文档库 最新最全的文档下载
当前位置:文档库 › 矩形的判定证明题

矩形的判定证明题

矩形的判定证明题
矩形的判定证明题

1.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.(1)求证:△ACD≌△EDC;(2)若点D是BC中点,说明四边形ADCE是矩形.

2.已知:点O为菱形ABCD对角线的交点,DE∥AC,CE∥BD,(1)试判断四边形OCED的形状,并说明理由.(2)若AC=6,BD=8,求线段OE的长.

3.已知:如图,平行四边形ABCD的四个内角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形。

4.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

5.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.

6.如图,CD垂直平分AB于点D,连接CA,CB,将BC沿BA的方向平移,得到线段DE,交AC于点O,连接EA,EC.(1)求证:四边形ADCE是矩形;(2)若CD=1,AD=2,求sin∠COD的值.

7.如图,菱形ABCD的对角线交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED是矩形;(2)若AD =5,BD =8,计算tan∠DCE的值.

8.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE 相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.

1.考点:矩形的性质和判定全等三角形的判定

试题解析:(1)证明:∵四边形ABDE是平行四边形,

∴AB∥DE,AB=DE,

∴∠B=∠EDC

又∵AB=AC,

∴AC=DE

∴∠EDC=∠ACD

在△ACD和△EDC中

∴△ACD≌△EDC

(2)证明:∵四边形ABDE是平行四边形,

∴BD∥AE,BD=AE,

∴AE∥CD

∵点D是BC中点,

∴BD=CD,

∴AE=CD,

∴四边形ADCE是平行四边形

在△ABC中,AB=AC,BD=CD,

∴AD⊥BC,

∴∠ADC=90°,

∴四边形ADCE是矩形

2.考点:矩形的性质和判定菱形的性质与判定

试题解析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,然后根据有一个角是直角的平行四边形是矩形解答;

(2)根据菱形的对角线互相平分求出OC、OD,再根据勾股定理列式求出CD,然后根据矩形的对角线相等求解.

解:(1)四边形OCED是矩形.

理由如下:∵DE∥AC,CE∥BD,

∴四边形OCED是平行四边形,

∵四边形ABCD是菱形,

∴∠COD=90°,

∴四边形OCED是矩形;

(2)在菱形ABCD中,∵AC=6,BD=8,

∴OC=AC=×6=3,OD=BD=×8=4,

∴CD===5,

在矩形OCED中,OE=CD=5.

3.考点:菱形的性质与判定矩形的性质和判定

试题解析:(1)证明:∵四边形ABCD是矩形,

∴AD∥BC,

∴∠MDO=∠NBO

∵MN是BD的中垂线,

∴DO=BO ,BD⊥MN,MD=MB

在△MOD和△NOB中,∠MDO=∠NBO,DO=BO, ∠MOD=∠NOB ∴△MOD≌△NOB(ASA)

∴MD=NB

又∵MD∥NB

∴四边形BMDN是平行四边形

∵MD=MB

∴平行四边形BMDN是菱形

(2)解:根据(1)可知:

设MD长为x,则MB=DM=x,AM=8-x

在Rt△AMB中,BM2=AM2+AB2

即x2=(8﹣x)2+42,

解得:x=5,

答:MD长为5。

4.考点:矩形的性质和判定

试题解析:(1)∵四边形ABCD是平行四边形,

∴AB∥CD.

∵BE∥DF,BE=DF,

∴四边形BFDE是平行四边形.

∵DE⊥AB,

∴∠DEB=90°,

∴四边形BFDE是矩形;(6分)

(2)解:∵四边形ABCD是平行四边形,

∴AB∥DC,

∴∠DFA=∠FAB.

在Rt△BCF中,由勾股定理,得

BC=FC2+FB2=32+42=5,∴AD=BC=DF=5,

∴∠DAF=∠DFA,

∴∠DAF=∠FAB,

即AF平分∠DAB.

5..考点:全等三角形的判定矩形的性质和判定

试题解析:证明:∵∠BAD=∠CAE,

∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,

∴∠BAE=∠CAD,

∵在△BAE和△CAD中

∴△BAE≌△CAD(SAS),

∴∠BEA=∠CDA,BE=CD,

∵DE=CB,

∴四边形BCDE是平行四边形,

∵AE=AD,

∴∠AED=∠ADE,

∵∠BEA=∠CDA,

∴∠BED=∠CDE,

∵四边形BCDE是平行四边形,

∴BE∥CD,

∴∠CDE+∠BED=180°,

∴∠BED=∠CDE=90°,

∴四边形BCDE是矩形.

