文档库 最新最全的文档下载
当前位置:文档库 › 2018-2019人教A版高中数学选修2-1第三章 空间向量与立体几何 模块综合评价-docx

2018-2019人教A版高中数学选修2-1第三章 空间向量与立体几何 模块综合评价-docx

2018-2019人教A版高中数学选修2-1第三章 空间向量与立体几何 模块综合评价-docx
2018-2019人教A版高中数学选修2-1第三章 空间向量与立体几何 模块综合评价-docx

绝密★启用前

2018-2019人教A 版高中数学选修2-1第三章 空间向量与立

体几何 模块综合评价

试卷副标题

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上

第I 卷(选择题)

请点击修改第I 卷的文字说明 一、单选题

1.下列有关命题的说法正确的是( ) A . “若x >1,则2x >1”的否命题为真命题 B . “若cos β=1,则sin β=0”的逆命题是真命题

C . “若平面向量a ,b 共线,则a ,b 方向相同”的逆否命题为假命题

D . 命题“若x >1,则x >a ”的逆命题为真命题,则a >0 2.设A ,B 是两个集合,则“A∩B=A”是“A ?B”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件

D . 既不充分也不必要条件

3.若直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A . a =(1,0,0),n =(-2,0,0) B . a =(1,3,5),n =(1,0,1) C . a =(0,2,1),n =(-1,0,-1) D . a =(1,-1,3),n =(0,3,1) 4.抛物线y 2

=4x 的焦点到双曲线x 2

?y 23

=1的渐近线的距离是( )

A . 1

2 B .

32 C . 1 D . 3

5.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )

A.62

7

B.63

7

C.60

7

D.65

7

6.已知a=(cos α,1,sin α),b=(sin α,1,cos α),则向量a+b与a-b的

夹角是( )

A.90°B.60°C.30°D.0°

7.抛物线y2=-ax的准线方程为x=-2,则a的值为( )

A.4B.-4C.8D.-8

8.三棱锥A-BCD中,AB=AC=AD=2,∠BAD=90°,∠BAC=60°,则A B?C D等于( )

A.-2B.2C.?23D.23

9.若双曲线E:x2

9

?y2

16

=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=

3,则|PF2|等于( )

A.11B.9C.5D.3

10.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角

的正弦值为()

A.B.C.D.

11.已知抛物线22(0)

y px p

=>的准线经过点()

1,1

-,则抛物线焦点坐标为()

A.()

1,0

-B.()

1,0C.()

0,1-D.()

0,1

12.椭圆C:x2

4

+y2

3

=1的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值

范围是[-2,-1],那么直线PA1斜率的取值范围是( )

A.1

2

,3

4

B.3

8

,3

4

C.1

2

,1D.3

4

,1

…………○…学校:…………○…第II 卷(非选择题)

请点击修改第II 卷的文字说明 二、填空题

13.已知命题p :?x >0,x +1

x ≥2,那么命题?p 为___________. 14.过双曲线x 2?

y 23

=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,

B 两点,则|AB|=________.

15.在四面体O-ABC 中,点M 在OA 上,且OM =2MA ,N 为BC 的中点,若O G =13

O A +x 4

O B +x

4

O C ,

则使G 与M ,N 共线的x 的值为________.

16.已知双曲线的渐近线方程是3x±4y=0,则双曲线的离心率等于________. 三、解答题

17.设p :函数f(x)=log a |x|在(0,+∞)上单调递增;q :关于x 的方程x 2+2x +log a 32

=0的解集只有一个子集,若“p∨q”为真,“ ?p ∨ ?q ”也为真,求实数a 的取值范围.

18.已知两点M(-2,0)、N(2,0),点P 为坐标平面内的动点,满足 M N ? M P +M N ?N P =0,求动点P(x ,y)的轨迹方程. 19.设F 1,F 2为椭圆x 2

9+

y 24

=1的两个焦点,P 为椭圆上的一点,已知P ,F 1,F 2是一个

直角三角形的三个顶点,且|PF 1|>|PF 2|,求 PF 1

PF 2

的值.

