8点" MHZ SET "键返回,长按MW D/MR键保存. 八重州FT-7800 1,按手咪P2键键立一个新的频率 2,输入下行频率439.625 3,长按主机面板上的"BAND SET"键进入菜单

4,旋转旋钮到33项点"BAND SET"键进入,旋转旋钮调出下差(减号) 5,点"BAND SET"键返回菜单,旋到39项,点"BAND SET"键进入,将下差调成5 6,点"BAND SET"键返回菜单,旋到42项,点"BAND SET"键进入,选ENC(打开哑音) 7,点"BAND SET"键返回菜单,旋到44项,点"BAND SET"键进入,将哑音调成88.5 8点"BAND SET"键返回,长按手咪P2键保存. 八重州FT-8800 1,按手咪P2键键立一个新的频率 2,输入下行频率439.625 3,长按主机面板上的"SET"键进入菜单 4,旋转旋钮到33项点"DIAL"键进入,旋转旋钮调出下差(减号) 5,点" SET"键返回菜单,旋到36项,点"DIAL"键进入,将下差调成5 6,点" SET"键返回菜单,旋到41项,点"DIAL"键进入,选ENC(打开哑音) 7,点" SET"键返回菜单,旋到40项,点"DIAL"键进入,将哑音调成88.5 8点" SET"键返回,长按手咪P2键保存. 八重州FT-8900 1,按手咪P2键键立一个新的频率 2,输入下行频率439.625 3,长按主机面板上的"SET"键进入菜单 4,旋转旋钮到33项点"DIAL"键进入,旋转旋钮调出下差(减号) 5,点" SET"键返回菜单,旋到36项,点"DIAL"键进入,将下差调成5 6,点" SET"键返回菜单,旋到40项,点"DIAL"键进入,选ENC(打开哑音) 7,点" SET"键返回菜单,旋到39项,点"DIAL"键进入,将哑音调成88.5

顶管施工方案及质量保证措施

顶管施工方案及质量保证措施 一、顶管工程概况 本工程共有顶管2处,所有顶管材质均为d800钢筋混凝土管。具体为纬二路W1~W4(140m)和W5~W26(945m),本工程采用人挖机顶顶管法,与顶管相配套的工作井和接收井均采用钢筋混凝土沉井。工作井和接收井根据检查井位置间隔布置,即每只工作井向上、下游两头开顶,顶完后工作井、接收井作为管线的检查井,具体工作井、接收井的做法见后设计图。 二、沉井施工 1、沉井施工流程 基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。 2、基坑测量放样 根据沉井设计图纸,沉井基坑开挖深度取1.5米,沉井刃脚外侧面至基坑边的工作距离取2米,基坑边坡采用1:1。整平场地后,根据沉井的中心座标定出沉井中心桩、纵横轴线控制桩及基坑开挖边线。施工放样结束后,须经监理工程师复核准确无误后方可开工。 3、基坑开挖

经监理工程师认可的基坑开挖边线确定后,即可进行挖土工序的施工。挖土采用1立方米的单斗挖掘机,并与人工配合操作。基坑底面的浮泥应清除干净并保持平整和干燥。为防止流砂及管涌产生采用在基坑边设置一套轻型井点降水,在底部四周设置排水沟与集水井相通,集水井内汇集的雨水及地下水及时用水泵抽除,防止积水而影响刃脚垫层的施工。 4、刃脚垫层施工 刃脚垫层采用片石垫层、砂垫层和混凝土垫层共同受力。 (1)砂垫层厚度的确定 砂垫层厚度H可采用如下计算公式计算: H=N/B+γ砂H≤[σ] 根据计算结果,无论是工作井还是接收井,砂垫层厚度H均为 30(厘米)。 砂垫层采用加水分层夯实的办法施工,夯实工具为平板式振捣器。 (2)混凝土垫层厚度的确定 混凝土垫层厚度可按下式计算公式计算: h=(G0/R-b)/2 根据计算结果,混凝土垫层厚度h为20厘米。 混凝土垫层表面应用水平仪进行校平,使之表面保持在同一水平面上。 5、立井筒内模和支架

部分品牌对讲机的中继设置方法

泉盛大金刚TG-K4AT 一、显示状态切换:按黄色功能键、按1,显示频率(全频)-显示频道-同时显示频率和频道。反复操作,在三种状态之间切换。(注意:知道如何调到全频状态,在实际使用中非常重要!) 二、设置中继:一般中继有三个参数:以使用方为准,有接收频率、发射频率、亚音。接收频率为收听时的频率,发射频率为按住发射键,对外发射的频率。 例如:铜陵中继,接收439.500 发射434.500 亚音88.5,亚音一般为发射亚音, 1、切换到全频状态,按F键,再按数字1 键 2、输入439.500,如右下角显示QT,可通过功能键、去掉QT(亚音),输入完毕后屏幕显示439.500 下边有个H。然后按#、右上角频道号闪烁,通过A或B选择要存储的频道,我们选01,按C,此步骤操作目的是将439.500 作为接收频率存储到CH01。 3、输入434.500,按功能键、屏幕下边显示QT(亚音)标志;按功能键、屏幕显示亚音频率,通过A或B选择调整到88.5后按EXIT,回到“434.500”同时下边显示H 和QT,按#,频道号闪烁,通过A或B选择刚才我们接收存储的频道“01”,按D,发射频率存储完毕。 按上述操作(1)方法切换到同时显示频率和频道号状态,通过A或B选择到刚才存储的频道CH01,屏幕同时显示439.500 。中继设置完毕。 可通过按住发射键来检测是否正确设置,按住发射键时,屏幕应显示发射频率434.500和QT标志,松开后恢复到439.500 ,设置成功。 泉盛大金刚(美洲豹)中继设置方法: 以铜陵中继上行439.500 下行434.500 亚音88.5为例 (简写:439.500 -5 88.5) ⑴按住EXIT键开机数秒(作用是清除机器内所有储存的频道) ⑵输入:4349.500Mhz ⑶按#键调出存储频道号 ⑷按C键(作用是存储频率到频道) ⑸输入434.500Mhz ⑹按F键 ⑺按2键(作用是打开哑音) ⑻按F键 ⑼按3键(作用是调出哑音码) ⑽按A或B键调整哑音码为88.5 ⑾按#键 ⑿按D键 ⒀按F键 ⒁按1键 ⒂完成