7.考点:菱形的性质与判定

试题解析:(1)∵DE∥AC,CE∥BD

∴四边形是平行四边形.

∵四边形是菱形,

∴.

∴.

∴平行四边形是矩形.

(2)∵四边形是菱形,BD=8,

∴,CD=AD=5.

∴.

∵四边形是矩形,

∴DE=OC=3,CE=OD=4.

∵,

∴在Rt△中,

15.考点:矩形的性质和判定菱形的性质与判定

试题解析:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,

∴∠OCE=∠ODE=90°,

∴四边形CODE是矩形.

(2)∵四边形ABCD为菱形,

∴AO=OC=AC=3,OD=OB,∠AOB=90°,由勾股定理得:

BO2=AB2﹣AO2,而AB=5,

∴DO=BO=4,

∴四边形CODE的周长=2(3+4)=14.

推理与证明经典练习题资料

推理与证明经典练习 题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 高二数学《推理与证明》练习题 一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ?=? C .4578b b b b ?=? D .4758b b b b ?=? 2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想 出n S 的表达式为( ) A 、12+n n B 、112+-n n C 、112++n n D 、2 2+n n 3.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =???'1()()n n f x f x +=,n ∈N ,则 2015()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面内有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( ) A.()112n n + B.()112 n n - C.()1n n + D.()1n n - 5.已知2()(1),(1)1()2 f x f x f f x +==+,*x N ∈(),猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21 f x x =+ 6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( ) A .10 B .13 C .14 D .100 7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要条件或充分条件 9. 2+7与3+6的大小关系是( ) A.2+7≥3+6 B.2+7≤3+6 C.2+7>3+6 D.2+7<3+ 6 10.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )

专题复习证明线段相等角相等的基本方法(一).docx

v1.0可编辑可修改 专题复习证明线段相等角相等的基本方法( 一) 一、教学目标: 知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个 三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法. 过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法 过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生 的学习经验;培养学生推理论证能力 . 情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习 惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的 发展 . 二、教学重点: 掌握根据角和线段位置关系确定证明角相等线段相等的基本方法. 教学难点: 分析图形的形状特征,识别角或线段的位置关系,确定证明方法. 三、教学用具:三角板、学案等 四、教学过程: (一)引入: 相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要 依据;运用三角形全等证明线段相等角相等,常出现在中考 15 题左右的位置,是 北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形 与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中. (二)例题: 例 1 已知:如图 1,△ ABC中, AB=AC,BC为最大边,点 D、 E 分别在 BC、AC上, BD=CE,F 为 BA延长线上一点, BF=CD. 求证:∠ DEF=∠ DFE . 分析:要证在一个三角形中的两角相等,考虑用等腰三角形的性质(等边对

v1.0可编辑可修改 段相等. 证明:∵ AB=AC∴∠ B=∠C. 在△ BDF和△ CED中, BD CE, B C,图 1 BF CD , BDF CED. DF ED.点拨:抓住图形的特征(两角在一个图形中) DEF DFE . 常用等边对等角证明,这是证两角相等的常用方法. 例 2 已知:如图 1,在△ ABC中,∠ ACB=90, CD AB 于点 D, 点 E 在 AC 上, CE=BC,过 E 点作 AC的垂线,交 CD的延长线于点 F .求证 AB=FC. 分析:观察 AB与 FC在图形中的位置,发现这两条线段分别位于两个三角形中,考虑用三角形全等来证明.准备三角形全等的条件时,已知一对角一对边对应相等,还需证另一对对应角相等;已知条件有直角,故利用同角的余角相等来证. 证明:∵ FE ⊥ AC 于点 E,ACB90°,∴FECACB 90°, 易证A F . ∴ △ ABC ≌ △ FCE . ∴AB FC . 点拨:根据图形特征,要证明相等的两边分别在两 F D B A C E 图1 个三角形中,常利用证明两边所在的两个三角形全等来证.在证明两角相等时, 利用了同角的余角相等证明,也可用等角的余角相等来证,但较复杂.例 3 两个大小不同的等腰直角三角板如图1-1 所示放置,图1-2 是由它抽象出的几何图形, B,C,E 在同一条直线D 上,连结 DC .求证:∠ ABE=∠ ACD.