20.如图,正三棱柱ABC-A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.

(1)求证:AB 1⊥平面A 1BD ; (2)求二面角A-A 1D-B 的余弦值.

21.已知椭圆22221(0)x y a b a b

+=>>经过点()0,4A ,离心率为3

5.

(1)求椭圆C 的方程;

…○…………线……※※

…○…………线……(2)求过点()3,0且斜率为

4

5

的直线被C 所截线段的中点坐标. 22.如图1,在Rt△ABC 中,∠C=90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE∥BC,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2.

(1)求证:A 1C⊥平面BCDE ;

(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;

(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.

参考答案

1.C

【解析】分析:写出原命题的否命题,可判断A;写出原命题的逆命题,可判断B;写出原命题的逆否命题,可判断C;求出满足条件的a的范围,可判断D.

详解:对于A,“若x>1,则2x>1”的否命题是“若x≤1,则2x≤1”为假命题,故错误;

对于B,“若cosβ=1,则sinβ=0”的逆命题是“若sinβ=0,则cosβ=1”为假命题,故错误;对于C,“若平面向量a,b共线,则a,b方向相同”为假命题,故其逆否命题为假命题,故正确;

对于D,“若x>1,则x>a”的逆命题为“若x>a,则x>1”,若为真命题,则a≥1,故错误.

故选C.

点睛:本题以命题的真假判断与应用为载体,考查了四种命题.命题真假的判断方法:(1)联系已有的数学公式、定理、结论进行正面直接判断;(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.

2.C

【解析】

∵A∩B=A?A?B,∴“A∩B=A”是“A?B”的充要条件.

选C.

点睛:充分、必要条件的三种判断方法.

1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p?q”为真,则p是q的充分条件.

2.等价法:利用p?q与非q?非p,q?p与非p?非q,p?q与非q?非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.

3.集合法:若A?B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.3.D

【解析】

试题分析:由题意l∥α,则?=0,分别计算A、B、C、D中?的值,判断正确选项.解:若l∥α,则?=0.

而A 中?=﹣2, B 中?=1+5=6,

C 中?=﹣1,只有

D 选项中?=﹣3+3=0. 故选D .

点评:本题考查向量语言表述线面的垂直、平行关系,是基础题. 4.B 【解析】

抛物线y 2=4x 的焦点坐标为F(1,0),双曲线x 2-y 2

3=1的渐近线为 3x±y=0,

故点F 到 3x±y=0的距离d = 3

1+3

=

32

选B

5.D 【解析】

由于a ,b ,c 三个向量共面,所以存在实数m ,n ,使得c =ma +nb ,即有 7=2m ?n 5=?m +4n λ=3m ?2n

解得m =337,n =177,λ=65

7. 6.A 【解析】 【分析】

先求出|a |2=2,|b |2=2,再计算得(a +b )·(a -b )=0,所以向量a +b 与a -b 的夹角是90°. 【详解】

∵|a |2

=2,|b |2

=2,(a +b )2(a -b )=|a |2

-|b |2

=0,∴(a +b )⊥(a -b ). 故答案为:A 【点睛】

(1)本题主要考查空间向量的数量积运算和空间向量的模的计算,考查空间向量垂直的数量积表示,意在考察学生对这些知识的掌握水平和分析推理能力.(2)a ⊥b ?a ?b =0. 7.D 【解析】 【分析】

由抛物线y 2=2p x 的准线方程为x =?p

2,结合题意,即可求得a 的值. 【详解】

因为y 2=2p x 的准线方程为x =?p

2

所以由y 2=?a x 的准线方程为x =?2,得a

4=?2, 所以a =?8,故选D. 【点睛】

本题考查的是抛物线的简单性质,掌握抛物线y 2=2p x 的准线方程为x =?p

2

,是解题的关键,

属于基础题目. 8.A 【解析】

试题分析:∵C D =A D ?A C ∴A B ·C D =A B ·(A D ?A C )=A B ·A D ?A B ·A C =0?2×2×cos 60°=?2

