文档库 最新最全的文档下载
当前位置:文档库 › 基于Ansoft的直流永磁无刷电动机电磁仿真 (1)

基于Ansoft的直流永磁无刷电动机电磁仿真 (1)

基于Ansoft的直流永磁无刷电动机电磁仿真 (1)
基于Ansoft的直流永磁无刷电动机电磁仿真 (1)

吉林大学毕业论文(设计)课题论证书

指导教师:

姓名嵇艳鞠职称教授

姓名职称

2012年3月

注:假拟课题要在课题内容及要求中加述课题的现实意义

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流电机设计程序

直流电机设计程序 3.1 主要指标 1. 额定电压 2. 额定功率 3. 额定转速 4. 额定效率 3.2 主要尺寸的确定 5. 结构型式的选择 6. 永磁材料的选择 选用烧结钕铁硼 7. 极弧系数 8. 电负荷 9. 长径比 10. 计算功率 11. 电枢直径 12. 极数 p=4 13. 极距 14. 电枢长度 cm D L a a 5.10157.0=?==λW P p N N N 76678.0378.021321'=??+=+=ηηcm D cm n B A p D a N i a 151.157.06006.0906.0766101.6'''101.63333==??????=??=取 λαδcm p D 89.54 21514.32=??==πτ

15. 气隙 δ=0.06cm 16. 电枢计算长度 3.3 绕组设计 17. 绕组形式 选用单叠绕组 18. 绕组并联支路对数 a=p=4 19. 槽数 20. 槽距 21. 预计气隙磁通 22. 电枢电动势 23. 预计导体总数 24. 每槽导体数 25. 每槽元件匝数 式中 每槽元件数 u=2 26. 实际每槽导体数 cm L L a ef 62.1006.025.102=?+=+=δ45 1533=?==a D Q cm Q D t a 05.145 1514.32=?==πwb B L ef i 34 4 1025.2106.062.1089.56.010''-?=????=?=ΦδταδV U E N N a 48.203 78 .021321=?+=+=η910 600 1025.2448 .20460'60'3=?????=Φ= -N a n p aE N δ2 .2045 910''===Q N N s 5 05.52 22.202''==?== s s W u N W 取20 5222=??==s s uW N

直流无刷电机与永磁同步电机区别

无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。 通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 .主要技术指标 1. 额定功率:P N=30W 2. 额定电压:U N =48V,直流 3. 额定电流:l N:::1A 3. 额定转速:n N =10000r/min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:0.036 0.065m ?主要尺寸的确定 1. 预取效率—-0.63、 2. 计算功率p 直流电动机P' - =0.85 30-40.48W ,按陈世坤书 n N 0.63 长期运行P u丄丄P N 3叩 短期运行P -?丄P N 4们 3. 预取线负荷A =11000A/m 4?预取气隙磁感应强度B§=0.55T 5. 预取计算极弧系数:-=0.8 6. 预取长径比(L/D)入’=2

7 ?计算电枢内径 根据计算电枢内径取电枢内径值 。衬=1.4 10 ° m 8. 气隙长度:=0.7 10 "m 9. 电枢外径 D j =2.95 10,m 10. 极对数p=1 11. 计算电枢铁芯长 L 、,D i1=2 1.4 10^ =2.8 10^m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10^m 2 ■ Di1 3.14 1.4 10 T = ---------------------------------- = 2p 2 13.输入永磁体轴向长Lm =L =2.8 10,m ?定子结构 1. 齿数 Z=6 2. 齿距 3 "「 4 10 J .733 10% 3. 槽形选择 梯形口扇形槽, 见下 图。 4. 预估齿宽:b t = d 』 733 汩 °. 55 7294 10讣,B t 可由 1.43 0.96 BZ 5. 设计者经验得 1.43T , b t 由工艺取 0.295 10'm 预估轭高:h j1 礙 22 0.8 O. 55 = O .323 10,m 2IB j1K Fe 2K Fe B j1 2 0.96 1.56 B j1可由设计者经验得1.53T , h j1由工艺取0.325 10'm 根据齿宽和轭高作出下图,得到具体槽形尺寸 6.1P 「 6.1 40.48 ‘■: ?工 i A s B/ n N 3 10.8 11000 0.55 2 10000 = 1.37 10-m 12.极距 __2 = 2.2 10 m 3