中继间技术措施方案

中继间技术措施方案 解决长距离顶管的顶力问题主要是考虑如何克服管壁外周的摩阻力。当顶进阻力即顶管掘进迎面阻力和管壁周围摩擦阻力之和超过主顶千斤顶的容许总顶力或管节容许的极限压力或工作井后靠土体极限反推力,无法一次达到顶进距离要求时,应采用中继接力顶进技术,实行分段使实施每段管道的顶力降低到允许顶力范围内。 采用中继接力技术时,将管道分成数段,在段与段之间设置中继间。中继间将管道分割成前后的两个部分,中继油缸工作时,后面的管段成为后座,前面的管段被推向前方。中继间按先后次序逐个启动,管道分段顶进由此达到减小顶力的目的。采用中继接力技术后,管的顶进长度不在受后座顶力的限制,只要增加中继间的数量,就可延长管顶进的长度。中继接力技术是长距离顶管不可缺少的技术措施二、中继间置数量及安装位置中继间安装的数量及位置应通过顶力计算,中继间的数量及其在顶进管段轴线上的位置应根据管道与土层的摩擦力计算来决定,设备的顶力使用应按设备顶力设计值的70考虑储备力。F = F0 +RSL 式中:F 总推力(KN ) F0初始推力( KN) R综合摩擦阻力(KPA) S管外周长(M) L推进长度(m) F =200KN +20KPA *6M *18 M =2360(KN)采用台顶镐顶力为,其顶力远大于设计顶力,故中继间内布置一台油泵带动台小顶镐组成的中继间能够

满足施工的需要。全体顶进总长度为米,除去18 米,剩余38 米,摩擦力为: F =F0 + R S L =200 +20 *6 *38 =4760 (KN )工作坑采用一台油泵,顶镐台组成的顶力远大于设计顶力,故没有必要加第二组中继间。 三、中继间的构造中继间主要有壳体(钢板制)与千斤顶组成,千斤顶分布固定在壳体上,安装独立的电、油路系统,壳体(机身)结构强度应符合实际顶力的要求。周边千斤顶分布应该下半部间距小,上半部间距大,中继间与前后管的连接缝不得大于、。中继间设备拆装要方便。 四、中继间的组成中继间必须具备足够的强度和刚度,良好的水密性,并且要加工精确,安装方便。其主体结构由以下几个部分组成: 1、短冲程千斤顶组(冲程为)规格,性能要求一致; 2、液压、电器与操纵系统; 3、壳体和千斤顶紧固件、止水密封圈; 4、承压法兰片;液压操作系统可按现场环境条件布置在管内分别控制或管外集中控制。中继环的壳体应和管道外径相同,并使壳体在管节上的移动有较好的水密性和润滑性,滑动的一端应与管道特殊管节相接。 五中继间的使用与注意事项中继间有时也称中继站或中继环。是安装在一次管子的某个部位,把这段一次顶进的管道分成

顶管专项施工方案(最终修改)

第一章编制依据和工程概况 一、编制依据 1、广州市净水有限公司所提供设计图纸、招标文件; 2、《给水排水管道工程施工及验收规范》(GB50268-2008); 3、《给水排水构筑物工程施工及验收规范》(GB50141-2008) 4、《市政排水工程质量检验标准》CJJ-90; 5、《混凝土和钢筋混凝土排水管》(GB/T11836-2009); 6、《施工现场临时用电安全技术规范》JGJ46-2005 7、《顶管施工技术》余彬泉、陈传灿编著人民交通出版社 8、国家有关法律法规及广东省人民政府、地方人民政府及其所属有关部门在施工安全、工地治安、人员健康、环境保护及土地租用等方面的具体规定和标准。 9、建设同类及类似工程的施工经验及用于本合同段施工队伍的施工设备和技术力量情况。 二、工程概况 本工程拟建设污水管道约2.893km,主管管径D500~D1000管道,限流管管径D300~D400,管材主要为:DN500采用HDPE管,倒虹管采用钢管,顶管采用Ⅲ级钢筋混凝土管,其余采用Ⅱ级钢筋混凝土管。施工方案为明挖和顶管结合施工。 顶管工作段为WC22~WC25长113米,WC25~WC29长164米。 顶管矩形工作井尺寸为7米×4.9米,圆形接收井尺寸为7米。 根据设计图纸顶管共2段共设顶管工作井1座,接收井2座,工作井设于WC25,接收丼设于WC25、WC25。 地质情况:根据地质报告中间成果,详见附件:钻孔柱状图 本工程顶管方式采用泥水平衡法。