考点:平面向量数量积的运算 9.B 【解析】

由题意知a =3,b =4,∴c =5.由双曲线的定义有||PF 1|-|PF 2||=|3-|PF 2||=2a =6.∴|PF |=9.选B. 10.D

【解析】试题分析:以D 点为坐标原点,以DA 、DC 、1DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系则A (2,0,0),B (2,2,0),C (0,2,0),1C (0,2,1)

∴1BC

=(-2,0,1),AC =(-2,2,0),AC 且为平面BB 1D 1D 的一个法向量.

∴1cos ,BC AC ??=

=

.∴BC 1与平面BB 1D 1D

考点:直线与平面所成的角

视频 11.B

【解析】由抛物线22(0)y px p =>得准线2

p

x =-,因为准线经过点()1,1-,所以2p =, 所以抛物线焦点坐标为()1,0,故答案选B 考点:抛物线方程和性质.

视频 12.B 【解析】 【分析】 由椭圆C :

x 24

+

y 23

=1可知其左顶点A 1(?2,0),右顶点A 2(2,0),设P (x 0,y 0)(x 0≠±2),代入椭圆

方程可得y 02

x

2?4

=?3

4,利用斜率计算公式可得k PA 2?k PA 1,再利用已知给出的直线PA 2斜率的取值范围是[?2,?1],即可解出. 【详解】 由椭圆C :

x 24

+

y 23

=1可知其左顶点A 1(?2,0),右顶点A 2(2,0),

设P (x 0,y 0)(x 0≠±2),代入椭圆方程可得y 02

x 0

?4

=?3

4, 因为k PA 2=y 0

x

?2,k PA 1

=y 0

x

0+2

所以k PA 2k P A 1=

y 0

x 0?2?

y 0

x 0+2

=y 02x 02

?4

=?3

4

因为直线PA 2斜率的取值范围是[?2,?1], 所以直线PA 1斜率的取值范围是[38,3

4],故选B. 【点睛】

该题考查的是有关直线的斜率的取值范围问题,涉及到的知识点有直线斜率坐标公式,反比例型函数的值域问题,在解题的过程中,需要注意的是,相关结论的记忆,即椭圆上不同于

左右顶点的任意一点与椭圆的左右顶点连线的斜率的成绩为定值?b 2

a 2,代入求得结果.

13.?x >0,x +1

x <2

【解析】分析:根据全称命题的否定是特称命题,即可得到结论.

详解:∵全称命题的否定是特称命题,∴命题“p :?x >0,x +1

x ≥2”的否定?p 为“?x >0,x +

1

x

<2”,故答案为?x >0,x +1

x <2.

点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 14.43

【解析】

双曲线x2?y2

3=1的右焦点2,0,渐近线方程为y=±3x,过双曲线x2?y2

3

=1右焦点且与x

轴垂直的直线,x=2,可得y A=23,y B=?23,∴A B=43,故答案为43. 15.1

【解析】

【分析】

由已知可得O N=1

2(O B+O C),O M=2

3

O A,假设G与M共线,则存在实数λ使得O G=λO N+(1?

λ)O M=λ

2(O B+O C)+2(1?λ)

3

O A,与O G=1

3

O A+x

4

O B+x

4

O C比较可得.

【详解】

O N=1

2(O B+O C),O M=2

3

O A,假设G与M共线,

则存在实数λ使得O G=λO N+(1?λ)O M=λ

2(O B+O C)+2(1?λ)

3

O A,

与O G=1

3O A+x

4

O B+x

4

O C比较可得:2(1?λ)

3

=1

3

2

=x

4

解得x=1,故答案为1.

【点睛】

该题考查的是根据向量共线求解有关参数的取值范围问题,在解题的过程中,涉及到的知识点有向量基本定理,有关向量共线与向量相等的条件,属于中高档题目.