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

小型永磁直流电机设计

小型永磁直流电机设计(部分) Ap1008331谢志恒 1.电机主要尺寸与功率,转速的关系: 与异步电机相似,直流电机的功率,转速之间的关系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 电枢直径(cm) 电机初设计时的主要尺寸 Lg 电枢计算长度(cm) 根据电机功率和实际需要确定 p’计算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 电势系数 a 支路数在小功率电机中取a=2 p 极数在小功率电机中取p=2 N 电枢总导体数 n 电机额定转速 Ky 电枢绕组短矩系数小功率永磁电机p=2时,采用单叠绕组Ky=Sin[(y1/τ)*π/2] y1绕组第一节矩 P 极弧系数一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每极磁通Φ=αP*τ*Lg*Bg τ极矩(cm) τ=π*D2/P Bg气隙磁密(Gs) 又称磁负荷,对铝镍Bg=(0.5~0.7) Br,对铁氧体Bg=(0.7~0.85) Br, Br为剩磁密度 A 电枢线负荷A=Ia*N/(a*π*D2)Ia电枢额定电流对连续运行的永磁电动机,一般取A=(30~80)A/cm另外电机负荷Δ= Ia/(a*Sd),其中Sd=π*d2/4,d为导线直径。为了保证发热因子A*Δ≦1400 (A/cm*A/mm2 )通常以电枢直径D2和电枢外径La作为电机主要尺寸,而把电动机的输出功率和转速为电机的主要性能,在主要尺寸和主要性能的基础上,我们就可以设计电机了。

在(1)式的基础上经过变换可为: D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, CA的值并不取决於电机的容量和转速,也不直接与电枢直径和长度有关,它仅取决於气隙的平均磁密及电枢线负荷,而Bg和A的变化很小,它近似为常数,通常称为电机常数,它的导数K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A称为电机利用系数,它是正比於单位电枢有效体积产生的电磁转矩的一个比例常数。 2.磁钢的选择: 2.1磁钢的材质 在永磁直流电机中,磁钢相当于串激电中的定子线圈中,它在定子铁壳中产生磁场,它和其它电机一样,是利用电磁感应原理在磁场媒质中进行能量转换的,磁场在能量转换过程中起媒介作用,在永磁直流电机中产生磁场的磁源是充过磁的永磁体,也叫磁钢,充过磁的磁石性能对电机的性能有很大的影响。 在现代电机制造中,磁钢的材料有下列几种:铁氧体.铝镍鈷合金,稀士合金,釹铁硼等.由于各种材料自身特点和本公司的实际,一般选用铁氧体作为永磁材料。 2.2永磁材料的磁性能 磁钢的退磁曲线如下: 永磁材料的磁性能可以用磁滞回线来反映和描述.即用B=f(H)曲线来反映永磁体的磁感应强度随磁场强度来降改变的特性,该回线包含的面积随最大充磁磁场强度HMAX增大而增大,当HMAX达到HS时回线面积渐近地达到一个最大值,而且这时磁性能也较稳定,面积最大的回线被称为磁滞回线. 磁滞回线在第二象限的部分称为退磁曲线,它是永磁材料的基本特性曲线,退磁曲线中磁感应强度Bm 为正值而磁场强度Hm为负值,在退磁曲线过程中,永磁体相当于一个磁源.退磁