第二章工程特点和施工前的准备工作 一、工程特点 1、本工程平面位置按排水工程管道走向依次布置,施工线路较长,施工放线及结构的模板、钢筋施工的方案必须周密,重点控制。 2、由于本工程为全现浇钢筋混凝土结构,因此混凝土质量直接关系到结构的安全和质量情况,因此必须确保混凝土的工程质量。 3、本工程施工历经雨季,所以抓好雨季施工是重点。 4、本工程施工场地要根据工程施工需要迁移,在每相临两座工作坑之间进行流水施工是本工程的施工特点。 5、本工程顶管位于挖方区,埋置较深。 二、施工前的准备工作 1、进行施工测量和现场放线工作。 2、确定管线范围内及施工需用场地内所有障碍物,如管线、电线杆、树木及附近房屋等的准确位置。 3、按施工平面布置图修建临时设施,设置装、运临时用水的设施、安装临时用电线路,利用工作井内集水井进行机械排水。 4、进行顶管所用设备的加工制作。 5、根据顶进长度,准备好各类管线和所需的辅助物(固定架等)。 三、技术准备 1、进行施工技术交底工作。 2、做好定位点控制,施工测量和现场放线工作。

基于节点剩余功率的多中继选择算法_覃琴

基于节点剩余功率的多中继选择算法 覃 琴1,2,曾志民2,张天魁2,张从青2 (1. 三峡大学计算机与信息学院,湖北 宜昌 443002;2. 北京邮电大学信息与通信工程学院,北京 100876) 摘 要:提出一种基于节点剩余功率的多中继放大转发协同节点选择算法,根据节点信道状态信息(CSI)和剩余能量信息对网络生存时间进行优化,使用加权函数和信道容量增益门限进行多协同节点选择。仿真结果表明,对于动态和固定功率分配,该算法选择三四个中继可使协同通信系统性能达到最优;相对基于CSI 的单中继选择算法,当中继数为4时,其在动态功率分配时的网络生存时间最高可延长82%。关键词:协作分集;剩余功率;放大转发;多中继选择;网络生存时间 Multi-relay Selection Algorithm Based on Node Residual Power QIN Qin 1,2, ZENG Zhi-min 2, ZHANG Tian-kui 2, ZHANG Cong-qing 2 (1. College of Computer & Information Technology, China Three Gorges University, Yichang 443002, China; 2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China) 【Abstract 】This paper presents a multi-relay Amplification Forwarding(AF) cooperative node selection algorithm based on Residual Power(RP), which jointly considers the Channel State Information(CSI) and the residual energy information of nodes to optimize the network lifetime, uses the weighting function and the channel capacity gain threshold to select the relay set. Simulation results show that both dynamic relay power distribution and fixed relay power distribution, performance reached the best while selecting the 3~4 relays. Relative to only considering the CSI node selection algorithm, this algorithm is able to extend network lifetime up to 82% under dynamic relay power distribution and 4 relay numbers. 【Key words 】cooperative diversity; Residual Power(RP); Amplification Forwarding(AF); multi-relay selection; network lifetime DOI: 10.3969/j.issn.1000-3428.2011.10.025 计 算 机 工 程 Computer Engineering 第37卷 第10期 V ol.37 No.10 2011年5月 May 2011 ·网络与通信· 文章编号:1000—3428(2011)10—0076—03文献标识码:A 中图分类号:TP301.6 1 概述 协同中继使特定区域内的用户可以共享彼此的天线,形 成虚拟天线阵列,从而达到空间分集的效果,显著提高用户服务质量和系统吞吐量[1]。但由于中继节点的加入,用户可以选择不同的中继集合进行数据的转发。因此,在多协同中继环境中,如何进行中继节点选择是首先需要解决的问题。 协作转发主要有放大转发(Amplification Forwarding, AF)、译码转发(Decode Forwarding, DF)和编码协作(Coding Cooperation, CC)3种方式。文献[2]提出机会中继(Opportunistic Relaying, OR)选择方法,分别讨论译码转发和放大转发中协同通信的性能,主要是基于信道状态信息(Channel State Information, CSI)和网络拓扑进行中继选择。 文献[3]分析了在网络总发射功率约束下的中继选择,但多数是单中继选择。 基于单中继的最佳中继选择能够提高系统性能,但无法获得多个中继节点协同通信带来的增益最大化。部分文献讨论了通过穷举搜索法得到中继集合,选取集合中全部中继节点参与信息的转发,其缺点是当中继数增多时,会产生严重的资源分散问题。 协作分集用于Ad Hoc 网络时,采用分布式且低功耗的中继选择算法,使网络生存时间最大化成为设计的关键[4]。文献[5]提出了PARS 的分布式中继选择协议,其中,准则2和准则3考虑了节点剩余功率确定最佳中继,但仍局限为单中继选择。本文将单中继选择推广到多中继选择,综合考虑节点的CSI 和剩余功率,选择可以最大限度延长网络生存时间的中继集合,从而提高网络节点生存时间。 2 协同通信系统模型和问题描述 协同通信系统模型如图1所示。系统有一个源节点S , 一个目的节点D ,N 个中继节点。假设每个中继仅有一个天线,S 和D 之间无直连链路。 图1 协同通信系统模型 假设第i 个中继节点仅知道自身2跳信道系数h is 、h id ,目的节点知道全部中继2跳信道系数。所有信道系数是独立同分布的归一化瑞利随机变量。采用2个阶段AF 中继协议: (1)源节点S 以功率P S 广播发射,发射范围内所有节点收到携带噪声的信号,中继i 接收功率为h si P S 。 基金项目:国家自然科学基金资助项目“基于时域频谱利用概率分布曲线拟合的频谱检测研究”(60772110) 作者简介:覃 琴(1970-),女,副教授、硕士,主研方向:宽带无线通信网络;曾志民,教授、博士、博士生导师;张天魁,讲师、博士;张从青,硕士研究生 收稿日期:2010-11-25 E-mail :q_qin2000@https://www.wendangku.net/doc/4816345255.html,