16.5

4或5

3

【解析】

【分析】

由渐近线的斜率与a,b的关系,得到a,c的关系,从而求出双曲线的离心率.【详解】

设双曲线方程为x 2a 2?

y 2b 2

=1(a >0,b >0),

因为渐近线方程为3x ±4y =0, 所以b

a =34,所以 e 2?1=34,e =5

4, 设双曲线方程为y 2a 2?x 2

b 2=1(a >0,b >0), 则a b =34,b

a =43,所以e =5

3, 所以离心率e =5

4

或e =5

3

故答案是54

或53

.

【点睛】

该题考查的是有关双曲线的离心率的求解问题,因为该题没有明确焦点的位置,故应分两种

情况求双曲线的离心率,对于双曲线方程为x 2a

2

?y 2b

2

=λ(λ≠0)的形式,他们的渐近线方程均

为y =±b

a x . 17. 3

2,+∞

【解析】 【分析】

“p∨q”为真,“ ?p ∨ ?q ”也为真,说明p 与q 中至少有一个为真命题,?p ,?q 至少一个是真命题,从而得到结果. 【详解】

当p 为真时,应有a >1;

当q 为真时,关于x 的方程x 2

+2x +log a =0无解, 所以Δ=4-4log a <0,解得1<a <.

由于“p∨q”为真,所以p 和q 中至少有一个为真.又“(綈p)∨(綈q)”也为真,所以綈p 和綈q 中至少有一个为真,即p 和q 中至少有一个为假,故p 和q 中一真一假. p 假q 真时,a 无解;p 真q 假时,a≥, 综上所述,实数a 的取值范围是.

【点睛】

该题考查的是有关应用命题的真假判断,求解有关参数的取值范围的问题,在解题的过程中,首先需要明确复合命题的真值表,根据题的条件,确定出其真假情况,建立参数所满足的不等关系式,从而求得结果.

18.y2=?8x

【解析】

【分析】

根据题意,设P(x,y),结合M与N的坐标,可以求出M N=4,并将M P,N P表示出来,代入M N?M P+M N?N P=0中,可得4x2y2+4(x?2)=0,化简整理即可得到答案.【详解】

设P(x,y),则=(4,0),=(x+2,y),=(x-2,y).

所以||=4,||=,2=4(x-2),

代入||2||+2=0,

得4+4(x-2)=0,

即=2-x,化简整理,得y2=-8x,

故动点P(x,y)的轨迹方程为y2=-8x.

【点睛】

该题考查的是有关动点的轨迹方程的求解问题,在解题的过程中,涉及到的知识点有向量的模,向量的数量积公式,求解轨迹方程的步骤,难度不大.

19.2

【解析】

【分析】

的当PF2⊥x轴时,求出P的纵坐标,即得PF2的值,由椭圆的定义求得PF1,进而求得PF1

PF2值,当PF1⊥PF2时,设PF2=m,由椭圆的定义求得PF1,由勾股定理可解得m,进而求的值.

得PF1

PF2

【详解】

由已知|PF1|+|PF2|=6,|F1F2|=2,

根据直角的不同位置,分两种情况:

若∠PF2F1为直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(6-|PF1|)2+20,解得|PF1|=,

|PF2|=,故=;

若∠F1PF2为直角,则|F1F2|2=|PF1|2+|PF2|2,

即20=|PF1|2+(6-|PF1|)2,

得|PF1|=4,|PF2|=2,故=2.

【点睛】

该题考查的是有关椭圆中线段的长度的比值的求解问题,在解题的过程中,涉及到的知识点有椭圆的定义,椭圆的简单几何性质,注意式子的等价转化.

20.(1)见解析;(2)6

4

【解析】

【分析】

(1)通过建立如图所示的空间直角坐标系,利用数量积a?b=0?a⊥b,即可证明AB1⊥平面A1B D.