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 . 主要技术指标 1. 额定功率: P N 30W 2. 额定电压: U N 48V ,直流 3. 额定电流: I N 1A 3. 额定转速: n N 10000r /min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸: 0.036 0.065m . 主要尺寸的确定 1. 预取效率 0.63 、 2. 计算功率 P i 直流电动机 Pi ' K m P N 0.85 30 40.48W ,按陈世坤书 i N 0.63 12 长期运行 P i 132 P N 13 短期运行 P i 1 3 P N 4 3. 预取线负荷 A s ' 11000 A / m 4. 预取气隙磁感应强度 B ' 0.55T 5. 预取计算极弧系数 i 0.8 6. 预取长径比( L/D )λ′=2

7.计算电枢内径 根据计算电枢内径取电枢内径值 D i1 1.4 10 2 m 8. 气隙长度 0.7 10 3 4 m 9. 电枢外径 D 1 2.95 10 2 m 10. 极对数 p=1 11. 计算电枢铁芯长 L D i1 2 1.4 10 2 2.8 10 2 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10 2 m 13. 输入永磁体轴向长 L m L 2.8 10 2 m 定子结构 1. 齿数 Z=6 设计者经验得 1.43T , b t 由工艺取 0.295 10 2 m 3 槽形选择 梯形口扇形槽,见下图 D i1 3 i A 6s . B 1P i n N 6.1 40.48 0.8 11000 0.55 2 10000 1.37 10 2 m 4. 预估齿宽 : b t tB B t K Fe 0.733 10 2 0.55 1.43 0.96 0.294 10 2m , B t 可由 12. 极距 D i1 2p 3.14 1.4 10 2 2 2.2 10 2 m 2. 齿距 i1 3.14 1.4 10 2 0.733 10 2m 5. 预 估 轭 高 : h j1 a i B 2lB j1K Fe 2K Fe B j1 2.2 0.8 0.55 0.323 10 2m

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流无刷电机本体设计要点

电机与拖动基础 课程设计报告 设计题目: 学号: 指导教师: 信息与电气工程学院 二零一六年七月

直流无刷电机本体设计 1. 设计任务 (1) 额定功率 80N P W = (2) 额定电压310N U V ≤ (3) 电动机运行时额定转速 1000/min N n r = (4) 发电机运行时空载转速max 6000/min n r = (5) 最大允许过载倍数 2.5λ= (6) 耐冲击能力21500/m a m s = (7) 机壳外径42D mm ≤ 设计内容: 1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。 2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。 3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。 2. 理论与计算过程 2.1 直流无刷电机的基本组成环节 直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。 因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

永磁无刷直流电机的特点和应用

用途 永磁直流电机是用永磁体建立磁场的一种直流电机。永磁直流电机广泛应用于各种便携式的电子设备或器具中,如录音机、VCD机、电唱机、电动按摩器及各种玩具,也广泛应用于汽车、摩托车、电动自行车、蓄电池车、船舶、航空、机械等行业,在一些高精尖产品中也有广泛应用,如录像机、复印机、照相机、手机、精密机床、银行点钞机、捆钞机等。在舞台灯光方面,永磁直流电机,特别是小型永磁直流齿轮电机的用量非常大。计算机行业中的打印机、扫描仪、硬盘驱动器、光盘驱动器、刻录机、冷却风扇等都要用到大量的永磁直流电机。 汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、打气泵更是用到各种永磁直流电机。宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机等都用到永磁直流电机、在武器装备中,永磁直流电机广泛应用于导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 在工农业方面,永磁直流电机也广泛用于电气和自动化控制及仪器仪表中。在医用方面,永磁直流电机用处更不小,如医用的各种仪器、手术工具,如开脑手术中的电动锯骨刀,特别是野外手术中的各种仪器基本上都是用的永磁直流电机。在残疾人用品方面,如机械手、残疾车等都用到永磁直流电机。在生活方面,用处更多,连牙刷也用永磁直流电机做成电动牙刷了。永磁直流电机的应用真是举不胜举,可以说是无处不在。 随着时代的发展,永磁直流电机的应用会更多,原先用交流电机的许多场合均被永磁直流电机所替代。特别是出现永磁无刷电机后,永磁直流电机的生产数量在不断地上升。我国每年生产的各种永磁直流电机大达数十亿台以上,生产永磁直流电机的厂家不计其数。