长距离顶管施工中继间的分布(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 长距离顶管施工中继间的分布 (标准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

长距离顶管施工中继间的分布(标准版) 1中继间的顶力 为了留有足够的顶力储备,当顶进的过程中顶力达到中继间顶力的50%时就需要下中继间。 中继间油缸的活塞杆直径d=140mm,中继间压力等级为Pmax=31.5MPa。 中继间顶力 F中=n×Pmax×A(1) =24×31.5×106×π×(0.14/2)2 =11632kN 2顶力计算 在普通泥水平衡顶管施工中,顶力计算: F=Fo+πBcτaL(2)

式中:F——总顶力(kN); Fo——初始顶力(kN); Bc——管外径(m); τa——管子与土之间的剪切摩阻力(kPa); L——推进长度(m) 初始顶力 Fo=(Pe+Pw+ΔP)πBc2/4(3) 式中:Pe——挖掘面前土压力(根据土质情况计算,现阶段管道的埋深一般不会超过20m,考虑排泥不畅等原因,取Pe=200kPa); Pw——地下水的压力(kPa); ΔP——附加压力(一般为20kPa); (4) 式中:——管与土之间的粘着力(kPa); ——管与土的摩擦系数() (5) 式中:W——每米管子的重力(kN/m);

超长距离顶管施工中的中继间技术及实例分析

超长距离顶管施工中的中继间技术及实例分析 超长距离顶管施工中的中继间技术及实例 分析第25卷第3期 2008矩 非开挖技术 TrenchlessTechnology V01.25.No.3 June,2008 超长距离顶管施工中的中继间技术及实例分析吴坚胡丽娟z (1.杭州市市政工程集团有限公司;2.浙江耀信工程造价咨询有限公司) 摘要:考虑到超长距离顶管施工在我国市政工程的应用越来越广泛,本文详细介绍 了在超长距离顶管施工 中采用中继间这一关键技术的方法,并结合两个工程实例具体说明采用中继间 的 方法和成功经验,为我国的 超长距离顶管施工技术提供指导. 关键词:超长距离顶管,中继间,接力顶进 1我国超长距离顶管技术的现状 超长距离顶管是为了满足大口径管道穿越江河或地面构筑物,通向水域等需要,发展起来的一项敷设管道的新技术.从1987年我国完成第一根超长距离顶管以来,超长距离顶管施工技术在工程实践中得到了广泛的应用.现将已完成的我国超长距离项管工程简要介绍于表1.

通过这些年来的研究和工程实践,我国的超长距离顶管施工技术得到了很大的发展.顶进设备基本上与世界先进水平同步,施工技术也有了很大的提高与进步.超长距离顶管技术的发展,同时也带动了整个顶管技术的提高,特别是在沿海一带,顶管施工已被广泛应用.超长距离顶管施工技术的发展主要表现在如下几个方面: 1)工具管形式多样化,性能更加完善; 2)新型中继间的应用; 3)超长距离混凝土顶管的快速发展; 4)高压供电的采用; 5)长距离泥水输送技术; 6)曲线顶管测量技术等. 其中,采用中继间接力顶进是一项重要的技术措施.一般顶管中,中继问使用的数量很少,控制简单,对其性能也没有特别的要求.而在长距离顶进中,中继间的数量少则七八个,多则近二十个,这就需要简单实用的办法对这么多的中继间进行操作控制,同时,由于中继间的使用频率很高,需要中继间具有良好的密封性能.下面对超长距离顶管施工中的中继间技术进行详细分析. 2中继间接力顶进技术 在超长距离顶管施工中,为增加顶进距离,可以采用的措施有许多,如提高混凝土的抗压强度,采用玻璃纤维管或钢管;减小管壁与土的摩擦阻力,如采用注浆减摩.但是,上述这些措施往往难以满足长距离推进的要求,而中继间技术的出现为超长距离顶管施工提供了可能. 2.1中继间的型式 中继间,有的也称作中继站或中继环.中继间的结构主要由壳体,油缸,密封件等部件组成.中继问的供油方式一般是在中继间附近安装一台中继间油