(2)利用两个平面的法向量的夹角余弦值即可得到二面角的余弦值.

【详解】

(1)证明:如图,取BC的中点O,连接AO.

因为△ABC为正三角形,所以AO⊥BC.

因为在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,所以AO⊥平面BCC1B1.

取B1C1中点O1,以O为原点,,,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系,

则B(1,0,0),D(-1,1,0),A1(0,2,),A(0,0,),B1(1,2,0),C(-1,0,0),

所以=(1,2,-),=(-2,1,0),=(-1,2,).

因为2=-2+2+0=0,2=-1+4-3=0,

所以⊥,⊥,即AB1⊥BD,AB1⊥BA1.

又BD与BA1交于点B,所以AB1⊥平面A1BD.

(2)解:连接AD,设平面A1AD的法向量为

n=(x,y,z).

=(-1,1,-),=(0,2,0).

因为n⊥,n⊥,所以

即解得

令z=1,得n=(-,0,1)为平面A1AD的一个法向量.

由(1)知AB1⊥平面A1BD,所以为平面A1BD的法向量.

cos〈n2〉===-,

故二面角A-A1D-B的余弦值为.

【点睛】

该题考查的是有关用空间向量解决立体几何的问题,涉及到的知识点有线面垂直的判定,二面角的余弦值的求解,在解题的过程中,注意向量垂直的应用条件,以及应用法向量求解二面角余弦值的步骤.

21.(1)

22

1

2516

x y

+=;(2)

36

,

25

??

-

?

??

【解析】试题分析:(1)∵椭圆经过点,∴4

b=.由离心率即可得椭圆方程为:

2212516

x y +=;(2)依题意可得,直线方程为()435y x =-,联立直线与椭圆方程可得

2380x x --=,根据韦达定理得中点和两个交点关系,代入直线方程即得.

试题解析:(1)∵椭圆经过点A ,∴4b =.又∵离心率为35,∴3

5c a =,∴229125

b a -=,

∴5a =.

∴椭圆方程为:

22

12516

x y +=. (2)依题意可得,直线方程为()4

35y x =-,并将其代入椭圆方程

2212516x y +=,得2380x x --=.

设直线与椭圆的两个交点坐标为()()1122,,,x y x y .则由韦达定理得, 123x x +=,所以中点横坐标为

12322x x +=,并将其代入直线方程得, 6

5

y =-. 故所求中点坐标为36,25??

-

???

. 考点:1.椭圆方程;2.弦中点问题.

【一题多解】本题主要考查的是椭圆,属于中档题.本题的第(2)问是关于弦中点问题,可用点差法。设直线与椭圆的两个交点坐标为()()1122,,,x y x y ,中点坐标为

,则直

线方程为()4

35

y x =

-,

由题意得:,两式相减得:,

即,根据中点坐标公式及已知条件得:

,代入上式得:①,又中点在直线上即

②,联立

①②,解得中点坐标为

36

,

25

??

-

???

22.(1)略(2)

4

π

【考点定位】此题第二问是对基本功的考查,对于知识掌握不牢靠的学生可能不能顺利解答。第三问的创新式问法,难度非常大

【解析】试题分析:(1)证明A1C⊥平面BCDE,因为A1C⊥CD,只需证明A1C⊥DE,即证明DE⊥平面A1CD;

(2)建立空间直角坐标系,用坐标表示点与向量,求出平面A1BE法向量

,=(﹣1,0,),利用向量的夹角公式,即可求得CM与平面A1BE所成角的大小;

(3)设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3],求出平面A1DP法向量为

假设平面A1DP与平面A1BE垂直,则,可求得0≤a≤3,从而可得结论.