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

证明全等三角形找角相等的方法文档

证明三角形全等找角相等的方法 1、利用平行直线性质 两直线平行的性质定理:1. 两直线平行,同位角相等 2. 两直线平行,内错角相等 例1.如图所示,直线AD 、BE 相交于点C ,AC=DC ,BC=EC. 求证:AB=DE 已知:如图所示,A 、B 、C 、D 在同一直线上,AD =BC ,AE =BF ,CE =DF ,试说明:(1)DF ∥CE ;(2)DE =CF . A B C D E F 1 2 2、巧用公共角 要点:在证两三角形全等时首先看两个三角形是不是有公共交点,如果有公共交点,在看他们是否存在公共角 例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 已知:如图,AD =AE,AB =AC,BD 、CE 相交于O. 求证:OD =OE .

三、利用等边对等角 要点:注意相等的两条边一定要在同一个三角形内才能利用等边对等角 例1.在△ABC 中,AB=AC ,AD 是三角形的中线. 求证:△ABD ≌△ACD 四、利用对顶角相等 例1、已知:四边形ABCD 中, AC 、BD 交于O 点, AO=OC , BA ⊥AC , DC ⊥AC .垂 足分别为A , C . 求证:AD=BC 已知:如图,在AB 、AC 上各取一点,E 、D ,使AE=AD ,连结BD ,CE ,BD 与CE 交于O ,连结AO ,∠1=∠2, 求证:∠B=∠C 五、利用等量代换关系找出角相等 (1)=A B ∠+∠+公共角公共角,则可以得出=A B ∠∠ 例1. 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 求证:△EAD ≌△CAB . 已知:如图,AB=AC,AD=AE,∠BAC=∠DAE. 求证 :BD=CE A C B E D 图13-4

(完整版)八年级下册第一章三角形的证明测试题含答案

八年级下册第一章三角形的证明测试题 一.选择题 1.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .270° B .135° C .90° D . 315° 2.如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( ) ①DC ′平分∠BDE ;②BC 长为a )22( ;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。 A . 1个; B .2个; C .3个; D .4个。 3.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,则△DEB 的周长为( ) A .4cm B .6cm C .8 cm D .10cm 4.如图,EA ⊥AB ,BC ⊥AB ,EA=AB=2BC ,D 为AB 中点,有以下结论: (1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE 。其中结论正确的是( ) A .(1),(3) B .(2),(3) C .(3),(4) D .(1),(2),(4) 5.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( ) A .2 B .3 C .4 D .5 6等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( ) A .4 B .10 C .4或10 D .以上答案都不对 7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 A B C A B C B C D E C ′ E

选修2-2第一章推理与证明练习题

推理与证明过关检测试题 1.考察下列一组不等式: ,5252522233?+?>+ ,5252523344?+?>+ ,525252322355?+?>+.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等 式成为推广不等式的特例,则推广的不等式可以是 . 2.已知数列{}n a 满足12a =,111n n n a a a ++=-(*n ∈N ),则3a 的值为 , 1232007 a a a a ????的值为 . 3. 已知2() (1),(1)1()2f x f x f f x += =+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2 ()21 f x x =+. 4. 某纺织厂的一个车间有技术工人m 名(m N *∈),编号分别为1、2、3、……、m ,有n 台(n N * ∈)织布机,编号分别为1、2、3、……、n ,定义记号i j a :若第i 名工人操作了第j 号织布机,规定1i j a =, 否则0i j a =,则等式41424343n a a a a +++ +=的实际意义是( ) A 、第4名工人操作了3台织布机; B 、第4名工人操作了n 台织布机; C 、第3名工人操作了4台织布机; D 、第3名工人操作了n 台织布机. 5. 已知* 111()1()23f n n N n =++++∈,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >, 7 (32)2 f >,由此推测:当2n ≥时,有 6. 观察下图中各正方形图案,每条边上有(2)n n ≥个圆圈,每个图案中圆圈的总数是n S ,按此规律推出:当2n ≥时,n S 与n 的关系式 24n S == 38n S == 412n S == 7.观察下式:1=12 ,2+3+4=32 ,3+4+5+6+7=52 ,4+5+6+7+8+9+10=72 ,…,则可得出一般结论: . 8.函数()f x 由下表定义: 若05a =,1()n n a f a +=,0,1,2,n =,则2007a = . 9.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______颗珠宝;则前n 件首饰所用珠宝总数为_ 颗.(结果用n 表示) ……