顶管施工安全技术措施.docx

顶管施工安全技术措施 1.一般要求: (1)管径小于、等于800mm时,不得采用人工方法掘进。 (2)采用敞开式掘进顶管,土层中有水时,必须采取降水等控制措施。 (3)人工挖土,土质为砂、砂砾石时,应采用工具管或注浆加固土层的措施。 (4)顶管施工中,渗漏、遗洒的液压油和清洗废液等应及时清理,保持环境清洁。 (5)采用密闭式掘进顶管,管口与掘进机、中继间的连接和管道间的接口必须严密,不得漏水。 (6)施工前,应根据顶进方法、管径、最大顶力等对后背结构、顶进设备、中继间等进行施工设计,确定安全技术措施,并制定监控量测方案。 (7)利用已完成顶进的管段作后背时,顶力中心应与已完成管段中心重合;顶力必须小于已完成管段与周边土壤之间的摩擦阻力;后背管口应衬垫可塑性材料保护。 (8)在城区、居民区、乡镇、机关、学校、企业、事业单位等人员密集区和穿越房屋、轨道交通、铁路、道路、公路和地下管道等建(构)筑物时,宜采用密闭式机械掘进顶管。 (9)施工过程中应按监控量测方案的要求布设监测点,设专人对施工影响区内的地面、地下管线和建(构)筑物的沉降、倾斜、裂缝等进行观察量测并记录,确认正常;发现异常应及时分析,采取相应的安全技术措施。 2.设备与辅助装置 (1)施工前,应根据顶进中的最大顶力选择顶进设备和辅助装置。 (2)施工前,必须对顶进设备和辅助装置进行检查,经试运行,确认合格。 (3)安装导轨应安装在稳固的基础上;导轨应安装直顺、牢固;设在混凝土底板上的导轨,应在混凝土达到设计强度的50%,且不得低于5MPa时,方可安装。 (4)拆除顶进设备必须在停机、断电、卸压后进行;拆除的设备和材料,应随时运走或按指定地点码放整齐。 (5)顶进设备和辅助装置应完好;防护装置应齐全有效;后背结构及其安装应符合施工设计的要求;油泵压力表使用前应经具有资质的检测单位标定,并形成文件。 (6)安装后背墙体应平整,并与管道顶进轴线垂直;方木、型钢等组装的后背,组装件之间应连接牢固;后背墙体应与后背土体贴实,缝隙应用粗砂等料填充密实;现浇混凝土后背的结构尺寸和强度应符合施工设计要求;后背墙体埋入工作坑底板以下的深度应符合施工设计要

中继间技术措施方案

中继间技术措施方案 一.中继接力原理 解决长距离顶管的顶力问题主要是考虑如何克服管壁外周的摩阻力。当顶进阻力即顶管掘进迎面阻力和管壁周围摩擦阻力之和超过主顶千斤顶的容许总顶力或管节容许的极限压力或工作井后靠土体极限反推力,无法一次达到顶进距离要求时,应采用中继接力顶进技术,实行分段使实施每段管道的顶力降低到允许顶力范围内。 采用中继接力技术时,将管道分成数段,在段与段之间设置中继间。中继间将管道分割成前后的两个部分,中继油缸工作时,后面的管段成为后座,前面的管段被推向前方。中继间按先后次序逐个启动,管道分段顶进由此达到减小顶力的目的。采用中继接力技术后,管的顶进长度不在受后座顶力的限制,只要增加中继间的数量,就可延长管顶进的长度。中继接力技术是长距离顶管不可缺少的技术措施 二.中继间置数量及安装位置 中继间安装的数量及位置应通过顶力计算,中继间的数量及其在顶进管段轴线上的位置应根据管道与土层的摩擦力计算来决定,设备的顶力使用应按设备顶力设计值的70%—80%考虑储备力。 F = F0 +RSL 式中:F——总推力(KN) F0————初始推力(KN) R——综合摩擦阻力(KP A) S——管外周长(M)

L——推进长度(m) F =200KN + 20KP A * 6M * 18 M = 2360(KN) 采用8台50T顶镐顶力为400T,其顶力远大于设计顶力,故中继间内布置一台油泵带动8台50T小顶镐组成的中继间能够满足施工的需要。全体顶进总长度为66米,除去1 8米,剩余3 8米,摩擦力为: F =F0 + R S L = 200 +20 * 6 *38 = 4760 (KN) 工作坑采用一台油泵,320T顶镐2台组成的顶力远大于设计顶力,故没有必要加第二组中继间。 三.中继间的构造 中继间主要有壳体(钢板制)与千斤顶组成,千斤顶分布固定在壳体上,安装独立的电、油路系统,壳体(机身)结构强度应符合实际顶力的要求。周边千斤顶分布应该下半部间距小,上半部间距大,中继间与前后管的连接缝不得大于1.0cm。中继间设备拆装要方便。 四.中继间的组成 中继间必须具备足够的强度和刚度,良好的水密性,并且要加工精确,安装方便。其主体结构由以下几个部分组成: 1. 短冲程千斤顶组(冲程为15-30cm)规格,性能要求一致; 2. 液压、电器与操纵系统; 3. 壳体和千斤顶紧固件、止水密封圈; 4. 承压法兰片; 液压操作系统可按现场环境条件布置在管内分别控制或管外集中控制。中继环的壳体应和管道外径相同,并使壳体在管节上的移动有较好的水密性和润滑性,滑动的一端应与管道特殊管节相接。

长距离顶管施工中继间的分布

仅供参考[整理] 安全管理文书 长距离顶管施工中继间的分布 日期:__________________ 单位:__________________ 第1 页共6 页

长距离顶管施工中继间的分布 1中继间的顶力 为了留有足够的顶力储备,当顶进的过程中顶力达到中继间顶力的50%时就需要下中继间。 中继间油缸的活塞杆直径d=140mm,中继间压力等级为Pmax=31.5MPa。 中继间顶力 F中=n×Pmax×A(1) =24×31.5×106×π×(0.14/2)2 =11632kN 2顶力计算 在普通泥水平衡顶管施工中,顶力计算: F=Fo+πBcτaL(2) 式中:F——总顶力(kN); Fo——初始顶力(kN); Bc——管外径(m); τa——管子与土之间的剪切摩阻力(kPa); L——推进长度(m) 初始顶力 Fo=(Pe+Pw+ΔP)πBc2/4(3) 式中:Pe——挖掘面前土压力(根据土质情况计算,现阶段管道的埋深一般不会超过20m,考虑排泥不畅等原因,取Pe=200kPa); Pw——地下水的压力(kPa); ΔP——附加压力(一般为20kPa); 第 2 页共 6 页