特点 1、可替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速; 2、具有传统直流电机的优点,同时又取消了碳刷、滑环结构; 3、可以低速大功率运行,可以省去减速机直接驱动大的负载; 4、体积小、重量轻、出力大; 5、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 6、无级调速,调速范围广,过载能力强; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%。 9、可靠性高,稳定性好,适应性强,维修与保养简单; 10、耐颠簸震动,噪音低,震动小,运转平滑,寿命长; 11、不产生火花,特别适合爆炸性场所,有防爆型; 12、根据需要可选梯形波磁场电机和正弦波磁场电机。

永磁有刷直流电动机课程设计

永磁直流有刷电动机课程设计 目录 摘要 一、设计背景及其发展状况 二、有刷直流电动机的组成结构和工作原理 1.永磁直流电动机的结构、起动和转动机理 2.永磁有刷直流电动机的反电动势和转矩、转速、调速范围 3.永磁有刷直流电动机的功率和效率 三、永磁有刷直流电动机的设计 1.永磁有刷直流电动机主要尺寸的确定 2.永磁有刷直流电动机的绕组设计 3.永磁有刷直流电动机换向器的设计 四、磁路计算 1.组抗参数 2.损耗参数 3.外特性 4.效率特性 五、个人总结 参考文献

摘要 永磁有刷直流电机是在直流电机的基础上用永磁铁代替原有磁体材料建立的主磁场。直流电动机采用了永磁励磁后,因省去了励磁绕组,降低了励磁损耗,使其具有结构简单、体积小、效率高、用铜量少等优点。本文分析了永磁有刷直流电机的工作原理,研究了永磁有刷直流电机电磁的特点, ,运用解析计算的方法分析出电机的各项参数。为设计永磁有刷直流电动机,我们依据Matlab强大的数据计算能力建立起了永磁有刷直流电机的数学模型并进行了仿真进而对控制系统进行了一定的分析,同时还对比了在不同的参数下电机的工作性能,为电机系统的设计及其工作的稳定性提供了一定的依据。经设计出的200W永磁有刷直流电动机具有简便高效的特点。 关键词永磁直流电机有刷设计电机

一、设计背景及其发展状况 1820年,丹麦物理学家奥斯特发现了电流在磁场中受机械力的作用,即电流的磁效应。 1821年,英国科学家法拉第总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。 1822年,法国人吕萨克发现电磁铁,,即用电流流过绕在铁芯上的线圈的方法可以产生磁场。在这些发现与发明的基础上,1831年法拉第发现了电磁感应定律,发明了盘式电机。 1831年,法拉第发现了电磁感应定律,并发明了盘式电机。同年,亨利制作了振荡电机。1832年,斯特金发明了换向器,并对亨利的振荡电机进行了改进,制作了世界上第一台能连续旋转运动的电机。 1833年,法国发明家皮克西制成了第一台旋转磁极式直流发电机,主要利用了磁铁和线圈之间的相对运动和一个换向装置,这就是现代直流发电机的雏形。楞次已经证明了电机的可逆原理。 1834年,俄国物理学家雅可比设计并制成了第一台实用的直流电动机。 1838年,雅可比把改进的直流电动机装在一条小船上。 1845年,英国人惠斯通用电磁铁代替天然磁铁矿石,用于制造电机并取得了专利权。1857年,他发明了自励的电励磁发电机,开创了电励磁方式的新纪元。19世纪70年代,爱迪生发明了电灯,开始了商业目的的直流发电机的研制。1871年,凡.麦尔准发明了交流发电机。 1879年,拜依莱(Bailey)首次用电的办法获得了旋转磁场,采用依次变动四个磁极上的励磁电流的方法,如果在四个磁场的中间放一个铜盘,由于感应涡流的作用,铜盘将随着磁场的变动而旋转,这就是最初的感应电动机。 1888年,特斯拉发明了三相异步电机,并申请了专利。 1900年,可靠的卷铁芯式变压器的问世,开创了长距离输电的新纪元。 1967年,钐钴永磁材料的出现,开创了永磁电机的新纪元。由于稀土钴永磁材料价格昂贵,研究重点是航空航天等要求高性能而价格不是主要因素的高科技领域。 1983年,磁性能更高而价格相对较低的钕铁硼永磁材料问世后永磁电机的研究转移到了工业和民用电机上。 进入20世纪90年代,随着永磁材料性能的不断提高和完善,和永磁电机研究开发经验的逐步成熟,永磁电机在日常生活的各个方面获得了越来越广泛的应用。现今,永磁直流电机广泛应用于各种便携式的电子设备或器具中,如录音机、VCD 机、电唱机、电动按摩器及各种玩具,也广泛应用于汽车、摩托车、干手器、电动自行车、蓄电池车、船舶、航空、机械等行业,在一些高精尖产品中也有广泛应用,如录像机、复印机、照相机、手机、精密机床、银行点钞机、捆钞机等。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