证明两角相等的方法20170727

徐老师模型数学20170727 证明两角相等的方法 百汇学校徐国纲 一、相交线、平行线 1、对顶角相等; 2、同角或等角的余角(或补角)相等; 3、两直线平行,同位角相等、内错角相等; 4、两边分别对应平行(或垂直)的两角相等或互补; 5、凡直角都相等; 6、角的平分线分得的两个角相等; 二、三角形 7、等腰三角形的两个底角相等; 8、三线合一:等腰三角形底边上的高(或中线)平分顶角; 9、三角形外角和定理:三角形外角等于和它不相邻的内角之和; 10、全等三角形的对应角相等; 11、相似三角形的对应角相等; 12、角平分性质定理的逆定理:到角的两边的距离相等的点在这个角的平分线上; 三、四边形 13、平行四边形的对角相等; 14、菱形的每一条对角线平分一组对角; 15、等腰梯形在同一底上的两个角相等; 四、圆 16、同弧或等弧(或两条相等的弦)所对的圆心角相等; 17、同弧或等弧所对的圆周角相等; 18、圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半; 19、圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角; 20、三角形的内心的性质:三角形的内心与角顶点的连线平分这个角; 21、弦切角定理:弦切角等于它所夹弧所对的圆周角; 22、从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 五、三角函数 23、如果两个锐角的同名三角函数值相等,则这两个锐角相等; 六、等式性质 24、等量代换:若∠1=∠2,且∠2=∠3,则∠1=∠3; 25、等式性质:等量加等量,其和(或差)相等:若∠1=∠2,则∠1+∠3=∠2+∠3或∠1-∠3=∠2-∠3. 第1 页共1 页

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题 考试时间120分钟 总分150分 一.选择题(共50分) 1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1 an -1 )(n ≥2),由此归纳出{a n }的通项公式 B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人 C .由平面三角形的性质,推测空间四面体的性质 D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180° 2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y | =2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ) A .76 B .80 C .86 D .92 3. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( ) A .01 B .43 C .07 D .49 4. 以下不等式(其中..0a b >>)正确的个数是( ) 1> ② ③lg 2>A .0 B .1 C .2 D .3 5.如图,椭圆的中心在坐标原点, F 为左焦点,当AB FB ⊥时,有 ()()() 2 2 2 2 2 c b b a c a +++=+ ,从而得其离心率为 ,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( ) A . 12 B .12+ C 6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰 是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。 第2件 第3件 第1件

证明角相等的方法

证明两角相等的方法 黄冈中学初三数学备课组【重点解读】 证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。在教学中总结了一些定理(或常见结论)以及几种处理方法,仅供参考。 【相关定理或常见结论】 1、相交线、平行线: (1)对顶角相等; (2)等角的余角(或补角)相等; (3)两直线平行,同位角相等、内错角相等; (4)凡直角都相等; (5)角的平分线分得的两个角相等. 2、三角形 (1)等腰三角形的两个底角相等; (2)等腰三角形底边上的高(或中线)平分顶角(三线合一); (3)三角形外角和定理:三角形外角等于和它不相邻的内角之和 (4)全等三角形的对应角相等; (5)相似三角形的对应角相等. 3、四边形 (1)平行四边形的对角相等; (2)菱形的每一条对角线平分一组对角; (3)等腰梯形在同一底上的两个角相等. 4、圆 (1)在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等;(2)在同圆或等圆中,同弧或等弧所对的圆周角相等. ,圆心角相等.

(3)圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半. (4)圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角. (5)三角形的内心的性质:三角形的内心与角顶点的连线平分这个角. (6)正多边形的性质:正多边形的外角等于它的中心角. (7)从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 5、利用等量代换、等式性质 证明两角相等. 6、利用三角函数计算出角的度数相等 【典题精析】 (一) 利用全等相关知识证明角相等 例1 已知:如图,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点O ,且BD CE =. 求证:AO 平分BAC ∠. 分析:要证AO 平分BAC ∠,因为CD AB ⊥于点D ,BE AC ⊥于点E ,所以只要证明OD=OE ;若能证明若能证△OBD ≌△OCE 即可,因为可证 ∠ODB=∠OEC=90°,∠BOD=∠COE ,而BD=CE ,故问题得到解决. 证明:∵CD AB ⊥于点D ,BE AC ⊥于点E ∴∠ODB=∠OEC=90° 在△O BD 和△OCE 中 ∠ODB=∠OEC ∠BOD=∠COE BD=CE ∴△OBD ≌△OCE ∴OD=OE ∵CD AB ⊥于点D ,BE AC ⊥于点E ∴AO 平分BAC ∠. 说明:本例的证明运用了对顶角相等,角的平分线性质的逆定理 例2 如图,在梯形ABCD 中,AD ∥BC ,E 是梯形内一点,ED ⊥AD ,BE=DC ,∠ECB=45 o . 求证:∠EBC =∠EDC 分析:要证明∠EBC =∠EDC ,容易想到证全等,而图中没有全等的三角形,如果