(4) 式中:——管与土之间的粘着力(kPa); ——管与土的摩擦系数() (5) 式中:W——每米管子的重力(kN/m); t——管壁厚度(m) 将式(15)、(14)代入(12)经变换位置后得 (6) 式中:q——管子顶上的垂直均布荷载(kPa); a——管子法向土压力取值范围,可参见表 q=We+P(7) 式中:We——管顶上方的土的垂直荷载(kPa); P——地面的动荷载(kPa)(现阶段顶管施工的埋深较深,地面的动荷载可以忽略,即取p=0) (8)r——土的容重 c——土的内聚力(kPa); Be——管顶土的扰动宽度(m) Ce——土的太沙基荷载系数(土的有效高度) (9) 式中:K——土的太沙基侧向土压力系数(K=1);μ——土的摩擦系数(μ=tgφ) (10) 式中:Bt——挖掘的直径(m);Bt=Bc+0.1 在一般的泥水平衡顶管所适应的土质中,根据经验a与C′的取值 第 3 页共 6 页

顶管施工安全技术措施方案

整体解决方案系列 顶管施工安全技术措施(标准、完整、实用、可修改)

编号:FS-QG-17229顶管施工安全技术措施 Technical measures for pipe jacking safety 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1.一般要求: (1)管径小于、等于800mm时,不得采用人工方法掘进。 (2)采用敞开式掘进顶管,土层中有水时,必须采取降水等控制措施。 (3)人工挖土,土质为砂、砂砾石时,应采用工具管或注浆加固土层的措施。 (4)顶管施工中,渗漏、遗洒的液压油和清洗废液等应及时清理,保持环境清洁。 (5)采用密闭式掘进顶管,管口与掘进机、中继间的连接和管道间的接口必须严密,不得漏水。 (6)施工前,应根据顶进方法、管径、最大顶力等对后背结构、顶进设备、中继间等进行施工设计,确定安全技术措施,并制定监控量测方案。

(7)利用已完成顶进的管段作后背时,顶力中心应与已完成管段中心重合;顶力必须小于已完成管段与周边土壤之间的摩擦阻力;后背管口应衬垫可塑性材料保护。 (8)在城区、居民区、乡镇、机关、学校、企业、事业单位等人员密集区和穿越房屋、轨道交通、铁路、道路、公路和地下管道等建(构)筑物时,宜采用密闭式机械掘进顶管。 (9)施工过程中应按监控量测方案的要求布设监测点,设专人对施工影响区内的地面、地下管线和建(构)筑物的沉降、倾斜、裂缝等进行观察量测并记录,确认正常;发现异常应及时分析,采取相应的安全技术措施。 2.设备与辅助装置 (1)施工前,应根据顶进中的最大顶力选择顶进设备和辅助装置。 (2)施工前,必须对顶进设备和辅助装置进行检查,经试运行,确认合格。 (3)安装导轨应安装在稳固的基础上;导轨应安装直顺、牢固;设在混凝土底板上的导轨,应在混凝土达到设计强度的50%,且不得低于5MPa时,方可安装。

顶管工程施工方案96689

顶管工程施工组织设计 工程概况 ×××路位于×××。道路红线宽度为100米,为机非分流的城市快速路。污水管位于道路中心线南侧15.5米,管径为φ1200,平均埋深为6.5~7.0米。顶管工程分二段,第一段从21#井开始,穿越×××向东,在35#井处向南折入泵站至泵站进水闸门井,长度约632米;第二段从51#井开始至52#井结束,主要是穿越×××,长度为120米。 顶管工程工作量:752米管道顶进(φ1200)、6只顶管沉井、2只顶管工作坑。 第一章 沉井施工 沉井施工程序: 基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。 第一节 基坑测量放样 根据沉井设计图纸和工程地质报告所揭示的地质情况,沉井基坑开挖深度取2 米,沉井刃脚外侧面至基坑边的工作距离取2米,基坑边坡采用1:1。整平场地后,根据沉井的中心座标定出沉井中心桩、纵横轴线控制桩及基坑开挖边线。施工放样结束后,须经监理工程师复核准确无误后方可开工。 工作井、接收井基坑布置示意见附图。

第二节 基坑开挖 经监理工程师认可的基坑开挖边线确定后,即可进行挖土工序的施工。挖土采用1米3的单斗挖掘机,并与人工配合操作。基坑底面的浮泥应清除干净并保持平整和干燥,在底部四周设置排水沟与集水井相通,集水井内汇集的雨水及地下水及时用水泵抽除,防止积水而影响刃脚垫层的施工。 第三节 刃脚垫层施工 刃脚垫层采用砂垫层和混凝土垫层共同受力。 1.3.1砂垫层厚度的确定 砂垫层厚度H可采用如下计算公式计算: N/B+γ H≤[σ] 砂 根据计算结果,无论是工作井还是接收井,砂垫层厚度H均为 60(厘米)。 砂垫层采用加水分层夯实的办法施工,夯实工具为平板式振捣器。 1.3.2混凝土垫层厚度的确定 混凝土垫层厚度可按下式计算公式计算: h=(G /R-b)/2 根据计算结果,混凝土垫层厚度h为10~15厘米(工作井为15厘米,接收井为10厘米)。 混凝土垫层表面应用水平仪进行校平,使之表面保持在同一水平面上。 第四节 立井筒内模和支架 由于顶管沉井高度达8米左右,因此,井身混凝土分三节浇捣,内模同样分三节按装。井筒模板采用组合钢模与局部木模互相搭配,以保证内模的密封性。 刃脚踏脚部分的内模采用砖砌结构,宽度与刃脚同宽。井身内模支架采用空心钢