(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,

∴DE⊥平面A1CD,

又∵A1C?平面A1CD,∴A1C⊥DE

又A1C⊥CD,CD∩DE=D

∴A1C⊥平面BCDE

(2)解:如图建系,则C(0,0,0),D(﹣2,0,0),A1(0,0,2),B(0,3,0),E(﹣2,2,0)

∴,

设平面A1BE法向量为

则∴∴

又∵M(﹣1,0,),∴=(﹣1,0,)

∴CM与平面A1BE所成角的大小45°

(3)解:设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3]

∴,

设平面A1DP法向量为

则∴

假设平面A1DP与平面A1BE垂直,则,

∴3a+12+3a=0,6a=﹣12,a=﹣2

∵0≤a≤3

∴不存在线段BC上存在点P,使平面A1DP与平面A1BE垂直

考点:向量语言表述面面的垂直、平行关系;直线与平面垂直的判定;用空间向量求直线与平面的夹角.

视频

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

(完整版)选修21空间向量知识点归纳总结

第三章空间向量与立体几何 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的 向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 空间向量的运算。 定义:与平面向量运算一 样,空间向量的加法、减法与数乘运算如下(如图)。 ⑵加法结合律:(a b ) c ⑶数乘分配律:(a b ) 3. 共线向量。 (1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作a 〃b 。 当我们说向量a 、b 共线(或a// b )时,表示a 、b 的有向线段所在的直线 可能是同一直线,也可能是平行直线。 (2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ),a// b 存在实数入, 使a =入b 。 4. 共面向量 (1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。r r (2) 共面向量定理:如果两个向量a,b 不共线,P 与向量a,b 共面的条件是 存在实数x, y 使p xa yb 。 5. 空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量P , 存在一个唯一的有序实数组x, y,z ,使p xa yb zc 。 若三向量ab,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向 2. uuu r OB a b a (b c) b a

量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设O,代B,C是不共面的四点,则对空间任一点P,都存在唯一的三个 uuu uuu uuu uuur 有序实数x, y,z,使OP xOA yOB zOC。

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

选修2-1第三章空间向量与立体几何教案

第三章空间向量与立体几何 空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢 [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向

量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢 [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27. Ⅱ.新课讲授 [师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. [师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

创新设计高中数学苏教选修21习题:第3章 空间向量与立体几何

3.1.5 空间向量的数量积 课时目标 1.掌握空间向量的夹角及空间向量数量积的概念.2.掌握空间向量的运算律及其坐标运算.3.掌握空间向量数量积的应用. 1.两向量的夹角 如图所示,a,b 是空间两个非零向量,过空间任意一点O ,作OA →=a ,OB →=b ,则__________ 叫做向量a 与向量b 的夹角,记作__________. 如果〈a ,b 〉=π2 ,那么向量a ,b ______________,记作__________. 2.数量积的定义 已知两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作a·b . 即a·b =__________. 零向量与任一向量的数量积为0. 特别地,a·a =|a|·|a|cos 〈a ,a 〉=________. 3.数量积的运算律 空间向量的数量积满足如下的运算律: (λa )·b =λ(a·b ) (λ∈R ); a·b =b·a ; a·(b +c )=a·b +a·c . 4.数量积的坐标运算 若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 (1)a·b =________________; (2)a ⊥b ?__________?____________________________; (3)|a |=a·a =______________; (4)cos 〈a ,b 〉=____________=_________________________________________. 一、填空题 1.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的____________条件. 2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 3.已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29且λ>0,则λ=________. 4.若a 、b 、c 为任意向量,下列命题是真命题的是____.(写出所有符合要求的序号) ①若|a |=|b |,则a =b ; ②若a·b =a·c ,则b =c ; ③(a·b )·c =(b·c )·a =(c·a )·b ; ④若|a |=2|b |,且a 与b 夹角为45°,则(a -b )⊥b . 5.已知向量a =(2,-3,0),b =(k,0,3),若a 与b 成120°角,则k =________. 6.设O 为坐标原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运 动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 7.向量(a +3b )⊥(7a -5b ),(a -4b )⊥(7a -2b ),则a 和b 的夹角为____________. 8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3 ,则|a +b |=________. 二、解答题