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长. 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠ 2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 A D B C

3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又,EF ∥AB ∴,∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E B A C D F 2 1 E A

推理与证明综合测试题

一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数 列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 6.观察式子:213122+ <,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n + +++<-L ≥ B.22211111(2)2321n n n + +++<+L ≥ C.222111211(2)23n n n n -+ +++,,∥.若 EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出: ma mb EF m m +=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △, OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之 比为:m n ,则OEF △的面积0S 与12S S ,的关系是( ) A.120mS nS S m n +=+ B.120nS mS S m n +=+

初二数学下册证明题中等难题.doc含答案

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =; (2)若2AD DC ==,求AB 的长. 二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。 D C E B G A F

三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ ED.求证:AE 平分∠BAD. 四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D , AB=12,AC=18,求DM 的长。 (第23题) E D B A F

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交 于点O ,且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH= 2 1 (AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 M F E N D C A B

高考数学压轴专题最新备战高考《推理与证明》基础测试题附答案解析

新单元《推理与证明》专题解析 一、选择题 1.已知()()2739n f n n =+?+,存在自然数m ,使得对任意*n N ∈,都能使m 整除()f n , 则最大的m 的值为( ) A .30 B .9 C .36 D .6 【答案】C 【解析】 【分析】 依题意,可求得(1)f 、(2)f 、(3)f 、(4)f 的值,从而可猜得最大的m 的值为36,再利用数学归纳法证明即可. 【详解】 由()(27)39n f n n =+?+,得(1)36f =, (2)336f =?,(3)1036f =?, (4)3436f =?,由此猜想36m =. 下面用数学归纳法证明: (1)当1n =时,显然成立。 (2)假设n k =时,()f k 能被36整除,即 ()(27)39k f k k =+?+能被36整除; 当1n k =+时, 1[2(1)7]39k k +++?+ 1 3(27)391823k k k +??=+?+-+??? () 13(27)391831k k k -??=+?++-?? 131k --Q 是2的倍数, () 11831k -∴-能被36整除, ∴当1n k =+时,()f n 也能被36整除.由(1)(2)可知对一切正整数n 都有 ()(27)39n f n n =+?+能被36整除, m 的最大值为36. 故选:C. 【点睛】 本题主要考查的是数学归纳法的应用,解题的关键是熟练掌握数学归纳法解题的一般步骤,考查的是推理计算能力,是中档题. 2.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端

专题复习:证明角相等的方法

《专题复习:证明角相等的方法》导学案 学习目标 1、系统归纳已经学习过的结论是“角相等”的几何定理; 2、能够初步应用这些定理证明角相等; 3、养成执果索因的习惯,提高分析、解决问题的能力。 学习重、难点熟悉几何定理的文字、符号表述,依据问题的条件恰当选择证明方法。 问题引入证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。 一、自主学习: 归纳已经学习过的结论是“角相等”的几何定理(能结合图形用符号语言表述) (1)对顶角; (2)角的余角(或补角)相等; (3)两直线平行,相等、内错角; (4)凡直角都; (5)角的平分线分得的两个角; (6)等腰三角形的两个底角 (简称 ) (7)等腰三角形底边上的高(或中线)顶角(三线合一); (8)三角形外角和定理:三角形外角等于的内角之和; (9)全等三角形的对应角; 二、典例精析