顶管施工方案说明书

6-1 顶管施工概况 穿运地涵顶管段的轴线采用直线布置,为过水能力为30m 3 /s 、内径尺寸为、外径为、长的钢筋混凝土顶管。顶管采用“F ”型接头式钢筋混凝土管,顶管共分3孔。管间净距,管顶覆土厚~ m ,顶管顶高程,底高程。在顶管范围内分布的土层有③2、④1、④2、⑤1、⑤2层。其中③2、④2层土呈流塑状,高压缩性,土质差,京杭运河以北该二层土厚度相对较厚,顶管基础座落在④2层上,京杭运河以南顶管基础座落在⑤1、⑤2层上,土质较好。 顶管施工平、剖面图见附图6-01。 6-2 顶管施工工艺 ⑴ 顶管施工流程 见下图: 6-3 顶力计算 Φ3500mm 顶管全长 553m ,采用土压平衡式顶管掘进机,穿越的土层主要为层④1粉土、层④2淤泥质粉质粘土和层⑤1粉质粘土。对顶管机头和管节的顶进阻力进行估算。 ⑴ 顶管机正面最大阻力: Pt =r(H+2/3D)tg 2(45o +Φ /2) =+2×3) tg 2 (45o + o /2) =394kN/m 2 N =1/4πD 2Pt =1/4π××342 =5463kN ⑵ 采取注浆减摩措施时,553m 管道摩阻力: F 摩 =K πD 1L =5π××553 =39338kN ⑶ 总顶进阻力: “6-4 的布置”),顶进实际最大顶力就是100m 管道摩阻力:

F 实= KπD 1 L 1 =5π××100 =6535kN 式中: N —顶管机正面阻力(kN); Pt —被动土压力(kN); r —土容重(kN/m3); H —最大复土深度(m); Φ—内摩擦角(o); D —顶管机外径(m); D 1 —砼管道外径(m); K —砼管道单位面积摩阻力(kN/m2),根据《地基基础设计规范》(DGj08-11-1999),取5 kN/m2; L —砼管道长度(m)。 6-4 中继间的布置 ⑴中继间的布置 根据以上顶力的计算并结合以往类似工程的施工经验,为了减少顶进阻力,提高顶进质量,减少地表变形,施工中必须采用中间接力顶进。 当总推力达到中继间总推力40%~60%时,设置第一只中继间,以后每当达到中继间总推力的70%~80%时,设置一只中继间。中继间的总推力为9000kN,使用中继间推进砼管道的长度: L 1 =9000×75%/(5π×)=103米 第一只中继间设于顶管机尾部处。以后每隔100米设置一只中继间,设置5只,余下的53米由主顶承担。每条顶管初步设置6只中继间,当主顶油缸达到中继间总推力的90%时,就必须启用中继间。在施工中根据实际情况对中继间的布置可以作必要的调整。 ⑵顶进实际最大顶力: 根据中继间的布置,顶进实际最大顶力就是100m管道摩阻力: F 实 = KπD 1 L 1 =5π××100 =6535kN 6-5 后背(座)设计 顶管的后座由钢后靠、后座墙和工作井后方的土体三者组成。在顶进过程中,各个油缸推力的反力均匀地作用在顶管的后座上。对顶管后座的承受力进行估算。 顶管后座的承受力R为:

传统中继间的结构形式及沉井等

传统中继间的结构形式 传统中继间主要有前加长型T型套环、特殊管、后特殊管和中继间油缸、均压环等组成。前部是一个与T型套环相类似的密封圈和接口。中继间壳体的前端与T型套环的一半相似,利用它把中继间壳体与混凝土管连接起来。中继间的后特殊管外则设有两环止水密封圈,使壳体虽在其上来回抽动而不会产生渗漏。 中继间油缸被夹箍固定在壳体上。油缸不论数是多少均应均布在壳体内。油缸头尾两头均与均压钢环联接,均压钢环与混凝土管之间有一环衬垫。衬垫多用厚20mm左右的松板或夹板做成。在推进过程中,中继间油缸推到行程以后,自己不能缩回,因为它是单作用油缸。只有当后部往前推进时,中继间的油缸才能缩回。管道顶通后,拆除中继间油缸,继续推进直至合拢。 第四节沉井工程施工 沉井适用于建筑物和构筑物的深坑、地下室、水泵房、设备深基础、墩台等工程。 沉井的结构类型较多,通常采用钢、混凝土及钢筋混凝土结构。其几何形体,有圆形、方形、矩形及多边形等。其中圆形沉井构造简单,易于控制下沉位置,受力(土压、水压)性能好,应用较广。从施工作业角度讲,沉井形式以圆形和锥形的方案较好。为减少下沉摩擦阻力,刃脚的形状和构造,应与下沉处土质条件相适应,在刃脚外缘设200 300mm的间隙,将井壁表面作成1/100坡度。 沉井和沉箱的施工工艺、操作方法及质量控制程序,详见图3.31所示。 一、一般技术要求