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

苏教版数学选修2-1:3.1 空间向量及其运算3.1.5

1.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的____________条件. 解析:a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |?cos 〈a ,b 〉=1?〈a ,b 〉=0,当a 与b 反向时,不成立. 答案:充分不必要 2.对于向量a ,b ,c 和实数λ,下列命题中真命题是________(填序号). ①若a ·b =0,则a =0或b =0; ②若λa =0,则λ=0或a =0; ③若a 2=b 2,则a =b 或a =-b ; ④若a ·b =a ·c ,则b =c . 解析:①中若a ⊥b ,则有a ·b =0,不一定有a =0或b =0. ③中当|a |=|b |时,a 2=b 2,此时不一定有a =b 或a =-b . ④中当a =0时,a ·b =a ·c ,不一定有b =c . 答案:② 3.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________. 解析:因为a 与2b -a 互相垂直,所以a ·(2b -a )=0. 即2a ·b -a 2=0.所以2|a ||b |cos 〈a ,b 〉-|a |2=0, 所以cos 〈a ,b 〉=22 ,所以a 与b 的夹角为45°. 答案:45° 4.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 解析:|a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=13. 答案:13 [A 级 基础达标] 1.(2011·高考重庆卷)已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=__________. 解析:|2e 1-e 2|2=4e 21-4e 1·e 2+e 22=4-4×1×1×cos60°+1=3,∴|2e 1-e 2|= 3. 答案: 3 2.若向量a 与b 不共线,a ·b ≠0,且c =a -(a ·a a ·b )b ,则向量a 与c 的夹角为__________. 解析:a ·c =a ·[a -(a ·a a ·b )b ]=a ·a -(a ·a a ·b )b ·a =a ·a -a ·a =0,∴a ⊥c . 答案:90° 3.已知三点A (1,-2,11),B (4,2,3),C (6,-1,4),则三角形ABC 的形状是__________. 解析:AB →=(3,4,-8),BC →=(2,-3,1),AC →=(5,1,-7). ∴|AB →|=89,|BC →|=14,|AC →|=75, ∴|AB →|2=|BC →|2+|AC →|2,

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题 宝鸡铁一中司婷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 60 分). 1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75° 2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A 1 B 1 ,则 BE1 4 与 DF1所成角的余弦值是() A.15 B. 1 172 图 8 D.3 C. 2 17 3.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、 A B C ABC BCA D F A B A1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是() A.C. 301 10 B. 2 30图 15 15 D. 10 4.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离() .15.5C. 2 5 A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离() A. 2 a B. 2 a 48A 1D. 5 C1 10B1 D A C B图

C.3 2 a D. 2 a 42 6.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离() A.3B.3C.2 3 D.3 6332 7.在三棱锥-中,⊥,==1,点、 D 分别是、的中点,⊥底 P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值() A.21B.8 3 C210 D .210 636030 8.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值() A. 2 B. 7 C. 3 D. 3 3327 9.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA13 3 ,D是C B延长线上一点,2 且 BD BC ,则二面角B1AD B 的大小() A. 3B. 6 C. 5 D. 2 63 10.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V() A.6B.16 3C.16 D.16 633 11.有以下命题: ①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线; ② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C 一定共面; ③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。其中

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

选修21空间向量单元测试

空间向量单元测试(一) 本试卷分第Ⅰ卷和第II 卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则、一定不共面;③若、、三向量两两共面,则、、三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 z y x ++=.其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 5.直三棱柱ABC —A 1B 1C 1中,若CC ===1,,, 则1A B = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 6.已知++=,||=2,||=3,||=19,则向量与之间的夹角>

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

数学选修2-1 3.1空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

① 几何表示法:_________________________ ② 字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ① 零向量:__________________________,记作___(零向量的方向具有任意性) ② 单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③ 相等向量:____________________________ ④ 相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a 加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 数乘结合律:λ(a μ)=a )(λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

相关文档
相关文档 最新文档