1、利用平行线的判定与性质证明角相等 例1、如右图在△ABC 中,EF ⊥AB ,CD ⊥AB ,G 在AC 边上并且∠GDC=∠EFB , 求证:∠AGD=∠ACB 注:如果要证相等的两角是两条直线被第三条直线所截得的同位角或内错角,可考虑用此方法。 2、利用“等(同)角的补角相等”证明角相等 例2、如右图,AB ∥CD ,AD ∥BC ,求证:∠A=∠C 3、利用“等(同)角的余角相等”证明角相等 例3、如右图,在锐角△ABC 中,BD 、CE 是它的两条高,求证:∠ABD=∠ACE 变式:若果∠A 是钝角,其它条件不变,仍然有∠ABD=∠ACE 为什么 4、利用全等△性质证明角相等 例4、 已知:如图,AC 和BD 相交于点O ,DC AB =,DB AC =。 求证:C B ∠=∠。

高考数学压轴专题(易错题)备战高考《推理与证明》技巧及练习题附答案解析

【最新】数学《推理与证明》期末复习知识要点 一、选择题 1.已知数组1()1,12(,)21,123()321,,,…,121(, ,,,)121 n n n n --L ,…,记该数组为 1()a ,23(,)a a ,456(,,)a a a ,…,则200a =( ) A . 9 11 B . 1011 C . 1112 D . 910 【答案】B 【解析】 【分析】 设a 200在第n 组中,则 ()()112002 2 n n n n -+≤<(n ∈N *), 由等差数列求和得:a 200在第20组中,前19组的数的个数之和为:1920 2 ?=190, 再进行简单的合情推理得:a 2001010 2010111 ==-+,得解. 【详解】 由题意有,第n 组中有数n 个,且分子由小到大且为1,2,3…n ,设a 200在第n 组中,则 ()()112002 2 n n n n -+≤<(n ∈N *), 解得:n =20, 即a 200在第20组中,前19组的数的个数之和为:1920 2 ?=190, 即a 200在第20组的第10个数,即为 1010 2010111 =-+, a 2001011= , 故选B . 【点睛】 本题考查了阅读理解及等差数列求和与进行简单的合情推理能力,属中档题. 2.下面几种推理中是演绎推理的为( ) A .由金、银、铜、铁可导电,猜想:金属都可导电 B .猜想数列111 122334 ?????,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π= D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2 2 2 2 ()()()x a y b z c r -+-+-=

专题复习证明线段相等角相等的基本方法

专题复习证明线段相等角相等的基本方法(一) 一、教学目标: 知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法. 过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生的学习经验;培养学生推理论证能力. 情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的发展. 二、教学重点: 掌握根据角和线段位置关系确定证明角相等线段相等的基本方法. 教学难点: 分析图形的形状特征,识别角或线段的位置关系,确定证明方法. 三、教学用具:三角板、学案等 四、教学过程: (一)引入: 相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要依据;运用三角形全等证明线段相等角相等,常出现在中考15题左右的位置,是北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中. (二)例题: 例1已知:如图1,△ABC中,AB=AC,BC为最大边,点D、 E分别在BC、AC上,BD=CE,F为BA延长线上一点,BF=CD.求证:∠DEF=∠DFE . 分析:要证在一个三角形中的两角相等,考虑用等腰三角形的性质(等边对等角)来证;因要证的两条相等的边在两个三角形中,故利用三角形全等来证线段相等. 证明:∵AB=AC∴∠B=∠C. 图1

在△BDF 和△CED 中, 点拨:抓住图形的特征(两角在一个图形中)常用等边对等角证明,这是证两角相等的常用方 法. 例2 已知:如图1,在△ABC 中,∠ACB=,于点D,点E 在 AC 上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F .求证AB=FC. 分析:观察AB 与FC 在图形中的位置,发现这两条线段分别位于两个三角形中,考虑用三角形全等来证明.准备三角形全等的条件时,已知一对角一对边对应相等,还需证另一对对应角相等;已知条件有直角,故利用同角的余角相等来证. 证明:∵于点, ∴, 易证. ∴. ∴. 点拨:根据图形特征,要证明相等的两边分别在两个三角形中,常利用证明两边所在的两个三角形全等来 证.在证明两角相等时,利用了同角的余角相等证明,也可用等角的余角相等来证,但较复杂. 例3 两个大小不同的等腰直角三角板如图1-1所示放置,图1-2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .求证:∠ABE=∠ACD . 分析:图1-2是由两个大小不同的等腰直角三角板构成的旋转图形,分别从一个等腰三角形取一条腰,夹角为等角加同角,就 ,,,... BD CE B C BF CD BDF CED DF ED DEF DFE =?? ∠=∠??=? ∴???∴=∴∠=∠图1 图1-2 图1-1

相关文档
相关文档 最新文档