在组织沉井或沉箱工程施工之前,应为施工提供下列技术文件资料。 (1)施工区域内的地质勘察、水文资料,以及地下隐蔽工程(管线及构筑物)资料,为编制施工组织设计(施工方案)提供依据。 (2)施工设计图纸及图纸会审记录,技术交底文件。 (3)施工组织设计或施工方案。 (4)有关施工所需的试验报告及文字材料。 (5)邻近已有建(构)筑物的结构与基础等的详细资料,对其使用功能、安装性能的影响,以及应采取的技术措施。施工所使用的材料及制品的品种、规格、强度,应符合设计要求和规X的规定。 地基处理。在松散软弱地基上进行沉井、沉箱制作,应对地基进行处理,以防止由于地基受力后产生不均匀下沉而引起井(箱)身裂缝。为此对松散软弱地基应进行加固处理。 测量控制及沉降观测。按沉井和沉箱的平面设置测量控制网,进行抄平放线,布置水准点和沉降观测点的标准桩,进行定期沉降观测,并作好观测记录(详见附录7)。 平整场地。平整场地至设计要求标高,按施工区域现场平面图的布置,作好排水沟、截水沟,确保道路畅通。安装施工设备及水电线路,经试水、试电合格后,方可正常运作。

顶管工程专项施工方案

顶管工程专项施工方案 目录 第一章工程概况 (3) 第二章沉井施工 (3) 第一节基坑测量放样 (3) 第二节基坑开挖 (4) 第三节刃脚垫层施工 (4) 第四节立井筒内模和支架 (5) 第五节钢筋绑扎 (5) 第六节立外模和支架 (6) 第七节浇捣混凝土 (7) 第八节养护及拆模 (8) 第九节封砌预留孔 (8) 第十节井点安装及降水 (9) 第十一节凿除垫层、挖土下沉 (9) 第十二节沉降观察 (10) 第十三节铺设碎石层及C15素混凝土垫层 (10) 第十四节绑扎底板钢筋、浇捣底板混凝土 (10) 第三章顶管施工 (11) 第一节机头选型: (11) 第二节顶进设备及顶进工艺 (11)

第三节管道内辅助管道的辅设 (13) 第四章工程质量 (14) 第五章施工技术管理 (14) 第一节质量管理 (14) 第二节进度管理 (16) 第三节安全管理 (17) 第四节文明生产管理 (18)

第一章工程概况 ×××路位于××市区。道路红线宽度为100米,为机非分流的城市快速路。污水管位于道路中心线南侧15.5米,管径为φ1200,平均埋深为6.5~7.0米。顶管工程分二段,第一段从21#井开始,穿越×××向东,在35#井处向南折入泵站至泵站进水闸门井,长度约632米;第二段从51#井开始至52#井结束,主要是穿越×××,长度为120米。 顶管工程工作量:752米管道顶进(φ1200)、6只顶管沉井、2 只顶管工作坑。 第二章沉井施工 沉井施工程序: 基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。 第一节基坑测量放样 根据沉井设计图纸和工程地质报告所揭示的地质情况,沉井基坑

顶管施工安全专项方案

江东南路(南外环路—污水处理厂)工程 顶 管 施 工 安 全 方 案 编制人:职务(称): 审核人:职务(称): 批准人:职务(称): 批准部门(章): 温岭市第六建筑工程公司 二00四年七月

顶管施工安全方案 顶管施工法是一种采用不开槽敷设地下管道的施工工艺,在施工前,应组织技术及现场作业人员认真学习设计图纸,深入调查和掌握顶管段的土质和水文地质情况,弄清地上、底下构筑物的结构、高程及有关的物理、化学性能、水源、电源等主客观因素,制定有针对性、实效性的安全技术措施及施工场地布臵图,在确定施工管理及劳动组织的同时,要建立安全生产岗位责任制。江东南路工程顶管工程量较大,本次顶进的距离大概在1400米左右,管径2200。在顶进前,根据设计图纸,最大顶距段需对工作井进行后靠稳定性验算,根据计算,沉井的后靠是稳定的,满足顶进要求。对于施工用电,考虑到顶进设备施工电耗较大,采用50M2电缆,严格按照三相五线制接入。下面就工程实施工程中一些重点工序安全措施分述如下: 一、顶管工作井 1、顶管工作井的位臵,水平与纵深尺寸,支撑方法与材料平台的结构与规模,后背的结构与安装,井底基础的处理与导轨的安装,顶进设备的选用及其在井底的平面布臵等均在施工方案中有经计算后的详细规定,在施工过程中不得任意更改。 顶管工作井距高速公路、河道、各种地上及地下构筑物的安

全距离,一般可根据土质和安全坡道与有关单位共同确定,如果因施工现场的条件、土质、管道的永久构筑物的位臵等原因不能满足安全距离要求,采取安全措施方能保证安全施工时,该措施和有关单位共同商定外,必须经上级技术负责人审批后方能实施。 2、工作人员必须戴安全帽,上下工作井应走安全梯,根据施工的具体情况,正确使用个人劳动保护用品。 3、使用吊车往井内运各种材料时,应有信号工指挥,起重臂下严禁站人,材料应捆绑牢固,井内人员应站在安全位臵,架空输电线路下严禁使用吊车。工作井上下不得随意抛掷工具等物品。 工作井的四周要有防雨水进入井内的措施,井外的临时排水设施应保证畅通,工作井底要安装有效的排水设施,保证井内的安全。 4、工作井底的基础结构,必须按照施工组织设计中的规定施工,确保基础的稳定安全,对导轨的规格尺寸,材质事先都应检查验收,混凝土基础的排水盲沟在施工中要注意排水的有效性和与排水井保持畅通。 导轨安装时,应牢固地用道钉固定在方木上,两跟导轨的高程应保持一致,木导轨与管外皮接触处抹角的铁皮应钉牢。 基础和导轨在施工的过程中要经常注意其稳定性。 后背应与顶进方向垂直,后背与井壁之间的填充材料应分层

相关文档