无刷直流永磁电动机原理

二相三相轮流导通星形三相十二状态 无刷直流永磁电动机工作原理 模型仍然采用星形连接的ABC三组线圈进行励磁,图1是星形接法线圈与电子换向器的连接图,由换向器中六个开关晶体管BG1至BG6组成的桥式电路切换通过ABC三个线圈的电流。例如BG1与BG5导通时电流从A线圈流进B线圈流出;如果BG2与BG4与BG6导通时电流从B线圈流进从A线圈与C线圈并联流出。 新的模型由一个六凸极结构的内定子与两极永磁外转子组成,我们将通过这个模型来展示三个线圈电流的切换顺序,图2是六凸极结构的内定子。

图3是凸极上绕上励磁线圈的定子,线圈的绕向见图5 在定子外周有外转子,外转子有一对永磁体磁极,粘贴在外转子磁軛上,外转子可在定子外周自由旋转,见图4

图5是该模型的正视图,用来表演线圈磁场的切换与转子跟随转动的过程,在六个凸极上绕有线圈,由径向相对的凸极线圈组成一个线圈组,图中黄色的是A组线圈、绿色的是B组线圈、红色的是C组线圈,三个线圈组按星形连接,标有ABC三个字母的是三个线圈的输入端。在外转子磁軛内贴有圆弧状永磁体磁极,蓝色的是N极朝轴心、红色的是S极朝轴心。图5右边是内定子磁场方向箭头,在下面的磁场随开关切换流程图中将附在内定子上旋转,代表定子产生的磁场方向。以此图作动画来演示线圈磁场的切换与转子跟随转动的过程。 根据图1的星形接法线圈与电子换向器的连接图与下面动画的截图来说明开关晶体管是如何控制产生旋转的磁场,图中标注的“红色A+、B+、C+”表示相应线圈与电源正极接通,“蓝色A-、B-、C-”表示相应线圈与电源负极接通。 当开关管BG1、BG5、BG6导通时,电流由A组线圈进B组、C组线圈出,形成的磁场方向向下,规定此时的磁场方向为0度、转子旋转角度为0,见图6左。 当开关管BG1与BG5导通时,电流由A组线圈进B组线圈出,形成的磁场方向顺时针转到30度,转子也随之转到30度,见图6中。 当转子转到30度时,开关管BG1、BG3、BG5导通时,电流由A组与C组线圈进B组线圈出,形成的磁场方向顺时针转到60度,转子也随之转到60度,见图6右。

永磁无刷直流电机矢量控制系统实现毕业设计(论文)

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

相关文档
相关文档 最新文档